首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
【背景】长孢葡萄穗霉菌(Stachybotrys longispora) FG216是一株稀有海洋真菌,其次生代谢产物FGFC1具有纤溶活性。进行S. longispora FG216的基因组序列分析,将充实和促进海洋微生物功能基因和次生代谢产物合成生物学的基础研究和应用研究。【目的】解析S. longispora FG216的基因组序列,分析基因组生物功能和同源相似性关系,分析次生代谢产物纤溶活性化合物FGFC1的相关基因。【方法】基于Illumina HiSeq高通量测序平台对S. longispora FG216菌株进行De Novo测序,使用SSPACE、Augustus等软件进行组装、编码基因预测、基因功能注释、物种共线性分析以及预测FGFC1次生代谢产物合成基因簇。【结果】S. longispora FG216的基因组测序总长度为45622830bp,共得到605个Scaffold,GC含量为51.31%,注释预测得到13329个编码基因和169个非编码RNA。基因组测序数据提交至国家微生物科学数据中心(编号为NMDC60016264),其中13 053、8 422、8 460、7 714和2 847个基因分别能够在NR、KEGG、KOG、GO和CAZy数据库匹配到注释信息。比较基因组学分析发现,Stachybotrys具有保守性,核心基因占基因家族总数目的71.44%,S. longispora FG216与S. chlorohalonata IBT 40285的相似性最高;同时,预测得到101个次生代谢产物合成基因簇,其中18个基因簇与已知的化合物相匹配。通过antiSMASH预测,Cluster57是编码合成FGFC1母核结构异吲哚啉酮的基因簇,与S.chlorohalonataIBT40285中的基因簇相似度为40%。【结论】海洋稀有真菌S.longisporaFG216的基因组信息已上传至国家微生物科学数据中心公开使用,为Stachybotrys种属的研究提供了重要的参考意义,同时发现了S. longispora FG216次生代谢产物纤溶活性化合物FGFC1母核部分编码基因是Cluster 57。  相似文献   

2.
金城 《微生物学通报》2014,41(7):1470-1470
<正>放线菌基因组测序显示基因组中平均有超过20个以上的次生代谢生物合成基因簇,但通常放线菌在试验条件下能检测到的产物仅有2-3个,因此这些次生代谢生物合成基因簇引起了研究者的极大关注,期望通过基因组的挖掘来发现新的代谢产物。除虫链霉菌(Streptomyces avermitilis)产生的16元大环内酯化合物阿维菌素及衍生物被广泛用于防治动植物的线虫类和节肢动物类害虫[1-2]。除虫链霉菌的基因组中,除了阿维菌素生物合成基因簇外,还有其它11种聚酮合成酶类(Polyketide synthesase,PKS)抗生素生物合成基因簇[3]。由于聚酮化合物生物合  相似文献   

3.
4-香豆酸:辅酶A连接酶(4CL)基因是植物调控木质素代谢、参与类黄酮和其他次生代谢产物合成的关键基因之一,而木质素的合成及聚合在细胞壁沉积导致部分薄壁细胞次生壁加厚形成石细胞。为更好了解砀山酥梨中4CL基因的种类和数量,本文利用砀山酥梨基因组的氨基酸和cDNA数据库对4CL基因家族进行筛选,分析了砀山酥梨基因组中4CL基因的种类、进化关系、物理定位、以及基因结构和保守基序。结果显示在砀山酥梨基因组中发现并初步确定了29个4CL基因,通过基因的定位分析发现除了4、8、11、12号染色体上没有4CL基因之外,其他染色体上都存在4CL基因;并且在9、17号染色体上还存在着基因簇。通过基因结构和进化树之间的比较,进一步确定了基因结构和进化之间的相互联系。研究结果为砀山酥梨4CL基因功能的深入分析奠定了基础。  相似文献   

4.
RNA-Seq又称为"转录组测序技术",它能够从整体水平研究物种基因功能以及基因结构,揭示特定生物学过程。应用该项技术能有效地解决因果树基因组庞大等问题,有效地揭示和阐明植物体内次生代谢生物合成途径及代谢机制。主要论述了RNA-Seq技术的应用方法与流程,通过对测序数据的处理分析与比对等方法,分析了RNA-Seq技术在果树新基因挖掘、次生代谢产物合成途径的应用进展,基于RNA-Seq的高通量测序技术对于发现和揭示具有重要生物学功能和经济价值的次生代谢产物合成关键基因及其调控机制提供了可能。  相似文献   

