首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
电针对脊髓损伤星形胶质细胞增生及其NGF表达的影响   总被引:2,自引:0,他引:2  
目的研究脊髓损伤后电针治疗对星形胶质细胞增生及其内源性神经生长因子(nerve growth factor,NGF)表达的影响.方法选用成年雌性Wistar大鼠,随机分为3组.A组为正常对照组,B组、C组为下胸段脊髓不完全损伤.B组损伤后不治疗,C组损伤后给予督脉电针治疗.损伤后3 d、1 、2或4周应用免疫组化染色分别观察损伤脊髓胶质原纤维酸性蛋白(glial fibroblast acid protein,GFAP)和NGF表达的变化.结果 B组术后3 d,GFAP阳性细胞明显增多, 2周后开始减少,4周时仍有较多的阳性细胞;C组GFAP阳性细胞明显少于B组,1周时达高峰.脊髓损伤后NGF表达呈逐渐增加的趋势.C组NGF的表达明显高于B组,且一直保持在较高水平.NGF阳性细胞大部分与GFAP阳性细胞形态相似.结论电针治疗能减少星形胶质细胞增生,促进内源性NGF的合成,从而创造了有利于神经再生的微环境.  相似文献   

2.
目的:观察在不同温度条件下脊髓星形胶质细胞划痕损伤活化后的形态和活性改变,以探讨亚低温对脊髓损伤后反应性星形胶质细胞增生的影响。方法:体外原代培养新生SD大鼠脊髓星形胶质细胞,以划痕实验制备反应性星形胶质细胞。亚低温选择33℃,细胞培养48 h。实验分为对照组、划痕组、亚低温组和划痕+亚低温组。各组在相应的时间点观察细胞形态,采用免疫荧光染色方法检测Nestin阳性率,MTT比色法观察细胞活性,PI染色方法观察细胞凋亡程度。结果:与对照组和亚低温组相比,划痕组和划痕+亚低温组细胞胞体肥大,周围突起增多、延展以及胞浆丰富,细胞生长率明显升高。与划痕组相比,划痕+亚低温组细胞变化减慢,周围突起减少,细胞长入划痕处所需时间增加,细胞Nestin阳性率、PI阳性率和细胞生长率明显降低,各结果差异显著(P<0.01)。结论:划痕损伤后星形胶质细胞活化为反应性星形胶质细胞并会增生,亚低温明显抑制脊髓反应性星形胶质细胞的活化增生,并可以抑制星形胶质细胞的凋亡。  相似文献   

3.
星形胶质细胞是中枢神经系统主要的胶质细胞 ,对神经元具有绝缘、营养、保护和支持作用。它们在中枢神经系统损伤和修复中也具有重要的作用 ,一方面星形胶质细胞可合成神经营养因子 ,促进神经再生[1~ 3] ,另一方面合成神经生长抑制因子 ,如硫酸软骨素蛋白多糖等 [4 ] ,抑制神经再生 ,尤其是损伤恢复后期形成星胶瘢痕被认为是神经再生的机械性障碍。脊髓损伤后的修复一直是神经科学领域研究的一个重要课题 ,随着分子生物学和精密方法、仪器的发展 ,离体研究被越来越多地采用。星形胶质细胞是神经再生微环境中的主要成分 ,深入研究星形胶质细…  相似文献   

4.
小胶质细胞和星形胶质细胞是中枢神经系统主要的两种胶质细胞,两者各自在中枢神经系统中扮演着重要的角色。本文主要从小胶质细胞和星形胶质细胞相互交流这一新的角度,概述两种胶质细胞相互作用方式及在中枢神经系统中的研究现状,并进一步阐明两者相互作用在各种中枢神经系统疾病的功能及机制,旨在为进一步了解这两种胶质细胞在中枢神经系统疾病的作用机理提供理论依据、为治疗相关中枢系统疾病提供新思路。  相似文献   

