首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
This study focused on the suitability of four species of cereal stem borers for the development of five geographic populations of Cotesia sesamiae (Cameron). C. sesamiae, an indigenous larval parasitoid of gramineous stem borers, is widespread in Africa. Four stem borers, Chilo partellus (Swinhoe), Chilo orichalcociliellus Strand (Lepidoptera: Crambidae), Busseola fusca Fuller, and Sesamia calamistis Hampson (Lepidoptera: Noctuidae), were offered to C. sesamiae for oviposition. Parasitoid individuals originated from five locations in Kenya. Biological parameters such as developmental time, percentage parasitism, progeny production, mortality of immature parasitoids, and proportion of female progeny were compared across host species. The two populations from western Kenya developed well on B. fusca. However, populations from the coast and the Eastern Province could not successfully parasitize B. fusca. With the exception of B. fusca, the percentage of hosts successfully parasitized by the different C. sesamiae populations was not different. The size of the host appeared to be an important factor influencing the development and reproductive potential of the parasitoid. We conclude that the different parasitoid populations were adapted to location-specific characteristics. Parasitoid–host compatibility must be evaluated before release for better establishment and colonization.  相似文献   

2.
Lepidopteran stem borers are the key pests of maize in Sub-Saharan Africa. In the lowland tropics, dry mid-altitude, dry transitional and the moist mid-altitude zones of Kenya, the invasive crambid Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) causes up to 73% yield loss. The International Centre of Insect Physiology and Ecology (ICIPE) started a biological control (BC) program in 1991 to control stem borers in subsistence agriculture in Africa with emphasis on classical BC of C. partellus. The project released the braconid larval parasitoid Cotesia flavipes Cameron (Hymenoptera: Braconidae) in 1993 in coastal Kenya, where it got established and spread to other regions. This study assesses the economic impact of the introduced parasitoid. Temporal data on percentage parasitism by the introduced parasitoid and on stem borer density were collected between 1995 and 2004. Socio-economic data was collected through administration of questionnaires to 300 farmers. Economic impact of the project was calculated as the value of the yield loss abated by the parasitoid based on a model of expected stem borer density and parasitism level. Average annual parasitism increased linearly from the time of introduction to reach 20% parasitism by 2004. The net reduction in total stem borer density over the last 10 years was 33.7%, thus abating 47.3% of yield loss. The region will accumulate a net present value of US $ 183 million in economic benefits in 20 years since release of the parasitoid. Introduction of other parasitoid species targeting the egg and pupal stages of the stem borer life cycle stages would be required for biological control to push yield loss by stem borers to an insignificant level.  相似文献   

3.
A study on the dispersal of the exotic larval endoparasitoid, Cotesia flavipes Cameron (Hymenoptera: Braconidae), was conducted in a maize field in the northern Kilifi District in the coastal area of Kenya. Because C. flavipes did not previously occur in the release area, it was possible to use a unique indirect method to estimate dispersal by examining the distribution of parasitised hosts. Parasitoids released in the centre of the field moved as far as 64 meters during their life span, and dispersal was dependent on wind direction. The level of parasitism was influenced by the location of hosts in plants. The majority of parasitised stemborers (88.4%) were found inside the plant (stems and tassel stems), where 74.3% of the suitable hosts were found, which indicates that female parasitoids were not searching randomly for hosts. Aggregation of parasitoids in response to plants with different host densities was not detected. Implications of the release of C. flavipes on stemborers population in the agroecosystem of East Africa are discussed.  相似文献   

4.
A two-host–two-parasitoid model was constructed to assess the effects of the introduced larval parasitoid, the braconid Cotesia flavipes, on its primary target host, the invasive crambid Chilo partellus, and on secondary host species, in inter-specific competition with Cotesia sesamiae, the main native parasitoid species of stemborers in Kenya. The model assumed that: (1) there was no host discrimination by either parasitoid species; (2) Cotesia flavipes was the superior competitor that out-competed Cotesia sesamiae when the host was suitable; and (3) Cotesia flavipes could only develop in an unsuitable host if it had been previously parasitized by Cotesia sesamiae. Model parameters were estimated from surveys conducted in Kenya and from laboratory experiments. Different scenarios of host and parasitoid species composition and host suitability occurring in the different ecological zones in Kenya were analyzed. Results indicated that: (1) the coexistence of stemborer host populations are determined by their population growth rates, the degree of aggregation of the parasitoids and their searching efficiency; (2) in the regions where both the invasive and the predominant native host species were suitable to either parasitoid species, stemborer densities would be reduced to and controlled at low densities, and Cotesia flavipes would become the dominant parasitoid species. However, the extinction or predominance of the native stemborer species depends on the ratio of the growth rates of exotic and native stemborers and their relative searching efficiencies; and (3) if the native host species was acceptable but unsuitable to Cotesia flavipes, the parasite would not become established.  相似文献   

