首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Total Internal Reflection Fluorescence Microscopy in Cell Biology   总被引:11,自引:1,他引:10  
Key events in cellular trafficking occur at the cell surface, and it is desirable to visualize these events without interference from other regions deeper within. This review describes a microscopy technique based on total internal reflection fluorescence which is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation. The technique has many other applications as well, most notably for studying biochemical kinetics and single biomolecule dynamics at surfaces. A brief summary of these applications is provided, followed by presentations of the physical basis for the technique and the various ways to implement total internal reflection fluorescence in a standard fluorescence microscope.  相似文献   

2.
Sunlight is captured and converted to chemical energy in illuminated environments. Although (bacterio)chlorophyll-based photosystems have been characterized in detail, retinal-based photosystems, rhodopsins, have only recently been identified as important mediators of light energy capture and conversion. Recent estimates suggest that up to 70% of cells in some environments harbor rhodopsins. However, because rhodopsin autofluorescence is low—comparable to that of carotenoids and significantly less than that of (bacterio)chlorophylls—these estimates are based on metagenomic sequence data, not direct observation. We report here the use of ultrasensitive total internal reflection fluorescence (TIRF) microscopy to distinguish between unpigmented, carotenoid-producing, and rhodopsin-expressing bacteria. Escherichia coli cells were engineered to produce lycopene, β-carotene, or retinal. A gene encoding an uncharacterized rhodopsin, actinorhodopsin, was cloned into retinal-producing E. coli. The production of correctly folded and membrane-incorporated actinorhodopsin was confirmed via development of pink color in E. coli and SDS-PAGE. Cells expressing carotenoids or actinorhodopsin were imaged by TIRF microscopy. The 561-nm excitation laser specifically illuminated rhodopsin-containing cells, allowing them to be differentiated from unpigmented and carotenoid-containing cells. Furthermore, water samples collected from the Delaware River were shown by PCR to have rhodopsin-containing organisms and were examined by TIRF microscopy. Individual microorganisms that fluoresced under illumination from the 561-nm laser were identified. These results verify the sensitivity of the TIRF microscopy method for visualizing and distinguishing between different molecules with low autofluorescence, making it useful for analyzing natural samples.  相似文献   

3.
The regulated trafficking or exocytosis of cargo‐containing vesicles to the cell surface is fundamental to all cells. By coupling the technology of fluorescently tagged fusion proteins with total internal reflection fluorescence microscopy (TIRFM), it is possible to achieve the high spatio‐temporal resolution required to study the dynamics of sub‐plasma membrane vesicle trafficking and exocytosis. TIRFM has been used in a number of cell types to visualize and dissect the various steps of exocytosis revealing how molecules identified via genetic and/or biochemical approaches are involved in the regulation of this process. Here, we summarize the contribution of TIRFM to our understanding of the mechanism of exocytosis and discuss the novel methods of analysis that are required to exploit the large volumes of data that can be produced using this technique.  相似文献   

4.
We achieved photon count rates per molecule as high as with commonly used confocal fluorescence correlation spectroscopy instruments using a new total internal reflection fluorescence correlation spectroscopy system based on an epi-illumination configuration.  相似文献   

5.
The Saharan silver ant Cataglyphis bombycina is one of the terrestrial living organisms best adapted to tolerate high temperatures. It has recently been shown that the hairs covering the ant’s dorsal body part are responsible for its silvery appearance. The hairs have a triangular cross-section with two corrugated surfaces allowing a high optical reflection in the visible and near-infrared (NIR) range of the spectrum while maximizing heat emissivity in the mid-infrared (MIR). Those two effects account for remarkable thermoregulatory properties, enabling the ant to maintain a lower thermal steady state and to cope with the high temperature of its natural habitat. In this paper, we further investigate how geometrical optical and high reflection properties account for the bright silver color of C. bombycina. Using optical ray-tracing models and attenuated total reflection (ATR) experiments, we show that, for a large range of incidence angles, total internal reflection (TIR) conditions are satisfied on the basal face of each hair for light entering and exiting through its upper faces. The reflection properties of the hairs are further enhanced by the presence of the corrugated surface, giving them an almost total specular reflectance for most incidence angles. We also show that hairs provide an almost 10-fold increase in light reflection, and we confirm experimentally that they are responsible for a lower internal body temperature under incident sunlight. Overall, this study improves our understanding of the optical mechanisms responsible for the silver color of C. bombycina and the remarkable thermoregulatory properties of the hair coat covering the ant’s body.  相似文献   

6.
Here we report label-free optical imaging of single particles of the influenza virus attached on a glass surface with a simple objective-type total internal reflection dark-field microscopy (TIRDFM). The capability of TIRDFM for the imaging of single viral particles was confirmed from fine correlation of the TIRDFM images with fluorescent immunostaining image and scanning electron microscopy image. The density of scattering spots in the TIRDFM images showed a good linearity against the virus concentration, giving the limit of detection as 1.2×104 plaque-forming units per milliliter. Our label-free optical imaging method does require neither elaborated sample preparation nor complex optical systems, offering a good platform for rapid and sensitive counting of viral particles.  相似文献   

