首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 For the angiosperm dominants of northern California’s mixed evergreen forests, this study compares the display of photosynthetic tissue within leaves and along branches, and examines the correspondence between these morphological attributes and the known environmental tolerances of these species. Measurements were made on both sun and shade saplings of six species: Arbutus m e n z i e s i i (Ericaceae), C h r y s o l e p i s c h r y s o p h y l l a (Fagaceae), L i t h o c a r p u s d e n s i f l o r u s (Fagaceae), Quercus c h r y s o l e p i s (Fagaceae), Quercus w i s l i z e n i i (Fagaceae), and Umbellularia c a l i f o r n i c a (Lauraceae). All species had sclerophyllous leaves with thick epidermal walls, but species differed in leaf specific weight, thickness of mesophyll tissues and in the presence of a hypodermis, crystals, secretory idioblasts, epicuticular deposits, and trichomes. The leaves of Arbutus were 2 – 5 times larger than those of C h r y s o l e p i s, L i t h o c a r p u s and Umbellularia and 4 – 10 times larger than those of both Quercus species. Together with differences in branch architecture, these leaf traits divide the species into groups corresponding to environmental tolerances. Shade-tolerant C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia had longer leaf lifespans and less palisade tissue, leaf area, and crown mass per volume than the intermediate to intolerant Arbutus and Quercus. Having smaller leaves, Quercus branches had more branch mass per leaf area and per palisade volume than other species, whereas Arbutus had less than other species. These differences in display of photosynthetic tissue should contribute to greater growth for Quercus relative to the other species under high light and limited water, for Arbutus under high light and water availability, and for C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia under limiting light levels. Accepted: 22 March 1996  相似文献   

2.
A taxonomic review of the Korean Lymantria Hübner, 1819 was conducted. A total of nine species of five subgenera with two unrecorded species are listed: Lymantria (Porthetria) dispar Linnaeus 1758, L. (P.) xylina Swinhoe 1903, L. (Lymantria) monacha (Linnaeus 1758), L. (L.) minomonis Matsumura 1933 (new to Korea), L. (L.) similis monachoides Schintlimeister 2004 (new to Korea), L. (L.) lucescens (Butler 1881), L. (Nyctria) mathura Moore 1865, L. (Collentria) fumida Butler 1877, and L. (Spinotria) bantaizana Matsumura 1933. Lymantria (Lymantria) minomonis and L. (L.) similis monachoides are newly added to the Korean fauna. Lymantria (L.) minomonis was found only on Bogildo Island of Jeollanam‐do in the southern part of Korea, and L. (L.) similis monachoides was collected in central Korea. Lymantria (Porthetria) xylina and L. (Collentria) fumida were not examined in this study, and it is considered that the previous records were due to misidentification or they are only distributed in the northern part of the Korean Peninsula. We provide diagnoses of two unrecorded species and adult habitus and genitalia photos of the Korean Lymantria species.  相似文献   