5.
Mussidia nigrivenella Ragonot (Lepidoptera: Pyralidae), an important pest of maize ears in West Africa, has never been reported to attack crops in East and southern Africa (ESA), though it was found on various wild host plants in these regions. It was suggested that in ESA M. nigrivenella might be under natural control. In Kenya, exploration for natural enemies associated with Mussidia spp. yielded several parasitoids including a trichogrammatid egg parasitoid, Trichogrammatoidea sp. nr lutea Girault. The ability of T. sp. nr lutea to attack the eggs of several lepidopteran species found in Kenya was studied. The lepidopterans included the noctuids Busseola fusca (Fuller) and Sesamia calamistis (Hampson), the pyralids Eldana saccharina Walker, Mussidia fiorii Cecconi and de Joannis and Mussidia‘madagascariensis’, and the crambid Chilo partellus (Swinhoe). The former three species also infest cereals in West Africa. Trichogrammatoidea sp. nr lutea successfully attacked and developed in eggs of all six species indicating its potential to exploit other lepidopteran pests of maize in West Africa. Busseola fusca and S. calamistis were the most suitable hosts and had the largest number of eggs parasitized and progeny per female wasp where E. saccharina and C. partellus were the poorest hosts. The host species used to rear the parasitoid and the age of egg also significantly affected the total number of host eggs parasitized by the parasitoid. It was concluded that the ability of T. sp. nr lutea to exploit lepidopterans that are also pests of maize in West Africa may enhance biological control of M. nigrivenella and it should be considered for translocation to that area from Kenya.  相似文献   

6.
Two geometrid moths Chiasmia inconspicua and Chiasmia assimilis, identified as potential biological control agents for prickly acacia Acacia nilotica subsp. indica, were collected in Kenya and imported into quarantine facilities in Australia where laboratory cultures were established. Aspects of the biologies of both insects were studied and CLIMEX® models indicating the climatically favourable areas of Australia were developed. Host range tests were conducted using an approved test list of 74 plant species and no-choice tests of neonate larvae placed on both cut foliage and potted plants. C. inconspicua developed through to adult on prickly acacia and, in small numbers, Acacia pulchella. C. assimilis developed through to adult on prickly acacia and also in very small numbers on A. pulchella, A. deanei, A. decurrens, and A. mearnsii. In all experiments, the response on prickly acacia could be clearly differentiated from the responses on the non-target species. Both insects were approved for release in Australia. Over a three-year period releases were made at multiple sites in north Queensland, almost all in inland areas. There was no evidence of either insect’s establishment and both colonies were terminated. A new colony of C. assimilis was subsequently established from insects collected in South Africa and releases of C. assimilis from this new colony were made into coastal and inland infestations of prickly acacia. Establishment was rapid at one coastal site and the insect quickly spread to other infestations. Establishment at one inland area was also confirmed in early 2006. The establishment in coastal areas supported a CLIMEX model that indicated that the climate of coastal areas was more suitable than inland areas.  相似文献   

7.
The gregarious parasitoidCotesia flavipes (Hymenoptera: Braconidae) attacks larvae of pyralid and noctuid stemborers by entering the stemborer tunnel. The short-range foraging behavior of femaleC. flavipes was studied on stemborerinfested plants, in patches with host-related products and in artificial transparent tunnels. In addition, the longevity under specific conditions and the potential and realized fecundity of femaleC. flavipes were determined. Larval frass, caterpillar regurgitate, and holes in the stem are used in host location byC. flavipes. The response to host products byC. flavipes seems not to be host species specific. FemaleC. flavipes respond to frass from four stemborer species and one leaf feeder. No differences are found in the behavior ofC. flavipes on maize plants infested with the suitable host,Chilo partellus (Lepidoptera: Pyralidae), or the unsuitable host,Busseola fusca (Lepidoptera: Noctuidae). Attacking a stemborer larva inside the stem is risky for the parasitoid. The mortality rate of the parasitoids inside the stem is high: 30–40% of the parasitoids are killed by the spitting and biting stemborer larva.C. flavipes is relatively shortlived: without food the parasitoids die within 2 days; with food and under high-humidity conditions they die within 5–6 days.C. flavipes is proovigenic and has about 150 eggs available for oviposition. A relatively large proportion of the available egg load (20–25%) is allocated to each host, so femaleC. flavipes are egg depleted after parasitizing only five or six hosts.  相似文献   