5.
放线菌次生代谢产物合成基因组研究   总被引:2,自引:0,他引:2  
简述放线菌全基因组研究概况,次生代谢产物合成基因组研究涉及的问题;重点介绍聚酮类化合物合成基因组的结构和功能;如何利用基因组筛选程序,筛选具有生物活性次生代谢产物合成基因簇的产生菌,作为新药发现的一种手段。  相似文献   

6.
植物表皮毛(trichomes)是广泛存在于高等植物表面的一种特化器官,尽管形态各异,但通常可被分成腺毛(glandular trichomes)和非腺毛(non-glandular trichomes)2大类.其中腺毛的一个重要特征是特异地大量合成种类繁多的次生代谢产物.这些次生代谢产物不仅对植物适应外界生物和非生物胁迫具有重要的作用,同时对人类的生产生活也具有很重要的经济价值.近年来随着各种组学技术的飞速发展,人们对参与这些代谢物生物合成的基因及其调控机理已经有较为详细的认识.本文拟对植物腺毛中次生代谢产物的生物合成过程、调控机制以及其合成生物学应用等方面的进展做一简要综述.  相似文献   

7.
左泽远  刘琬琳  许杰 《植物学报》2020,55(2):147-162
在植物基因组中, 除了同源基因成簇现象外, 近年来还发现一些具有共表达特性的异源基因也能够以基因簇形式存在, 但这些异源基因簇的进化和生物学功能尚不清楚。花药发育和花粉形成是植物进化出的特有的生殖生物学过程, 同时产生了一些在花药绒毡层中特异表达和特定功能的基因簇基因。该研究通过筛选和分析花药绒毡层中基因簇基因的分子特性、表达调控、基因年龄和基因重复进化等信息, 探讨花药基因簇基因与植物开花功能进化之间的关系。结果表明, 在拟南芥(Arabidopsis thaliana)中共筛选到84个(13个基因簇)花药绒毡层特异高表达的基因簇基因, 它们主要产生于串联重复事件, 76%的基因出现在开花植物分化后的阶段, 主要参与生殖发育、花粉鞘组成和脂代谢等生物学过程。研究初步解析了拟南芥花药绒毡层中基因簇基因的基本特征、生物学功能和基因进化机制, 为深入揭示植物基因簇基因的遗传学功能奠定了基础。  相似文献   

8.
在植物基因组中,除了同源基因成簇现象外,近年来还发现一些具有共表达特性的异源基因也能够以基因簇形式存在,但这些异源基因簇的进化和生物学功能尚不清楚。花药发育和花粉形成是植物进化出的特有的生殖生物学过程,同时产生了一些在花药绒毡层中特异表达和特定功能的基因簇基因。该研究通过筛选和分析花药绒毡层中基因簇基因的分子特性、表达调控、基因年龄和基因重复进化等信息,探讨花药基因簇基因与植物开花功能进化之间的关系。结果表明,在拟南芥(Arabidopsisthaliana)中共筛选到84个(13个基因簇)花药绒毡层特异高表达的基因簇基因,它们主要产生于串联重复事件,76%的基因出现在开花植物分化后的阶段,主要参与生殖发育、花粉鞘组成和脂代谢等生物学过程。研究初步解析了拟南芥花药绒毡层中基因簇基因的基本特征、生物学功能和基因进化机制,为深入揭示植物基因簇基因的遗传学功能奠定了基础。  相似文献   

9.
【背景】纳他霉素(Natamycin)是一种天然、广谱、高效的多烯大环内酯类抗真菌剂,褐黄孢链霉菌(Streptomyces gilvosporeus)是一种重要的纳他霉素产生菌。目前S. gilvosporeus基因组序列分析还未有报道,限制了该菌中纳他霉素及其他次级代谢产物合成及调控的研究。【目的】解析纳他霉素高产菌株S. gilvosporeus F607的基因组序列信息,挖掘其次级代谢产物基因资源,为深入研究该菌株的纳他霉素高产机理及生物合成调控机制奠定基础。【方法】利用相关软件对F607菌株的基因组序列进行基因预测、功能注释、进化分析和共线性分析,并预测次级代谢产物合成基因簇;对纳他霉素生物合成基因簇进行注释分析,比较分析不同菌种中纳他霉素生物合成基因簇的差异;分析预测S.gilvosporeusF607中纳他霉素生物合成途径。【结果】F607菌株基因组总长度为8482298bp,(G+C)mol%为70.95%,分别在COG、GO、KEGG数据库提取到5 062、4 428、5063个基因的注释信息。同时,antiSMASH软件预测得到29个次级代谢产物合成基因簇,其中纳他霉素基因簇与S.natalensis、S. chattanoogensis等菌株的纳他霉素基因簇相似性分别为81%和77%。除2个参与调控的sngT和sgnH基因和9个未知功能的orf基因有差异外,S. gilvosporeus F607基因簇中其他纳他霉素生物合成基因及其排列顺序与已知的纳他霉素基因簇高度一致。【结论】分析了S. gilvosporeus全基因组信息,预测了S. gilvosporeus F607中纳他霉素生物合成的途径,为从基因组层面上解析S. gilvosporeus F607菌株高产纳他霉素的内在原因提供了基础数据,为揭示纳他霉素高产的机理及工业化生产和未来新药的发现奠定了良好的基础。  相似文献   