7.
Surface topology, e.g. of cells growing on a substrate, is determined with nanometer precision by Variable-Angle Total Internal Reflection Fluorescence Microscopy (VA-TIRFM). Cells are cultivated on transparent slides and incubated with a fluorescent marker homogeneously distributed in their plasma membrane. Illumination occurs by a parallel laser beam under variable angles of total internal reflection (TIR) with different penetration depths of the evanescent electromagnetic field. Recording of fluorescence images upon irradiation at about 10 different angles permits to calculate cell-substrate distances with a precision of a few nanometers. Differences of adhesion between various cell lines, e.g. cancer cells and less malignant cells, are thus determined. In addition, possible changes of cell adhesion upon chemical or photodynamic treatment can be examined. In comparison with other methods of super-resolution microscopy light exposure is kept very small, and no damage of living cells is expected to occur.  相似文献   

8.
Amyloid fibril deposition of human islet amyloid polypeptide (hIAPP) in pancreatic islet cells is implicated in the pathogenesis of type II diabetes. A growing number of studies suggest that small peptide aggregates are cytotoxic via their interaction with the plasma membrane, which leads to membrane permeabilization or disruption. A recent study using imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) showed that monomeric hIAPP induced the formation of cellular plasma membrane microdomains containing dense lipids, in addition to the modulation of membrane fluidity. However, the spatial organization of microdomains and their temporal evolution were only partially characterized due to limitations in the conventional analysis and interpretation of imaging FCS datasets. Here, we apply a previously developed Bayesian analysis procedure to ITIR-FCS data to resolve hIAPP-induced microdomain spatial organization and temporal dynamics. Our analysis enables the visualization of the temporal evolution of multiple diffusing species in the spatially heterogeneous cell membrane, lending support to the carpet model for the association mode of hIAPP aggregates with the plasma membrane. The presented Bayesian analysis procedure provides an automated and general approach to unbiased model-based interpretation of imaging FCS data, with broad applicability to resolving the heterogeneous spatial-temporal organization of biological membrane systems.  相似文献   

9.
Amyloid fibril deposition of human islet amyloid polypeptide (hIAPP) in pancreatic islet cells is implicated in the pathogenesis of type II diabetes. A growing number of studies suggest that small peptide aggregates are cytotoxic via their interaction with the plasma membrane, which leads to membrane permeabilization or disruption. A recent study using imaging total internal reflection-fluorescence correlation spectroscopy (ITIR-FCS) showed that monomeric hIAPP induced the formation of cellular plasma membrane microdomains containing dense lipids, in addition to the modulation of membrane fluidity. However, the spatial organization of microdomains and their temporal evolution were only partially characterized due to limitations in the conventional analysis and interpretation of imaging FCS datasets. Here, we apply a previously developed Bayesian analysis procedure to ITIR-FCS data to resolve hIAPP-induced microdomain spatial organization and temporal dynamics. Our analysis enables the visualization of the temporal evolution of multiple diffusing species in the spatially heterogeneous cell membrane, lending support to the carpet model for the association mode of hIAPP aggregates with the plasma membrane. The presented Bayesian analysis procedure provides an automated and general approach to unbiased model-based interpretation of imaging FCS data, with broad applicability to resolving the heterogeneous spatial-temporal organization of biological membrane systems.  相似文献   

10.
The initial events in bacterial adhesion are often explained as resulting from electrostatic and van der Waals forces between the cell and the surface, as described by DLVO theory (developed by Derjaguin, Landau, Verwey, and Overbeek). Such a theory predicts that negatively charged bacteria will experience greater attraction toward a negatively charged surface as the ionic strength of the medium is increased. In the present study we observed both smooth-swimming and nonmotile Escherichia coli bacteria close to plain, positively, and hydrophobically coated quartz surfaces in high- and low-ionic-strength media by using total internal reflection aqueous fluorescence microscopy. We found that reversibly adhering cells (cells which continue to swim along the surface for extended periods) are too distant from the surface for this behavior to be explained by DLVO-type forces. However, cells which had become immobilized on the surface did seem to be affected by electrostatic interactions. We propose that the “force” holding swimming cells near the surface is actually the result of a hydrodynamic effect, causing the cells to swim at an angle along the glass, and that DLVO-type forces are responsible only for the observed immobilization of irreversibly adhering cells. We explain our observations within the context of a conceptual model in which bacteria that are interacting with the surface may be thought of as occupying one of three compartments: bulk fluid, near-surface bulk, and near-surface constrained. A cell in these compartments feels either no effect of the surface, only the hydrodynamic effect of the surface, or both the hydrodynamic and the physicochemical effects of the surface, respectively.  相似文献   