3.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

4.
There are numerous discrepancies in recent published lists of the ticks of the world. Here we review the controversial names, presenting evidence for or against their validity and excluding some altogether. We also address spelling errors and present a list of 17 species described or resurrected during the years 2003–2008. We consider the following 35 tick species names to be invalid: Argas fischeri Audouin, 1826, Ornithodoros boliviensis Kohls and Clifford, 1964, Ornithodoros steini (Schulze, 1935), Amblyomma acutangulatum Neumann, 1899, Amblyomma arianae Keirans and Garris, 1986, Amblyomma bibroni (Gervais, 1842), Amblyomma colasbelcouri (Santos Dias, 1958), Amblyomma concolor Neumann, 1899, Amblyomma cooperi Nuttall and Warburton, 1908, Amblyomma curruca Schulze, 1936, Amblyomma cyprium Neumann, 1899, Amblyomma decorosum (Koch, 1867), Amblyomma nocens Robinson, 1912, Amblyomma perpunctatum (Packard, 1869), Amblyomma striatum Koch, 1844, Amblyomma superbum Santos Dias, 1953, Amblyomma testudinis (Conil, 1877), Amblyomma trinitatis Turk, 1948, Dermacentor confractus (Schulze 1933), Dermacentor daghestanicus Olenev, 1928, Haemaphysalis himalaya Hoogstraal, 1966, Haemaphysalis vietnamensis Hoogstraal and Wilson, 1966, Hyalomma detritum Schulze, 1919, Ixodes apteridis Maskell, 1897, Ixodes donarthuri Santos Dias, 1980, Ixodes kempi Nuttall, 1913, Ixodes neotomae Cooley, 1944, Ixodes rangtangensis Teng, 1973, Ixodes robertsi Camicas, Hervy, Adam and Morel, 1998, Ixodes serrafreirei Amorim, Gazetta, Bossi and Linhares, 2003, Ixodes tertiarius Scudder, 1885, Ixodes uruguayensis Kohls and Clifford, 1967, Ixodes zealandicus Dumbleton, 1961, Ixodes zumpti Arthur, 1960 and Rhipicephalus camelopardalis Walker and Wiley, 1959. We consider the following 40 names valid: Argas delicatus Neumann, 1910, Argas vulgaris Filippova, 1961, Ornithodoros aragaoi Fonseca, 1960, Ornithodoros dugesi Mazzoti, 1943, Ornithodoros knoxjonesi Jones and Clifford, 1972, Ornithodoros marocanus Velu, 1919, Ornithodoros nattereri Warburton, 1927, Amblyomma beaurepairei Vogelsang and Santos Dias, 1953, Amblyomma crassipes (Neumann, 1901), Amblyomma echidnae Roberts, 1953, Amblyomma fuscum Neumann, 1907, Amblyomma orlovi (Kolonin, 1995), Amblyomma parkeri Fonseca and Arag?o, 1952, Amblyomma pseudoconcolor Arag?o, 1908, Bothriocroton oudemansi (Neumann, 1910), Bothriocroton tachyglossi (Roberts, 1953), Dermacentor abaensis Teng, 1963, Dermacentor confragus (Schulze 1933), Dermacentor ushakovae Filippova and Panova, 1987, Haemaphysalis anomaloceraea Teng, 1984, Haemaphysalis filippovae Bolotin, 1979, Haemaphysalis pavlovskyi Pospelova-Shtrom, 1935, Hyalomma excavatum Koch, 1844, Hyalomma isaaci Sharif, 1928, Hyalomma rufipes Koch, 1844, Hyalomma turanicum Pomerantzev, 1946, Ixodes arabukiensis Arthur, 1959, Ixodes boliviensis Neumann, 1904, Ixodes columnae Takada and Fujita, 1992, Ixodes maslovi Emel′yanova and Kozlovskaya, 1967, Ixodes sachalinensis Filippova, 1971, Ixodes siamensis Kitaoka and Suzuki, 1983, Ixodes sigelos Keirans, Clifford and Corwin, 1976, Ixodes succineus Weidner, 1964, Rhipicephalus aurantiacus Neumann, 1907, Rhipicephalus cliffordi Morel, 1965, Rhipicephalus pilans Schulze, 1935, Rhipicephalus pseudolongus Santos Dias, 1953, Rhipicephalus serranoi Santos Dias, 1950 and Rhipicephalus tetracornus Kitaoka and Suzuki, 1983.  相似文献   

5.
6.
The taxonomic positions ofRetzia, Desfontainia, andNicodemia have been much discussed, and all three genera have been included inLoganiaceae (Gentianales). We have made a cladistic analysis ofrbcL gene sequences to determine the relationships of these taxa toGentianales. Four newrbcL sequences are presented; i.e., ofRetzia, Desfontainia, Diervilla (Caprifoliaceae), andEuthystachys (Stilbaceae). Our results show thatRetzia, Desfontainia, andNicodemia are not closely related toLoganiaceae or theGentianales. Retzia is most closely related toEuthystachys and is better included inStilbaceae. The positions ofDesfontainia andNicodemia are not settled, butDesfontainia shows affinity for theDipsacales s.l. andNicodemia for theLamiales s.l.  相似文献   

7.
Diplazium with simply pinnate or bipinnatifid leaves. Diplazium wichurae var. wichurae, D. wichurae var. amabile, D. okudairae, and D. pin-faense are sexual diploids (2n=82; n=41II); D.× kidoi and D. × okudairaeoides are sterile diploids (2n= 82; meiosis irregular); D. donianum var. donianum is an apomictic triploid (2n=123; n=123II); D. donianum var. aphanoneuron is a sterile triploid (2n=123; meiosis irregular); D. crassiusculum, D. cavalerianum, D. incomptum, D. longicarpum, and D. pullingeri are sexual tetraploids (2n= 164; n=82II); and D. lobatum is an apomictic tetraploid (2n=164; n=164II). This is the first report of the chromosome numbers of D. lobatum, D. crassiusculum, D. incomptum, D. longicarpum, D. pullingeri, and D. × okudairaeoides, as well as the mitotic chromosome numbers of D. wichurae var. amabile, D. okudairae, D. pinfaense, and D. ×kidoi. The mitotic chromosome number, meiotic behavior, sterility, and allozyme analysis confirm that D. × kidoi and D. × okudairaeoides are hybrids between D. pin-faense and D. wichurae var. wichurae and D. okudairae and D. wichurae var. wichurae, respectively. Diplazium with simply pinnate to bipinnatifid leaves displayed an extraordinary cytological and reproductive complexity: a polyploidal series with diploids to hexaploids, sexual and apomictic reproduction, and natural hybridization. Received 14 August 2001/ Accepted in revised form 1 October 2001  相似文献   