8.
Biological control is a relatively benign method of pest control. However, considerable debate exists over whether multiple natural enemies often interact to produce additive or non‐additive effects on their prey or host populations. Based on the large data set stored in the São João and Barra sugarcane mills (state of São Paulo, Brazil) regarding the programme of biological control of Diatraea saccharalis using the parasitoids Cotesia flavipes and tachinid flies, in the present study the author investigated whether the parasitoids released into sugarcane fields interfered significantly with the rate of parasitized D. saccharalis hosts. The author also observed whether there was an additive effect of releasing C. flavipes and tachinids on the rate of parasitized hosts, and looked for evidence of possible negative effects of the use of multiple parasitoid species in this biological control programme. Results showed that C. flavipes and the tachinids were concomitantly released in the Barra Mill, but not in the São Jão Mill. Furthermore, in the Barra Mill there was evidence that the parasitoids interacted because the percentage of parasitism did not increase after the release of either C. flavipes or tachinids. In the São João Mill, when both parasitoid species were released out of synchrony, both the percentage of parasitism by C. flavipes as well as that of the tachinids increased. When large numbers of tachinids were released in the Barra Mill, they caused a significant lower percentage of parasitism imposed by C. flavipes. The implications of the results as evidence of non‐additive effects of C. flavipes plus tachinids on D. saccharalis populations are discussed.  相似文献   

9.
Biological control of Diatraea saccharalis is regarded as one of the best examples of successful classical biological control in Brazil. Since the introduction of the exotic parasitoid Cotesia flavipes, the decrease of D. saccharalis infestation in sugarcane fields has been attributed to the effectiveness of this agent. Recently, the native tachinid fly parasitoids (Lydella minense and Paratheresia claripalpis) have also been implicated in the success. Here, we investigated the spatial and temporal population interactions between C. flavipes and the tachinid flies, and provide a critical analysis of the biological control practice, focusing on the undesirable effects of introductions of exotic natural enemies. To investigate these questions, a large data set comprising information from two sugarcane mills located in the state of São Paulo, Brazil (Barra and São João Mills), was analysed. Analysis of the correlation between C. flavipes and tachinid fly population densities through time revealed that such populations were inversely correlated in the São João Mill and not correlated in the Barra Mill. Logistic regressions were computed to investigate the proportion of sites occupied by the parasitoid species at both mills as a function of time. An increasing trend in the proportion of sites occupied by C. flavipes was observed, with a concomitant decrease of the sites occupied by tachinid flies. This effect was more intense in the São João Mill. Thus, there is a convincing possibility that constant releases of C. flavipes decreased the tachinid fly populations, resulting in an undesirable effect of biological control practice.  相似文献   

10.
An Australian parasitoid wasp, Psyllaephagus pilosus, was collected from a previous release site in France and introduced into a commercial eucalyptus foliage plantation in Co. Kerry in the south west of Ireland to control the eucalyptus (blue gum) psyllid Ctenarytaina eucalypti. The first parasitised psyllid nymphs were observed 26 days after the release was made in late May 1998, and 49 days elapsed before a new generation of adult parasitoids was seen. Visually assessed indices of psyllid parasitism and adult wasp incidence were used to quantify the pattern of adult dispersion and establishment. A second generation of adult wasps emerged in late August, initiating a rapid spread of parasitism throughout the release site during September that culminated in a peak rate of almost 100% parasitism by late October. Subsequently by the end of 1998, an apparently random process of dispersion and successful natural colonisation occurred at eight out of ten monitored plantations at distances up to 70 km from the release point. The first colonisers of the other two sites arrived very late in 1998, and consequently failed to establish viable populations by the following summer. Probably this failure was because the small numbers of colonisers had arrived too late in the growing season to effect population establishment before the onset of winter. Assisted introductions were, therefore, made at these sites in June and August 1999, respectively. Once fully established, the parasitoid had no difficulty in surviving winter conditions at all monitored sites and demonstrated excellent potential as a biological control agent.  相似文献   