11.
Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions.  相似文献   

12.
1. Time with Julie in his laboratory at the NIH in the early 1970s is remembered. The experience led to a life-long interest in the regulation of catecholamine secretion. Here are summarized aspects of this work.2. The relationship between ATP-dependent priming of exocytosis and the polyphosphoinositides is reviewed. In addition, studies are summarized in which total internal reflection fluorescent microscopy (TIRFM) was used to visualize secretory granule behavior before exocytosis and individual exocytotic events.3. Quantitative optical analysis indicates that chromaffin granule motion is highly restricted but regulated. Granules can undergo significant motion in the 100 ms prior to fusion and interactions with the plasma membrane leading to fusion can occur within this time. The small motions may permit granules adjacent to the plasma membrane to repetitively sample microdomains of the plasma membrane, thereby increasing the probability of fruitful interactions that lead to fusion.  相似文献   

13.
Direct visualization of the mechanism(s) by which peptides induce localized changes to the structure of membranes has high potential for enabling understanding of the structure-function relationship in antimicrobial and cell-penetrating peptides. We have applied a combined imaging strategy to track the interaction of a model antimicrobial peptide, PFWRIRIRR-amide, with bacterial membrane-mimetic supported phospholipid bilayers comprised of POPE/TOCL. Our in situ studies revealed rapid reorganization of the POPE/TOCL membrane into localized TOCL-rich domains with a concomitant change in the organization of the membranes themselves, as reflected by changes in fluorescent-membrane-probe order parameter, upon introduction of the peptide.  相似文献   

14.
In the present study we have applied a novel form of Total Internal Reflection Fluorescence Microscopy (LG-TIRFM) in combination with fluorescently labeled cholera toxin to the study of lipid rafts dynamics in living cells. We demonstrate the usefulness of such approach by showing the dynamic formation/disaggregation of islands of cholera toxin on the surface of cells. Using multicolor LG-TIRFM with co-localization studies we show for the first time that two receptors previously identified as constituents of lipid rafts are found on different and independent “raft domains” on the cell plasma membrane. Furthermore, LG-TIRFM studies revealed limited association and dissociation of both domains overtime on different areas of the plasma membrane. The implications of different “raft domains” on cell physiology are discussed.  相似文献   

15.
目的 描述北京市公立医院内部绩效考核分配现状并分析。方法 通过文献查询梳理北京市公立医院绩效管理文献、专家咨询设计结构化访谈提纲,并对北京市公立医院绩效管理部门职员进行结构化访谈。结果 对北京市9家公立医院进行结构化访谈,对1家市属医院的绩效文献资料进行整理。描述了北京市公立医院绩效考核分配的指导思想、管理模式、管理办法、业务科室绩效考核分配模式、业务科室二次考核分配、护理垂直管理、行政后勤科室绩效考核分配、绩效考核信息化的现状。结论 北京市公立医院内部绩效考核体系是医院内部绩效考核历史模式与政策要求相互作用的结果,需要完善适合本医院文化的“本土化”绩效考核体系和分配测算方法。  相似文献   

16.
A method is described for spray-rinse sampling the entire visceral cavity of broiler chicken carcasses for microbiological analyses. The method is designed to provide a more comprehensive sample than swabbing or excision of small areas.  相似文献   

17.
We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI), also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI). Our darkfield system uses an ultra-thin light-emitting diode (LED) light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1) no oil condenser is required for high resolution imaging (2) there is less scatter from dust and dirt on the slide specimen (3) there is less halo, providing a more natural darkfield contrast image, and (4) the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB) and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the use of further staining.  相似文献   

18.
19.
Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.  相似文献   

20.
BackgroundOpen reduction and internal fixation (ORIF) of proximal humerus fractures in elderly individuals (age >70) carries a relatively high short-term complication and reoperation rate but is generally durable once healed. Reverse total shoulder arthroplasty (RTSA) for fractures may be associated with superior short-term quality of life but carries the lifelong liabilities of joint replacement. The tradeoff between short and long-term risks, coupled with disparities in quality of life and cost, makes this clinical decision amenable to cost-effectiveness analysis.Methods A Markov state-transition model was constructed with a base case of a 75 year-old patient. Reoperation rates, quality of life values, mortality rates, and costs were based upon published literature. The model was run until all patients had died to simulate the accumulated costs and benefits.ResultsRTSA was associated with greater quality of life (7.11 QALYs) than ORIF (6.22 QALYs). RTSA was cost-effective with an incremental cost-effectiveness ratio of $3,945/QALY and $27,299/ QALY from payor and hospital perspectives, respectively. RTSA was favored and cost-effective at any age above 65 and any Charlson Score. The model was sensitive to the utility of both proceduresConclusionRTSA resulted in a higher quality of life and was cost-effective in comparison to ORIF for elderly patients.Level of Evidence: III  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号