8.
Higher‐level relationships within Aedini, the largest tribe of Culicidae, are explored using morphological characters of eggs, fourth‐instar larvae, pupae, and adult females and males. In total, 172 characters were examined for 119 exemplar species representing the existing 12 genera and 56 subgenera recognized within the tribe. The data for immature and adult stages were analysed separately and in combination using equal (EW) and implied weighting (IW). Since the classification of Aedini is based mainly on adult morphology, we first tested whether adult data alone would support the existing classification. Overall, the results of these analyses did not reflect the generic classification of the tribe. The tribe as a whole was portrayed as a polyphyletic assemblage of Aedes and Ochlerotatus within which eight (EW) or seven (IW) other genera were embedded. Strict consensus trees (SCTs) derived from analyses of the immature stages data were almost completely unresolved. Combining the adult and immature stages data resulted in fewer most parsimonious cladograms (MPCs) and a more resolved SCT than was found when either of the two data subsets was analysed separately. However, the recovered relationships were still unsatisfactory. Except for the additional recovery of Armigeres as a monophyletic genus, the groups recovered in the EW analysis of the combined data were those found in the EW analysis of adult data. The IW analysis of the total data yielded eight MPCs consisting of three sets of two mutually exclusive topologies that occurred in all possible combinations. We carefully studied the different hypotheses of character transformation responsible for each of the alternative patterns of relationship but were unable to select one of the eight MPCs as a preferred cladogram. Overall, the relationships within the SCT of the eight MPCs were a significant improvement over those found by equal weighting. Aedini and all existing genera except Ochlerotatus and Aedes were recovered as monophyletic. Ochlerotatus formed a polyphyletic assemblage basal to Aedes. This group included Haemagogus and Psorophora, and also Opifex in a sister‐group relationship with Oc. (Not.) chathamicus. Aedes was polyphyletic relative to seven other genera, Armigeres, Ayurakitia, Eretmapodites, Heizmannia, Udaya, Verrallina and Zeugnomyia. With the exception of Ae. (Aedimorphus), Oc. (Finlaya), Oc. (Ochlerotatus) and Oc. (Protomacleaya), all subgenera with two or more species included in the analysis were recovered as monophyletic. Rather than leave the generic classification of Aedini in its current chaotic state, we decided a reasonable and conservative compromise classification would be to recognize as genera those groups that are ‘weighting independent’, i.e. those that are common to the results of both the EW and IW analyses of the total data. The SCT of these combined analyses resulted in a topology of 29 clades, each comprising between two and nine taxa, and 30 taxa (including Mansonia) in an unresolved basal polytomy. In addition to ten genera (Armigeres, Ayurakitia, Eretmapodites, Haemagogus, Heizmannia, Opifex, Psorophora, Udaya, Verrallina and Zeugnomyia), generic status is proposed for the following: (i) 32 existing subgenera of Aedes and Ochlerotatus, including nine monobasic subgenera within the basal polytomy, i.e. Ae. (Belkinius), Ae. (Fredwardsius), Ae. (Indusius), Ae. (Isoaedes), Ae. (Leptosomatomyia), Oc. (Abraedes), Oc. (Aztecaedes), Oc. (Gymnometopa) and Oc. (Kompia); (ii) three small subgenera within the basal polytomy that are undoubtedly monophyletic, i.e. Ae. (Huaedes), Ae. (Skusea) and Oc. (Levua), and (iii) another 20 subgenera that fall within the resolved part of the SCT, i.e. Ae. (Aedes), Ae. (Alanstonea), Ae. (Albuginosus), Ae. (Bothaella), Ae. (Christophersiomyia), Ae. (Diceromyia), Ae. (Edwardsaedes), Ae. (Lorrainea), Ae. (Neomelaniconion), Ae. (Paraedes), Ae. (Pseudarmigeres), Ae. (Scutomyia), Ae. (Stegomyia), Oc. (Geoskusea), Oc. (Halaedes), Oc. (Howardina), Oc. (Kenknightia), Oc. (Mucidus), Oc. (Rhinoskusea) and Oc. (Zavortinkius). A clade consisting of Oc. (Fin.) kochi, Oc. (Fin.) poicilius and relatives is raised to generic rank as Finlaya, and Downsiomyia Vargas is reinstated from synonymy with Finlaya as the generic name for the clade comprising Oc. (Fin.) leonis, Oc. (Fin.) niveus and their relatives. Three other species of Finlaya?Oc. (Fin.) chrysolineatus, Oc. (Fin.) geniculatus and Oc. (Fin.) macfarlanei? fall within the basal polytomy and are treated as Oc. (Finlaya) incertae sedis. Ochlerotatus (Ochlerotatus) is divided into three lineages, two of which, Oc. (Och.) atropalpus and Oc. (Och.) muelleri, are part of the basal polytomy. The remaining seven taxa of Oc. (Ochlerotatus) analysed, including the type species, form a reasonably well‐supported group that is regarded as Ochlerotatus s.s. Ochlerotatus (Rusticoidus) is retained as a subgenus within Ochlerotatus s.s. Ochlerotatus (Nothoskusea) is recognized as a subgenus of Opifex based on two unique features that support their sister‐group relationship. A new genus, Tanakaius gen. nov. , is proposed for Oc. (Fin.) togoi and the related species Oc. (Fin.) savoryi. The taxonomic status and generic placement of all currently valid species of Aedini are listed in an appendix. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 289?368.  相似文献   