11.
Thripobius javae (Girault) was introduced in 1995 from Israel into Italy to control the greenhouse thrips, Heliothrips haemorrhoidalis (Bouché). Following introduction, successive augmentative releases of this parasitoid gave unsatisfactory and contradictory results, mainly due to the difficulty in synchronising its availability in sufficient number at the time of release. Efficient storage of this biological control agent could improve its current production and use. The effects of different sets of storage techniques at a single temperature and with a combination of different temperatures and instars on several fitness traits (residual developmental time to adult emergence after the end of storage, pupal mortality, longevity with and without hosts and progeny of emerged adults) were evaluated in order to determine the best conditions for storing the parasitoid.

For the pupal stage, increasing storage up to 14 days, at 10°C, gave only a moderate reduction (33%) of a modified composite quality index of its fitness. In contrast, when adults were stored for more than 10 days, at 15°C, residual longevity and progeny were reduced significantly. A combination of two temperatures (10 and 15°C) for pupal storage and a combination of pupal (10°C) and adult (15°C) storage had detrimental effects on parasitoid fitness. Temperatures of storage lower than 15 and 10°C had detrimental effects on adults and pupae, respectively.  相似文献   


12.
Teratocytes are specialized cells released by parasitoid wasps into their hosts. They are known for producing regulatory molecules that aid the development of immature parasitoids. We have recently reported the primary structures of cystine-rich peptides, including some containing inhibitor cystine knot (ICK) motifs, produced by teratocytes of the parasitoid Cotesia flavipes (Hymenoptera: Braconidae). ICKs are known for their stability and diverse biological functions. In this study, we produced four putative ICK peptides from the teratocytes of C. flavipes using solid-phase peptide synthesis or recombinant expression in E. coli, and investigated their functions on host immune modulation as well their potential to impair the development of two lepidopterans after ingestion of the peptides. In addition, the peptides were assayed against pathogens and human cells. The peptides did not influence total hemocyte count but suppressed cellular immunity, detectable as a reduction of hemocyte encapsulation (CftICK-I, CftICK-II, CftICK-III) and spread indexes (CftICK-IV) in the host. None of the peptides influenced the activities of prophenoloxidase and phenoloxidase in the hemolymph of larval Diatraea saccharalis (Lepidoptera: Crambidae). CftICK-I and CftICK-II with previously unknown function showed antifungal activity against Candida albicans but were non-toxic to human cells. CftICK-I, CftICK-II, and CftICK-III increased larval mortality and reduced leaf consumption of D. saccharalis, a permissive host for C. flavipes. The CftICK-III also increased larval mortality and reduced leaf consumption of Spodoptera frugiperda (Lepidoptera: Noctuidae), a non-permissive host for C. flavipes. This study highlights biological functions and biotechnological potential of ICK peptides from the teratocytes of C. flavipes.  相似文献   

13.
Determination of the potential and actual host range of a natural enemy is crucial before its importation and release for biological control. We studied some of the factors that are important in determining the physiological host range of insect parasitoids attacking lepidopteran hosts. Our experimental system consisted of novel host-parasitoid associations, with two New World pyralid stalk borers, Diatraea saccharalis and D. grandiosella; one Old World crambid borer, Ostrinia nubilalis as hosts; and three Old World microgastrine braconids, Cotesia chilonis, C. sesamiae, and C. flavipes as parasitoids. Experiments on the chronology of encapsulation of the parasitoid progeny by host hemocytes indicated that lepidopteran stemborers that are taxonomically, behaviorally and ecologically very similar differ in their ability to encapsulate a parasitoid species. D. saccharalis encapsulated C. flavipes sometimes, whereas D. grandiosella consistently encapsulated C. sesamiae and C. flavipes. C. chilonis was not encapsulated by either Diatraea host. If encapsulation occurred it did not start until four days after parasitization and continued during the following days. O. nubilalis was an unsuitable host for all three parasitoid species; parasitoid eggs were killed within 24 hours of parasitization. O. nubilalis had nearly twice as many hemocytes present in the hemolymph compared to the Diatraea species. In many of the host-parasitoid combinations, there was an initial increase of hemocyte number soon after parasitization, which was not due to mechanical damage at oviposition. There was no correlation between total numbers of hemocytes present in the host hemolymph and the observed encapsulation levels. By understanding the encapsulation response we may be able to make better predictions about the host range of a parasitoid species before its release as a biological control agent.  相似文献   