10.
基于全基因组数据,确定芽孢杆菌BS-6的分类地位,验证其对植物病原菌的拮抗作用以及挖掘其潜在的生防功能。通过全基因组中16S rRNA及gyrA基因序列的系统发育分析及基因组分析方法确定芽孢杆菌BS-6的分类地位,通过平板对峙方法研究其对马铃薯枯萎病菌、玉米纹枯病菌和苹果轮纹病菌的拮抗能力;利用antiSMASH软件分析和预测菌株BS-6抑菌物质的相关基因并挖掘其生防潜力。基于16S rRNA及gyrA基因序列的系统发育分析及基因组分析结果,BS-6被鉴定为枯草芽孢杆菌,同时发现BS-6基因组中存在7种芽孢杆菌属重要或特有的次生代谢产物基因簇,4种未知功能的次生代谢产物基因簇,具有良好的抑制真菌生长的能力。枯草芽孢杆菌BS-6具有较强的拮抗植物病原菌的能力及良好的农业应用前景。  相似文献   

11.
Gene clusters for the synthesis of secondary metabolites are a common feature of microbial genomes. Well-known examples include clusters for the synthesis of antibiotics in actinomycetes, and also for the synthesis of antibiotics and toxins in filamentous fungi. Until recently it was thought that genes for plant metabolic pathways were not clustered, and this is certainly true in many cases; however, five plant secondary metabolic gene clusters have now been discovered, all of them implicated in synthesis of defence compounds. An obvious assumption might be that these eukaryotic gene clusters have arisen by horizontal gene transfer from microbes, but there is compelling evidence to indicate that this is not the case. This raises intriguing questions about how widespread such clusters are, what the significance of clustering is, why genes for some metabolic pathways are clustered and those for others are not, and how these clusters form. In answering these questions we may hope to learn more about mechanisms of genome plasticity and adaptive evolution in plants. It is noteworthy that for the five plant secondary metabolic gene clusters reported so far, the enzymes for the first committed steps all appear to have been recruited directly or indirectly from primary metabolic pathways involved in hormone synthesis. This may or may not turn out to be a common feature of plant secondary metabolic gene clusters as new clusters emerge.  相似文献   

12.
The biosynthesis of the beta-lactam antibiotic penicillin is an excellent model for the study of secondary metabolites produced by filamentous fungi due to the good background knowledge on the biochemistry and molecular genetics of the beta-lactam producing microorganisms. The three genes (pcbAB, pcbC, penDE) encoding enzymes of the penicillin pathway in Penicillium chrysogenum are clustered, but no penicillin pathway-specific regulators have been found in the genome region that contains the penicillin gene cluster. The biosynthesis of this beta-lactam is controlled by global regulators of secondary metabolism rather than by a pathway-specific regulator. In this work we have identified the gene encoding the secondary metabolism global regulator LaeA in P. chrysogenum (PcLaeA), a nuclear protein with a methyltransferase domain. The PclaeA gene is present as a single copy in the genome of low and high-penicillin producing strains and is not located in the 56.8-kb amplified region occurring in high-penicillin producing strains. Overexpression of the PclaeA gene gave rise to a 25% increase in penicillin production. PclaeA knock-down mutants exhibited drastically reduced levels of penicillin gene expression and antibiotic production and showed pigmentation and sporulation defects, but the levels of roquefortine C produced and the expression of the dmaW involved in roquefortine biosynthesis remained similar to those observed in the wild-type parental strain. The lack of effect on the synthesis of roquefortine is probably related to the chromatin arrangement in the low expression roquefortine promoters as compared to the bidirectional pbcAB-pcbC promoter region involved in penicillin biosynthesis. These results evidence that PcLaeA not only controls some secondary metabolism gene clusters, but also asexual differentiation in P. chrysogenum.  相似文献   