5.
本研究旨在明确原代培养的星形胶质细胞和小胶质细胞不同代次的生长特性,优化高效获取状态一致细胞的技术方法。将新生乳鼠的脑组织进行原代分离培养胶质细胞,通过细胞增殖检测试剂盒(cell counting kit-8,CCK-8)测定混合胶质细胞增殖曲线,使用流式细胞术检测两类细胞比例,并通过免疫荧光染色鉴定两类胶质细胞分型情况。生长曲线显示P0和P1代混合胶质细胞增殖活力最好;通过170 r/min机械振摇30 min可获得97.3%的高纯度小胶质细胞,该纯化方法得到的P0、P1、P2代离子钙接头蛋白-1(ionized calcium-binding adapter molecule 1,Iba-1)阳性小胶质细胞的形态及其M1、M2表型比例无代次差别;通过星形胶质细胞表面抗原-2(astrocyte cell surface antigen-2,ACSA-2)磁珠抗体分选的方法可获得纯度达到95.7%的星形胶质细胞,该纯化方法得到的P0、P1、P2代胶质纤维酸性蛋白(glial fibrillary acidic protein,GFAP)阳性星形胶质细胞的形态及其A1、A2表型比例无代次差别。本研究详述了原代分离培养的小胶质细胞和星形胶质细胞的生长特点,证明了获取两类胶质细胞的最佳代次,优化了获取两类胶质细胞的技术方法,验证了连续培养两代不会影响其功能表型。本结果为研究神经系统炎症相关疾病的分子机制提供了技术支撑。  相似文献   

6.
星形胶质细胞   总被引:23,自引:0,他引:23  
目录一、星形胶质细胞的生物学特性(一 )星形胶质细胞的异质性(二 )胶质网络二、星形胶质细胞的功能(一 )分泌功能(二 )星形胶质细胞与神经的发育及再生(三 )星形胶质细胞具有对神经元微环境调控的能力(四 )免疫功能与血脑屏障调控三、星形胶质细胞功能的新近进展(一 )星形胶质细胞也具有可兴奋性(二 )星形胶质细胞与神经元的通讯或对话(三 )在突触形成和突触可塑性中的作用(四 )星形胶质细胞与神经发生胶质细胞是神经系统内数量众多的一大类细胞群体 ,约占中枢神经系统 (CNS)细胞总数的 90 % ,星形胶质细胞 (astrocyte)是其中主要的组成…  相似文献   

7.
脑星形胶质细胞生物学功能研究进展   总被引:32,自引:0,他引:32  
脑星形胶质细胞是中枢神经系统(CNS)内在数目占绝对优势的一类大胶质细胞,被认为在神经元的整个发育过程中起重要作用。本文主要就参与星形胶质细胞调节神经元活动的主要功能分子,星形胶质细胞在中枢神经系统的生物学功能,及其与疾病的关系作一简要回顾。  相似文献   

8.
已知miR-144与细胞活化和增殖有关,然而其具体分子机制尚不明确。本研究发现miR-144通过靶向GRK5促进脊髓星形胶质细胞的活化。运用real-time PCR检测脊髓损伤和正常大鼠的脊髓组织及其脊髓星形胶质细胞中miR-144的表达,发现与正常的组织和细胞相比,miR-144在脊髓损伤组织和星形胶质细胞中的表达水平显著降低;Western印迹检测到脊髓损伤大鼠的星形胶质细胞中GFAP蛋白的表达显著低于正常大鼠,而GRK5蛋白的表达高于正常大鼠;MTT分析结果显示转染miR-144可显著提高脊髓损伤大鼠的星形胶质细胞活性,但对细胞增殖无明显作用;酶活性试剂盒分析发现miR-144显著提高了SOD和GSH活性;生物学信息分析和萤光素酶报告基因检测结果显示miR-144能靶向结合GRK5,并下调GRK5的表达;MiR-144 mimic转染或miR-144 mimic与pcDNA-GRK5共转染脊髓损伤的星形胶质细胞,发现miR-144转染能通过激活NF-κB通路消除pcDNA-GRK5引起的细胞活化抑制。综上所述,miR-144通过靶定结合癌基因GRK5来促进脊髓星形胶质细胞细胞的活化。  相似文献   

9.
疼痛研究的新亮点:星形胶质细胞   总被引:20,自引:0,他引:20  
Li HL  Qin LY  Wan Y 《生理科学进展》2003,34(1):45-48
一直以来疼痛被认为仅仅是由神经元调节的。目前的研究表明,星形胶质细胞与疼痛有密切的关系。星形胶质细胞通过许多重要功能如参与信号转导、被激活而表现出激活的特性,如释放促炎性因子、神经营养因子等,在疼痛调节过程中发挥重要作用。对星形胶质细胞与疼痛关系的研究,必将为疼痛机制的阐明及疼痛治疗提供新的思路。  相似文献   

10.
人类大脑由两类细胞组成:一类是神经元,另一类是神经胶质细胞。神经胶质细胞的数量约为神经元的10倍,但其作用长期以来一直被认为仅限于在神经元之间充当填充物,填满大脑中的剩余空间,同时为神经元提供营养。但近年来认识到神经胶质细胞的主要成员星形胶质细胞能够感知外界刺激,它的反应选择性甚至高于相邻神经元。神经元的反应活动很多都要经过星形胶质细胞的介导才能完成。本文介绍了星形胶质细胞在神经调制、突触调节和神经血管系统偶联方面的一些新进展,以期在不久的将来对星形胶质细胞的功能有更深入的了解,并能应用于临床实践。  相似文献   