14.
Two braconid parasitoids of cereal stemborers in eastern Africa, Cotesia sesamiae and Cotesia flavipes, have been shown to display a similar hierarchy of behavioural events during host recognition and acceptance. In order to understand the mechanisms underlying host recognition and acceptance, the morphology of antennal sensilla on the last antennomeres, on the ovipositor, and on the fifth tarsomere and pretarsus of the prothoracic legs tarsi were studied using scanning electron microscopy followed by selective silver nitrate staining. It appeared that female C. sesamiae and C. flavipes shared the same types and distribution of sensory receptors, which enable them to detect volatiles and contact chemical stimuli from their hosts. In both parasitoids, four types of sensilla were identified on the three terminal antennomeres: (i) non-porous sensilla trichodea likely to be involved in mechanoreception, (ii) uniporous sensilla chaetica with porous tips that have gustatory functions, (iii) multiporous sensilla placodea, which are likely to have olfactory function, and (iv) sensilla coeloconica known to have thermo-hygroreceptive function. The tarsi of both parasitoids possessed a few uniporous sensilla chaetica with porous tips, which may have gustatory functions. The distal end of the ovipositor bore numerous dome-shaped sensilla. However, there were no sensilla coeloconica or styloconica, known to have gustatory function in other parasitoid species, on the ovipositors of the two braconid wasps.  相似文献   

15.
The goal of this study was to evaluate the quality of Cotesia flavipes from different bio-factories as biological control agents. We evaluated biological characteristics of the parasitoids throughout their lifespan, and measured the body length and width, abdomen width, thorax width and width and length of the right forewing of female and male parasitoids. Our results showed that the number of males and pupal viability were similar among the bio-factories; the number of emerged females was greater in bio-factories I and II; the egg-pupa period and the pupal period were shorter in bio-factory IV; and a greater longevity was found in bio-factories II and III. Sex ratio (at approximately 60% females) was satisfactory (in terms of suitability for release) across all bio-factories. For morphometric measurements, the body, abdomen and wing widths were similar in males; however, thorax width was greater in the males from bio-factory I; bio-factory III produced females with the highest body length; bio-factory I produced females with the greatest abdomen width; bio-factories III and IV produced females with the greatest wing length. Among the bio-factories studied, bio-factory IV produced the best quality C. flavipes, with respect to the greatest number of parasitoids per pupal mass (a mean of 57% more parasitoids) in a satisfactory sex ratio, and with the shortest developmental time, which facilitates faster rearing in the laboratory. Studies such as this, which assess the quality of a mass-produced C. flavipes, are crucial for the continued use of this parasitoid in controlling Diatraea saccharalis in the field.  相似文献   

16.
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is one of the major cereal pests in sub-Saharan Africa. Previous phylogeographic investigations on samples collected in Kenya, Cameroon and West-Africa showed the presence of three main clades (W, KI, KII) originated from populations isolated in West and East Africa around one million years ago. Demographic and phylogenetic analyses suggested that this event was followed by local demographic expansion and isolation by distance. These hypotheses were tested by a more comprehensive sampling across B. fusca’s geographic range in Africa. Comparisons of sequences of partial mitochondrial DNA gene (cytochrome b) from 489 individuals of 98 localities in southern, central, eastern and western African countries confirmed the presence of the three main clades. Phylogenetic, F-statistics, demographic parameters and nested clade phylogeographic analyses confirmed that the clades experienced geographic and demographic expansion with isolation by distance after their isolation in three refuge areas. The geographic range of clade KII, already known from East to Central sub-Saharan Africa was extended to Southern Africa. Mismatch distribution analysis and the negative values of Tajima’s D index are consistent with a demographic expansion hypothesis for these three clades. Significant genetic differentiations were revealed at various hierarchical levels by analysis of molecular variance (AMOVA). Hypotheses about the geographic origin of the three main clades are detailed.  相似文献   