13.
Operon-like arrangements of genes occur in eukaryotes ranging from yeasts and filamentous fungi to nematodes, plants, and mammals. In plants, several examples of operon-like gene clusters involved in metabolic pathways have recently been characterized, e.g. the cyclic hydroxamic acid pathways in maize, the avenacin biosynthesis gene clusters in oat, the thalianol pathway in Arabidopsis thaliana, and the diterpenoid momilactone cluster in rice. Such operon-like gene clusters are defined by their co-regulation or neighboring positions within immediate vicinity of chromosomal regions. A comprehensive analysis of the expression of neighboring genes therefore accounts a crucial step to reveal the complete set of operon-like gene clusters within a genome. Genome-wide prediction of operon-like gene clusters should contribute to functional annotation efforts and provide novel insight into evolutionary aspects acquiring certain biological functions as well. We predicted co-expressed gene clusters by comparing the Pearson correlation coefficient of neighboring genes and randomly selected gene pairs, based on a statistical method that takes false discovery rate (FDR) into consideration for 1469 microarray gene expression datasets of A. thaliana. We estimated that A. thaliana contains 100 operon-like gene clusters in total. We predicted 34 statistically significant gene clusters consisting of 3 to 22 genes each, based on a stringent FDR threshold of 0.1. Functional relationships among genes in individual clusters were estimated by sequence similarity and functional annotation of genes. Duplicated gene pairs (determined based on BLAST with a cutoff of E<10(-5)) are included in 27 clusters. Five clusters are associated with metabolism, containing P450 genes restricted to the Brassica family and predicted to be involved in secondary metabolism. Operon-like clusters tend to include genes encoding bio-machinery associated with ribosomes, the ubiquitin/proteasome system, secondary metabolic pathways, lipid and fatty-acid metabolism, and the lipid transfer system.  相似文献   

14.
Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.  相似文献   

15.

Background  

Genes responsible for biosynthesis of fungal secondary metabolites are usually tightly clustered in the genome and co-regulated with metabolite production. Epipolythiodioxopiperazines (ETPs) are a class of secondary metabolite toxins produced by disparate ascomycete fungi and implicated in several animal and plant diseases. Gene clusters responsible for their production have previously been defined in only two fungi. Fungal genome sequence data have been surveyed for the presence of putative ETP clusters and cluster data have been generated from several fungal taxa where genome sequences are not available. Phylogenetic analysis of cluster genes has been used to investigate the assembly and heredity of these gene clusters.  相似文献   

16.

Background  

Filamentous fungi synthesize many secondary metabolites and are rich in genes encoding proteins involved in their biosynthesis. Genes from the same pathway are often clustered and co-expressed in particular conditions. Such secondary metabolism gene clusters evolve rapidly through multiple rearrangements, duplications and losses. It has long been suspected that clusters can be transferred horizontally between species, but few concrete examples have been described so far.  相似文献   

17.
Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.  相似文献   

18.
Alcaligenes sp. HPC 1271 demonstrated antibacterial activity against multidrug resistant bacteria, Enterobacter sp., resistant to sulfamethoxazole, ampicillin, azithromycin, and tetracycline, as well as against Serratia sp. GMX1, resistant to the same antibiotics with the addition of netilmicin. The cell-free culture supernatant was analyzed for possible antibacterials by HPLC, and the active fraction was further identified by LC-MS. Results suggest the production of tunicamycin, a nucleoside antibiotic. The draft genome of this bacterial isolate was analyzed, and the 4.2 Mb sequence data revealed six secondary metabolite-producing clusters, identified using antiSMASH platform as ectoine, butyrolactone, phosphonate, terpene, polyketides, and nonribosomal peptide synthase (NRPS). Additionally, the draft genome demonstrated homology to the tunicamycin-producing gene cluster and also defined 30 ORFs linked to protein secretion that could also play a role in the antibacterial activity observed. Gene expression analysis demonstrated that both NRPS and dTDP-glucose 4,6-dehydratase gene clusters are functional and could be involved in antibacterial biosynthesis.  相似文献   

19.
20.
DNA probes were designed from the streptomycin production genes strDELM of Streptomyces griseus involved in the biosynthesis of the 6-deoxyhexose (6DOH) dihydrostreptose which could detect the genomic fragments coding for 6DOH formation in other actinomycetes strains. In about 70% of the 43 strains tested at least one signal could be detected with strD-, strE- or strLM-specific probes. Evidence is presented that the hybridizing genes are mostly clustered and probably engaged in the formation of secondary metabolites. Because of the wide-spread use of 6DOH constituents in natural products these probes should allow to detect a vast array of different secondary metabolic gene clusters in actinomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号