9.
The recent worldwide effort to transfer all non‐Australian taxa of Acacia s.l. mostly to the genera Senegalia and Vachellia follows the acceptance of the proposed re‐typification of the genus with an Australian species. The Madagascan species have, as yet, not been included in phylogenetic studies of Acacia s.l. and their position in the new generic classification of Acacia s.l. is therefore still unclear. In this study, plastid DNA sequence data were generated for seven Madagascan species, included in existing matrices for Acacia s.l. and analysed to assess the placement of these species. The results indicate that the Madagascan species are placed either in Senegalia or Vachellia and conform to the morphological characters used to distinguish these genera, despite some taxa having unusual red flowers. New combinations are formalized for Senegalia baronii , S . hildebrandtii , S . kraussiana ssp. madagascariensis , S . menabeensis , S . meridionalis , S . pervillei , S . pervillei ssp. pubescens , S . polhillii , S . sakalava , S . sakalava ssp. hispida , V achellia bellula , V . myrmecophila and V . vigueri . Nomenclatural errors are also corrected for three African taxa and, as such, new combinations are provided for Senegalia fleckii , S . hamulosa and V achellia theronii . © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 288–294.  相似文献   

10.
Species composition and distributional patterns among nymphs of five baetid genera (Ephemeroptera), Baetis, Tenuibaetis, Labiobaetis, Nigrobaetis and Alainites were investigated in Yura Stream, Kyoto Prefecture. I collected 13 species: B. sahoensis, B. thermicus, B. sp. F, B. sp. J, B. sp. M1, B. sp. S1, T. sp. E, T. sp. H, L. sp. G, N. chocoratus, N. sp. D, N. sp. I and A. yoshinensis, among which B. thermicus, B. sp. S1 and T. sp. E were dominant, whereas B. sahoensis, B. sp. F, B. sp. M1 and N.sp. I were scarce. Based on their longitudinal distribution patterns, the 13 species were classified into upper species, upper-middle species, middle species, middle-lower species and lower species. Baetis thermicusand A. yoshinensis showed long downstream tails. Baetis sp. J and N. sp. D extended their longitudinal distribution upstream in summer. With regard to habitat preference, Alainites and Labiobaetis were restricted to riffle and vegetated zones, respectively. Tenuibaetis consisted of riffle-vegetated zone species, whereas Baetis and Nigrobaetiscontained both riffle species and ubiquitous species. Habitat partitioning (`sumiwake') along the watercourse (macro-sumiwake) was evident in Tenuibaetis, and that between habitat types (micro-sumiwake) in Labiobaetis vs. Baetis (rhodanigroup species) and Labiobaetis vs. Alainites.  相似文献   

11.
New records of freshwater rotifers (Rotifera) from Indian waters   总被引:1,自引:1,他引:0  
S. S. S. Sarma 《Hydrobiologia》1988,160(3):263-269
This study adds 25 rotifer species to the fauna of India viz.Cyrtonia tuba (Ehrb.)Epiphanes macrourus (Barrois & Daday),Liliferotrocha subtilis (Rodewald),Microcodides chleana (Gosse),Brachionus dimidiatus (Bryce),Keratella ticinensis Carlin,Notholca labis (Gosse),Platyias leloupi (Gillard),Euchlanis incisa Carlin,Mytilina bisulcata (Lucks),Wolga spinifera (Western),Lecane (Lecane)althausi Rudescu,L. (L.)doryssa Harring,L. (L.)elongata Harring & Myers,L. (Monostyla)bifurca (Bryce)L. (M.)lamellata thalera (Harring & Myers),L. (Hemimonostyla)blachei Berzins,Cephalodella giganthea Remane,Monommata arndti Remane,Trichocerca (Trichocerca)pusilla (Lauterborn),Testudinella emarginula (Stenroos),Ptygura melicerta Ehrb,P. tacita Edmondson,Filinia cornuta (Weisse),Collotheca mutabilis (Hudson),C. ornata (Ehrb.) andC. trilobata (Collins).B. dimidiatus andP. leloupi are new records from Delhi Region.  相似文献   

12.