17.
Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae) is an indigenous larval endoparasitoid of Busseola fusca (Fuller) (Lepidoptera: Noctuidae) in sub-Saharan Africa. In Kenya, reports suggest that C. sesamiae occurs as two biotypes. Biotype avirulent to B. fusca gets encapsulated by haemocytes in this host and is unable to complete development. Biotype virulent to B. fusca is able to overcome immune defences. Factors present in the calyx fluid such as the PolyDNAviruses (PDV), venom and calyx fluid proteins have been implicated in the variation of C. sesamiae virulence against B. fusca. In the present study, calyx fluid proteins of the two C. sesamiae biotypes were compared using 2-D gel electrophoresis. More protein spots were observed in the virulent parasitoid calyx fluid, but some proteins were specifically observed in the avirulent parasitoid calyx fluid while others were observed in both. To study changes in proteins due to parasitism of B. fusca larvae by the two strains, SDS-PAGE gel were performed on fat body tissues and the haemolymph at three time points. Differences between the two strains were observed in both the fat body and haemolymph tissues. Parasitism-specific protein bands were detectable in fat body tissues of B. fusca larvae parasitized by the two C. sesamiae strains. These proteins were absent in unparasitized larvae. Implications for using C. sesamiae as a biocontrol agent of B. fusca in Africa are discussed.  相似文献   

18.
To explore sustainably effective biological control measures to suppress the super pest Bemisia tabaci (Gennadius) Middle East‐Asia Minor 1 and better understand the biological control effects of single and multiple releases of parasitoids, we evaluated the performance and interaction of two aphelinid parasitoids of B. tabaci, Eretmocerus hayati Zolnerowich & Rose (an exotic primary parasitoid) and Encarsia sophia (Girault & Dodd) (an autoparasitoid, which is controversial in a biological control program). Single species or two species were jointly (1:1 density ratio) released in field cages on cotton in Hebei province, China, in 2010. Results of the field cage experiment showed that all parasitoid release treatments were successful in reducing the densities of the host B. tabaci relative to the control in which no parasitoid was released. The combined release of two parasitoid species showed the highest control effect among the treatments. Different population growth trajectories indicated asymmetric competitive effects of En. sophia on Er. hayati. The densities of Er. hayati were significantly higher in the Er. hayati alone treatment than in the combined release treatment, while densities of En. sophia were lower in the En. sophia alone treatment than in the combined release treatment. Our results demonstrated interspecific competition between autoparasitoid En. sophia and exotic primary parasitoid Er. hayati. However, no evidence indicated that autoparasitoid En. sophia disrupted the host suppression achieved by primary parasitoid Er. hayati. The release of the autoparasitoid together with the primary parasitoid may not influence host suppression in biological control.  相似文献   

19.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest of maize in North and South America. It was first reported from Africa in 2016 and currently established as a major invasive pest of maize. A survey was conducted to explore for natural enemies of the fall armyworm in Ethiopia, Kenya and Tanzania in 2017. Smallholder maize farms were randomly selected and surveyed in the three countries. Five different species of parasitoids were recovered from fall armyworm eggs and larvae, including four within the Hymenoptera and one Dipteran. These species are new associations with FAW and were never reported before from Africa, North and South America. In Ethiopia, Cotesia icipe was the dominant larval parasitoid with parasitism ranging from 33.8% to 45.3%, while in Kenya, the tachinid fly, Palexorista zonata, was the primary parasitoid with 12.5% parasitism. Charops ater and Coccygidium luteum were the most common parasitoids in Kenya and Tanzania with parasitism ranging from 6 to 12%, and 4 to 8.3%, respectively. Although fall armyworm has rapidly spread throughout these three countries, we were encouraged to see a reasonable level of biological control in place. This study is of paramount importance in designing a biological control program for fall armyworm, either through conservation of native natural enemies or augmentative release.  相似文献   

20.
The Mediterranean black scale, Saissetia oleae (Olivier) (Homoptera: Coccidae) is the most important pest of olive in Egypt. Indigenous parasitoid Metaphycus lounsburyi (Howard) (Hymenoptera: Encyrtidae) from different localities in Egypt, were manipulated, reared and mass produced for classical biological control in Egypt, more than 193130 parasitoids were released. Several releases were made between May 1999 to April 2001. Increases of the parasitism from 17.4 to 42.0 and from 6.4 to 19.2 during the first year (1999–2000) and the second year (2000–2001), respectively in the Northern Coast. This parasitoid became established in some of the release sites in El-Arish and Matruh Governorates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号