11.
《Neuron》2023,111(14):2155-2169.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   

12.
Spinal cord injury (SCI) always leads to functional deterioration due to a series of processes including cell death. In recent years, programmed cell death (PCD) is considered to be a critical process after SCI, and various forms of PCD were discovered in recent years, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis. Unlike necrosis, PCD is known as an active cell death mediated by a cascade of gene expression events, and it is crucial for elimination unnecessary and damaged cells, as well as a defence mechanism. Therefore, it would be meaningful to characterize the roles of PCD to not only enhance our understanding of the pathophysiological processes, but also improve functional recovery after SCI. This review will summarize and explore the most recent advances on how apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis are involved in SCI. This review can help us to understand the various functions of PCD in the pathological processes of SCI, and contribute to our novel understanding of SCI of unknown aetiology in the near future.  相似文献   

13.
The pathophysiology of spinal cord injury (SCI) involves primary injury and secondary injury. For the irreversibility of primary injury, therapies of SCI mainly focus on secondary injury, whereas inflammation is considered to be a major target for secondary injury; however the regulation of inflammation in SCI is unclear and targeted therapies are still lacking. In this study, we found that the expression of BRD4 was correlated with pro‐inflammatory cytokines after SCI in rats; in vitro study in microglia showed that BRD4 inhibition either by lentivirus or JQ1 may both suppress the MAPK and NF‐κB signalling pathways, which are the two major signalling pathways involved in inflammatory response in microglia. BRD4 inhibition by JQ1 not only blocked microglial M1 polarization, but also repressed the level of pro‐inflammatory cytokines in microglia in vitro and in vivo. Furthermore, BRD4 inhibition by JQ1 can improve functional recovery and structural disorder as well as reduce neuron loss in SCI rats. Overall, this study illustrates that microglial BRD4 level is increased after SCI and BRD4 inhibition is able to suppress M1 polarization and pro‐inflammatory cytokine production in microglia which ultimately promotes functional recovery after SCI.  相似文献   

14.
Traumatic spinal cord injury (SCI) causes tissue loss and associated neurological dysfunction through mechanical damage and secondary biochemical and physiological responses. We have previously described the pathobiological role of cell cycle pathways following rat contusion SCI by examining the effects of early intrathecal cell cycle inhibitor treatment initiation or gene knockout on secondary injury. Here, we delineate changes in cell cycle pathway activation following SCI and examine the effects of delayed (24 h) systemic administration of flavopiridol, an inhibitor of major cyclin-dependent kinases (CDKs), on functional recovery and histopathology in a rat SCI contusion model. Immunoblot analysis demonstrated a marked upregulation of cell cycle-related proteins, including pRb, cyclin D1, CDK4, E2F1 and PCNA, at various time points following SCI, along with downregulation of the endogenous CDK inhibitor p27. Treatment with flavopiridol reduced induction of cell cycle proteins and increased p27 expression in the injured spinal cord. Functional recovery was significantly improved after SCI from day 7 through day 28. Treatment significantly reduced lesion volume and the number of Iba-1+ microglia in the preserved tissue and increased the myelinated area of spared white matter as well as the number of CC1+ oligodendrocytes. Furthermore, flavopiridol attenuated expression of Iba-1 and glactin-3, associated with microglial activation and astrocytic reactivity by reduction of GFAP, NG2, and CHL1 expression. Our current study supports the role of cell cycle activation in the pathophysiology of SCI and by using a clinically relevant treatment model, provides further support for the therapeutic potential of cell cycle inhibitors in the treatment of human SCI.  相似文献   

15.
Traumatic spinal cord injury (SCI) causes tissue loss and associated neurological dysfunction through mechanical damage and secondary biochemical and physiological responses. We have previously described the pathobiological role of cell cycle pathways following rat contusion SCI by examining the effects of early intrathecal cell cycle inhibitor treatment initiation or gene knockout on secondary injury. Here, we delineate changes in cell cycle pathway activation following SCI and examine the effects of delayed (24 h) systemic administration of flavopiridol, an inhibitor of major cyclin-dependent kinases (CDKs), on functional recovery and histopathology in a rat SCI contusion model. Immunoblot analysis demonstrated a marked upregulation of cell cycle-related proteins, including pRb, cyclin D1, CDK4, E2F1 and PCNA, at various time points following SCI, along with downregulation of the endogenous CDK inhibitor p27. Treatment with flavopiridol reduced induction of cell cycle proteins and increased p27 expression in the injured spinal cord. Functional recovery was significantly improved after SCI from day 7 through day 28. Treatment significantly reduced lesion volume and the number of Iba-1+ microglia in the preserved tissue and increased the myelinated area of spared white matter as well as the number of CC1+ oligodendrocytes. Furthermore, flavopiridol attenuated expression of Iba-1 and glactin-3, associated with microglial activation and astrocytic reactivity by reduction of GFAP, NG2, and CHL1 expression. Our current study supports the role of cell cycle activation in the pathophysiology of SCI and by using a clinically relevant treatment model, provides further support for the therapeutic potential of cell cycle inhibitors in the treatment of human SCI.  相似文献   