The cosmopolitan genus Bembidion is represented in New Zealand by 20 species, of which 19 are endemic; B. brullei appears to be a recent introduction. On phenetic characters the species fall into 7 subgenera, as follows: Zeplataphus n.subg.—maorinum Bates, dehiscens Broun, charile Bates, granuliferum n.sp., townsendi n.sp., tairuense Bates; Zeactedium Netolitzky—orbiferum Bates, musae Broun; Zeperyphodes n.subg.—callipeplum Bates; Zeperyphus n.subg.—actuarium Broun; Zemetal‐lina n.subg.—chalceipes Bates, solitarium n.sp., anchonoderum Bates, tekapoense Broun, wanakense n.sp., urewerense n.sp., hokitikense Bates, parviceps Bates; Ananotaphus Netolitzky—rotundicolle Bates; Notaphus Stephens—brullei Gemminger & Harold. The North Island population of maorinum is distinct from the typical South Island form in having reduced microscrulpture on the elytra, and is here separated as levatum n.ssp. An apparent geographic isolate of anchonoderum, represented by 2 females from Stewart Island, is provisionally recognised as stewartense n.ssp. The polymorphic complex within subg. Ananotaphus is here regarded as a single species, of which the North Island population is sufficiently distinct to warrant subspecific status as eustictum Bates; however, intergrades occur in the north‐west of the South Island. The following names fall into synonymy: latiusculum Broun (= maorinum); diaphanum Broun (= musae); nesophilum Broun (= callipeplum)’, tinctellum Broun (= chalceipes);antipodum Broun (= anchonoderum)’, tantillum Broun and probably attenuatum Broun (=hokitikense)’, clevedonense Broun and waikatoense Broun (= rotundicolle, ssp. eustictum)’, gameani Jeannel (= brullei). The relationships and aspects of the biology and ecology of the New Zealand Bembidion fauna are discussed.  相似文献   

13.
Fourteen mite species in three genera of the family Macrochelidae were collected from the body surface of dung beetles (Scarabaeidae) in Mt Merapi National Park, Jogyakarta, Indonesia. Of these, three species, Macrocheles turgoensis n. sp., M. pumilus n. sp. and Glyptholaspis merapiensis n. sp., were described as new to science. The remaining 11 species were Glyptholaspis fimicola (Sellnick, 1931), Neopodocinum spinirostris (Berlese, 1910), M. dispar (Berlese, 1910), M. entetiensis Hartini and Takaku, 2005, M. hallidayi Walter and Krantz, 1986, M. jabarensis Hartini and Takaku, 2003, M. merdarius (Berlese, 1889), M. muscaedomesticae (Scopoli, 1772), M. oigru Walter and Krantz, 1986, M. sukaramiensis Takaku, 2001 and M. sp. aff. glaber (Müller, 1860).  相似文献   

14.
Endosymbiotic Wolbachia bacteria are, to date, considered the most widespread symbionts in arthropods and are the cornerstone of major biological control strategies. Such a high prevalence is based on the ability of Wolbachia to manipulate their hosts' reproduction. One manipulation called cytoplasmic incompatibility (CI) is based on the death of the embryos generated by crosses between infected males and uninfected females or between individuals infected with incompatible Wolbachia strains. CI can be seen as a modification‐rescue system (or modresc) in which paternal Wolbachia produce mod factors, inducing embryonic defects, unless the maternal Wolbachia produce compatible resc factors. Transgenic experiments in Drosophila melanogaster and Saccharomyces cerevisiae converged towards a model where the cidB Wolbachia gene is involved in the mod function while cidA is involved in the resc function. However, as cidA expression in Drosophila males was required to observe CI, it has been proposed that cidA could be involved in both resc and mod functions. A recent correlative study in natural Culex pipiens mosquito populations has revealed an association between specific cidA and cidB variations and changes in mod phenotype, also suggesting a role for both these genes in mod diversity. Here, by studying cidA and cidB genomic repertoires of individuals from newly sampled natural C. pipiens populations harbouring wPipIV strains from North Italy, we reinforce the link between cidB variation and mod phenotype variation fostering the involvement of cidB in the mod phenotype diversity. However, no association between any cidA variants or combination of cidA variants and mod phenotype variation was observed. Taken together our results in natural C. pipiens populations do not support the involvement of cidA in mod phenotype variation.  相似文献   

15.
Petr Šmarda 《Biologia》2008,63(3):349-367
Using flow cytometry in fresh plants and herbarium vouchers, DNA ploidy levels for 411 individuals of 44 taxa of the genus Festuca, including 4 natural hybrids, originating from 237 sites in Austria, Bulgaria, Croatia, Czech Republic, Estonia, Germany, Hungary, Italy, Poland, Romania, Slovakia, Slovenia, and Switzerland were estimated. The following taxa and DNA ploidy levels are reported: F. airoides (2n ≈ 2x), F. alpestris (2n ≈ 2x), F. alpina s.l. (2n ≈ 2x), F. amethystina subsp. amethystina (2n ≈ 4x), F. bosniaca subsp. bosniaca (2n ≈ 2x), F. brevipila (2n ≈ 6x), F. bucegiensis (2n ≈ 2x), F. carnuntina (2n ≈ 6x), F. csikhegyensis (2n ≈ 4x), F. csikhegyensis × F. eggleri (2n ≈ 4x), F. dalmatica (2n ≈ 4x), F. duvalii (2n ≈ 4x), F. eggleri (2n ≈ 2x, 4x), F. filiformis (2n ≈ 2x), F. glauca (2n ≈ 6x), F. heterophylla (2n ≈ 4x), F. inops (2n ≈ 2x), F. laevigata (2n ≈ 8x), F. laxa (2n ≈ 4x), F. lemanii (2n ≈ 6x), F. norica (2n ≈ 2x), F. ovina subsp. ovina (2n ≈ 2x), F. ovina subsp. guesfalica (2n ≈ 4x), F. ovina × F. pallens (2n ≈ 4x), F. pallens (2n ≈ 2x, 3x), F. pallens × F. pseudodalmatica (2n ≈ 3x, 4x), F. pirinica (2n ≈ 2x), F. polesica (2n ≈ 2x), F. psammophila subsp. dominii (2n ≈ 2x), F. pseudodalmatica (2n ≈ 4x), F. pseudovina (2n ≈ 2x), F. quadriflora (2n ≈ 4x), F. rupicola (2n ≈ 6x), F. rupicola × F. vaginata (2n ≈ 3x, 4x), F. saxatilis (2n ≈ 6x), F. stricta subsp. bauzanina (2n ≈ 8x), F. supina (2n ≈ 4x), F. tatrae (2n ≈ 2x), F. valesiaca (2n ≈ 2x), F. versicolor subsp. pallidula (2n ≈ 2x), F. versicolor subsp. versicolor (2n ≈ 2x), F. violacea subsp. puccinellii (2n ≈ 2x), F. wagneri (2n ≈ 4x), F. xanthina (2n ≈ 2x). In F. pallens, up to 12-year-old herbarium specimens were proved to be suitable for DNA ploidy level measurements with flow cytometry. DNA ploidy levels of F. bucegiensis, F. bosniaca, and F. versicolor subsp. pallidula are reported here for the first time. The taxonomy of some polyploid complexes and several records of mixed ploidy level populations are briefly discussed. Festuca pseudodalmatica and its hybrid F. × krizoviensis were first recognised as native to the Czech Republic, and F. brevipila as native to Hungary. Also some new records of F. filiformis, F. brevipila, and F. wagneri from Slovakia are reported.  相似文献   

16.
The palynological characterisation of 157 honey samples from three northwest regions of Argentina (Prepuna, Yungas and Chaco) are presented to determine their botanical origin and species associations to be able to define their geographic origin. Samples were harvested during 2003–2011 and processed by means of melissopalynological conventional techniques. One-hundred and nine pollen types were identified. Representative pollen types with a frequency of occurrence greater than 50% in descending order of importance are: Salix humboldtiana, Allophylus edulis, Baccharis, Solanaceae, Eucalyptus, Schinus, Brassicaceae, Papilionoideae, Celtis, Scutia/Condalia-type and Parapiptadenia excelsa. The most important monofloral honeys are from the following: Salix humboldtiana, Scutia/Condalia-type, Allophylus edulis, Baccharis, Blepharocalyx salicifolius, Gleditsia amorphoides, Myrtaceae, Sicyos, Ziziphus mistol, Schinopsis-type, Agonandra excelsa, Anadenathera colubrina, Mimosa, all of them native species, and among introduced species are Eucalyptus, Citrus and Tithonia. Three apicultural zones and their corresponding pollen association indicators were determined: Zone I, Prepuna: Arquita trichocarpa, Prosopis ferox, Schinus areira, Baccharis, Buddleja and Mutisieae; Zone II, Yungas: Myrtaceae, Parapiptadenia excelsa, Baccharis, Salix humboldtiana, Allophylus edulis, Scutia/Condalia-type and Zanthoxylum coco; Zone III, transitional area Yungas-Chaco: Prosopis, Salix humboldtiana, Schinus, Anadenanthera colubrina and Allophylus edulis.  相似文献   