16.
17.
Spinal cord injury (SCI) elicits a neuroinflammatory reaction dominated by microglia and monocyte-derived macrophages (MDM). Because MDM do not infiltrate the spinal cord until days after injury, it may be possible to control whether they differentiate into neuroprotective or neurotoxic effector cells. However, doing so will require better understanding of the factors controlling MDM differentiation and activation. Our goal was to develop an in vitro model of MDM that is relevant in the context of SCI. This tool would allow future studies to define mechanisms and intracellular signaling pathways that are associated with MDM-mediated neuroprotection or neurotoxicity. We first characterized SCI-induced cytokine expression in MDM using laser capture microdissection and real-time PCR. Based on this data, we assessed which easily procurable primary macrophage subset would mimic this phenotype in vitro. We established the baseline and inductive potential of resident peritoneal, thioglycollate-elicited peritoneal and bone marrow-derived macrophages (BMDM) at the molecular, cellular and functional level. Of these cells, only BMDM retained the phenotypic, molecular and functional characteristics of MDM that infiltrate the injured spinal cord. Thus, peripheral macrophages should not be used interchangeably in vitro to model the functional consequences of the MDM response elicited by SCI.  相似文献   

18.
The distribution of blood-borne immunoglobulins G (IgG) was studied in the cerebral cortex, pineal gland, spinal cord and dorsal root ganglia of normal Lewis rats using the detection of autologous anti-horseradish peroxidase (HRP) antibodies. This detection was performed by means of light and electron microscopy. This study demonstrated that, in the cerebral cortex and the spinal cord microcirculations, endothelial cells are a restrictive barrier against IgG while IgG are able to diffuse into the perivascular parenchyma of the pineal gland and spinal ganglia.  相似文献   

19.
目的:观察骶神经电刺激对脊髓损伤大鼠肠黏膜机械屏障的保护作用。方法:56只Wistar大鼠分7组(n=8):正常组、急性完全性脊髓损伤(SCI)组和骶神经电刺激组(按24、48、72h各8只)。进行内毒素测定;肠系膜淋巴结、肝脏、脾脏菌培养;肠道形态学观察;紧密连接蛋白zo-1的蛋白表达测定。结果:对照组肠黏膜不同程度损伤;肠道上皮细胞及细胞间连接破坏;内毒素血症和细菌移位明显。实验组肠黏膜得到改善,内毒素水平下降且细菌移位减少。ZO-1蛋白表达无统计学差异。对照组ZO-1的分布出现不同程度的散乱、排列不规则,实验组分布得到改善。结论:骶神经电刺激可促肠蠕动、排肠内容物、减少肠道菌群数量,保护肠黏膜上皮细胞及紧密连接的机械屏障,减少细菌移位和内毒素血症。  相似文献   

20.
This study aimed to provide detailed data on mitochondrial respiration of normal astrocyte cell lines derived from rat embryonic spinal cord. Astrocytes in early passages (EP), cultured without pyruvate for more than 35 passages, defined here as late passages (LP), undergo spontaneous transformation. To study initial steps in cell transformation, EP data were compared with those of LP cells. LP cells had reduced glycolysis, fewer mitochondria and extremely low oxidative rates, resulting from a dysfunction of complexes I and II + III of the respiratory chain. Treatment of EP cells with pyruvate until they were, by definition, LP cultures prevented transformation of these cells. Pyruvate-treated EP cells had more mitochondria than normal cells but slightly lower respiratory rates. The increase of mitochondrial content thus appears to act as a compensatory effect to maintain oxidative phosphorylation in these LP 'non-transformed' cells, in which mitochondrial function is reduced. However, pyruvate treatment of transformed LP cells during additional passages did not significantly restore their oxidative metabolism. These data highlight changes accompanying spontaneous astrocyte transformation and suggest potential targets for the control of astrocyte proliferation and reaction to various insults to the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号