17.
A revision of Eurytoma (Hymenoptera, Eurytomidae) species belonging to the morio group is proposed. Species discrimination is based on morphological and, partly, on molecular data, including the barcoding fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene and the D2 expansion region of the 28S ribosomal gene. Morphological and molecular phylogenetic analyses largely support the morphological evidence. E urytoma cristata Delvare sp. nov. , E urytoma saliphila Delvare sp. nov. , and E urytoma sylviae Delvare sp. nov. are described from France, E urytoma ithma Delvare sp. nov. is described from France and Italy, and E urytoma gatesi Delvare sp. nov. is described from North America and France. Decatomidea polygraphi Ashmead, 1894 and Ipideurytoma spessivtsevi Bou?ek & Novicky, 1954 are synonymized with Eurytoma afra Boheman, 1836. Eurytoma auricoma Mayr, 1878 is removed from synonymy with Eurytoma arctica Thomson, 1875 and is synonymized with Eurytoma maura Boheman, 1836. Eurytoma eccoptogastri Ratzeburg, 1844, Eurytoma flavoscapularis Ratzeburg, 1844, Eurytoma flavovaria Ratzeburg, 1844, and Eurytoma masii var. flavonigra Russo, 1938 are synonymized with Eurytoma morio Boheman, 1836. Eurytoma masii Russo, 1925 and Eurytoma kemalpasensis Narendran, Tezcan & Civelek, 1995 are synonymized with Eurytoma striolata Ratzeburg, 1848. Eurytoma melanoneura Walker, 1871 and E. masii are removed from synonymy with E. morio. Lectotypes are designated for E. afra, E. auricoma, E. masii, Decatoma aloisifilippoi Russo, 1938, and E. masii var. flavonigra. © 2014 The Linnean Society of London  相似文献   

18.
Chen  Xiongwen  Zhou  Guangsheng  Zhang  Xinshi 《Plant Ecology》2003,164(1):65-74
Spatial characteristics of sixteen tree species were analyzed by theinformation from 287 permanent plots in 1986 and 1994 on North East ChinaTransect (NECT). Some species expanded and some retracted theirdistribution extents. Betula costata andPhellodendron amurense spread most fast toward west andeast, respectively. All tolerant tree species extended their frontiers and allintolerant tree species retracted their frontiers except Betulaplatyphylla. The distribution area decreased for all species exceptBetula costata, Juglans mandshurica,Ulmus spp. and Fraxinusrhynchophylla.The patch sizes of Pinus koraiensis, Populusdavidiana, Phellodendron amurense,Juglans mandshurica, Fraxinusmandshurica, Betula dahurica,Picea spp., Abies nephrolepis andLarixolgensis decreased, however, the patch sizes of Quercusmongolica, Betula costata, Acermono, Tilia spp., Ulmusspp., Betula platyphylla and Fraxinusrhynchophylla increased. The frequency pattern of Populusdavidiana, Betula platyphylla,Fraxinus rhynchophylla and Betuladahurica changed significantly(p< 0.05). The dominance pattern ofPopulus davidiana, Tilia spp.,Juglans mandshurica, Betulaplatyphylla, Betula dahurica andAbiesnephrolepis changed significantly(p < 0.05). The spatial correlation betweenspecies changed, such as the spatial correlation between Larixolgensis and Betula platyphylla, Acermono and Ulmus spp. increased. The possiblecause of these changes might be climate change, disturbances and habitat loss.  相似文献   

19.
20.
The phylogeny and classification of tribe Aedini are delineated based on a cladistic analysis of 336 characters from eggs, fourth‐instar larvae, pupae, adult females and males, and immature stage habitat coded for 270 exemplar species, including an outgroup of four species from different non‐aedine genera. Analyses of the data set with all multistate characters treated as unordered under implied weights, implemented by TNT version 1.1, with values of the concavity constant K ranging from 7 to 12 each produced a single most parsimonious cladogram (MPC). The MPCs obtained with K values of 7–9 were identical, and that for K = 10 differed only in small changes in the relationships within one subclade. Because values of K < 7 and > 10 produced large changes in the relationships among the taxa, the stability of relationships exemplified by the MPC obtained from the K = 9 analysis is used to interpret the phylogeny and classification of Aedini. Clade support was assessed using parsimony jackknife and symmetric resampling. Overall, the results reinforce the patterns of relationships obtained previously despite differences in the taxa and characters included in the analyses. With two exceptions, all of the groups represented by two or more species were once again recovered as monophyletic taxa. Thus, the monophyly of the following genera and subgenera is corroborated: Aedes, Albuginosus, Armigeres (and its two subgenera), Ayurakitia, Bothaella, Bruceharrisonius, Christophersiomyia, Collessius (and its two subgenera), Dahliana, Danielsia, Dobrotworskyius, Downsiomyia, Edwardsaedes, Finlaya, Georgecraigius (and its two subgenera), Eretmapodites, Geoskusea, Gilesius, Haemagogus (and its two subgenera), Heizmannia (and subgenus Heizmannia), Hopkinsius (and its two subgenera), Howardina, Hulecoeteomyia, Jarnellius, Kenknightia, Lorrainea, Macleaya, Mucidus (and its two subgenera), Neomelaniconion, Ochlerotatus (subgenera Chrysoconops, Culicelsa, Gilesia, Pholeomyia, Protoculex, Rusticoidus and Pseudoskusea), Opifex, Paraedes, Patmarksia, Phagomyia, Pseudarmigeres, Rhinoskusea, Psorophora (and its three subgenera), Rampamyia, Scutomyia, Stegomyia, Tanakaius, Udaya, Vansomerenis, Verrallina (and subgenera Harbachius and Neomacleaya), Zavortinkius and Zeugnomyia. In addition, the monophyly of Tewarius, newly added to the data set, is confirmed. Heizmannia (Mattinglyia) and Verrallina (Verrallina) were found to be paraphyletic with respect to Heizmannia (Heizmannia) and Verrallina (Neomacleaya), respectively. The analyses were repeated with the 14 characters derived from length measurements treated as ordered. Although somewhat different patterns of relationships among the genera and subgenera were found, all were recovered as monophyletic taxa with the sole exception of Dendroskusea stat. nov. Fifteen additional genera, three of which are new, and 12 additional subgenera, 11 of which are new, are proposed for monophyletic clades, and a few lineages represented by a single species, based on tree topology, the principle of equivalent rank, branch support and the number and nature of the characters that support the branches. Acartomyia stat. nov. , Aedimorphus stat. nov. , Cancraedes stat. nov. , Cornetius stat. nov. , Geoskusea stat. nov. , Levua stat. nov. , Lewnielsenius stat. nov. , Rhinoskusea stat. nov. and Sallumia stat. nov., which were previously recognized as subgenera of various genera, are elevated to generic status. Catageiomyia stat. nov. and Polyleptiomyia stat. nov. are resurrected from synonymy with Aedimorphus, and Catatassomyia stat. nov. and Dendroskusea stat. nov. are resurrected from synonymy with Diceromyia. Bifidistylus gen. nov. (type species: Aedes lamborni Edwards) and Elpeytonius gen. nov. (type species: Ochlerotatus apicoannulatus Edwards) are described as new for species previously included in Aedes (Aedimorphus), and Petermattinglyius gen. nov. (type species: Aedes iyengari Edwards) and Pe. (Aglaonotus) subgen. nov. (type species: Aedes whartoni Mattingly) are described as new for species previously included in Aedes (Diceromyia). Four additional subgenera are recognized for species of Ochlerotatus, including Oc. (Culicada) stat. nov. (type species: Culex canadensis Theobald), Oc. (Juppius) subgen. nov. (type species: Grabhamia caballa Theobald), Oc. (Lepidokeneon) subgen. nov. (type species: Aedes spilotus Marks) and Oc. (Woodius) subgen. nov. (type species: Aedes intrudens Dyar), and seven are proposed for species of Stegomyia: St. (Actinothrix) subgen. nov. (type species: Stegomyia edwardsi Barraud), St. (Bohartius) subgen. nov. (type species: Aedes pandani Stone), St. (Heteraspidion) subgen. nov. (type species: Stegomyia annandalei Theobald), St. (Huangmyia) subgen. nov. (type species: Stegomyia mediopunctata Theobald), St. (Mukwaya) subgen. nov. (type species: Stegomyia simpsoni Theobald), St. (Xyele) subgen. nov. (type species: Stegomyia desmotes Giles) and St. (Zoromorphus) subgen. nov. (type species: Aedes futunae Belkin). Due to the unavailability of specimens for study, many species of Stegomyia are without subgeneric placement. As is usual with generic‐level groups of Aedini, the newly recognized genera and subgenera are polythetic taxa that are diagnosed by unique combinations of characters. The analysis corroborates the previous observation that ‘Oc. (Protomacleaya)’ is a polyphyletic assemblage of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号