首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Widespread use of chemical insecticides has resulted in development of insect resistance and natural products with biological activities could become an attractive alternative to control insect pests. In order to find more effective insecticides for controlling mosquito, various mosquitocidal compounds are studied. Recently, juvenile hormone antagonists (JHANs) have been found to be to safe and effective insecticides for control of mosquito. In order to identify novel insecticidal compounds with JHAN activity, several chalcones were surveyed on their JHAN activities and larvicidal activities against Aedes albopictus larvae. Among them, 2′‐hydroxychalcone and cardamonin showed high levels of JHAN and mosquito larvicidal activities. These results suggested that chalcones with JHAN activity could be useful for control of mosquito larvae.  相似文献   

2.
Juvenile hormone antagonists (JHANs) are known to interfere with the formation of juvenile hormone (JH) receptor complex. JHANs might be effective for control of target pests in larval stages at which stages high level of endogenous JH titer is maintained. In order to identify novel insecticidal compounds, 2352 compounds were surveyed on their JHAN activities using the yeast-two hybrid system. Among 53 compounds with JHAN activities, penfluridol showed high level of insecticidal activity against larvae of Aedes albopictus. JHAN activity was increased in proportion to the concentration of penfluridol. Larvicidal activity of penfluridol was 1.3–2.0 folds higher than that of pyriproxyfen. These results suggested that penfluridol could be useful for control of mosquito larvae.  相似文献   

3.
A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.  相似文献   

4.
5.
6.
保幼激素(juvenile hormone, JH)是昆虫内分泌系统中的关键激素之一,对昆虫生长发育、变态、繁殖起着重要的调控作用。近年来有关JH的分子作用机制取得了极大的进展,主要得益于JH受体的鉴定,大量研究表明JH可通过胞内受体和膜受体两个途径来发挥生理调控功能。本文将从JH胞内受体Met的发现及鉴定、Met转录活性的调控因素、Met功能研究进展,以及Met作为JH受体在JH激动剂及拮抗剂筛选中的应用等方面对JH胞内受体的研究进展进行重点阐述;同时综述了有关JH膜受体的信号通路以及膜受体与核受体的互作等方面的研究进展。  相似文献   

7.
8.
Juvenile hormone III (JH) is synthesized by the corpora allata (CA) and plays a key role in mosquito development and reproduction. JH titer decreases in the last instar larvae allowing pupation and metamorphosis to progress. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which plays an essential role orchestrating reproductive maturation. 20-hydroxyecdysone (20E) prepares the pupae for ecdysis, and would be an ideal candidate to direct a developmental program in the CA of the pharate adult mosquito. In this study, we provide evidence that 20E acts as an age-linked hormonal signal, directing CA activation in the mosquito pupae. Stimulation of the inactive brain-corpora allata-corpora cardiaca complex (Br-CA-CC) of the early pupa (24 h before adult eclosion or −24 h) in vitro with 20E resulted in a remarkable increase in JH biosynthesis, as well as increase in the activity of juvenile hormone acid methyltransferase (JHAMT). Addition of methyl farnesoate but not farnesoic acid also stimulated JH synthesis by the Br-CA-CC of the −24 h pupae, proving that epoxidase activity is present, but not JHAMT activity. Separation of the CA-CC complex from the brain (denervation) in the −24 h pupae also activated JH synthesis. Our results suggest that an increase in 20E titer might override an inhibitory effect of the brain on JH synthesis, phenocopying denervation. All together these findings provide compelling evidence that 20E acts as a developmental signal that ensures proper reactivation of JH synthesis in the mosquito pupae.  相似文献   

9.
10.
Summary At the end of blastokinesis, serosal epitheliae of 4- to 5-day-old embryos of Locusta migratoria contain an immunohistologically detectable cytosolic protein (Mr 240 kDa) which is related to the juvenile hormone carrier-protein in the haemolymph of the same species and which binds tritiated juvenile hormone 3 (JH3) (Kd10–8 M). At this early stage of development the corpora allata of the embryo are not yet fully differentiated and do not synthesize JH3 in organ cultures. The earliest detectable JH3 production by corpora allata in isolated heads is on day 6. On the other hand, serosal epitheliae of 4- to 5-day-old embryos produce JH3 in organ cultures, as has been shown by methylation of (10-3H)-JH3-acid to (10-3H)-JH3, and by incorporation of tritiated CH3 from l-(methyl-3H)-methionine into JH3. Isolated heads and abdomens of the embryos used as donors for the serosal preparations did not show methyl transferase activity responsible for JH3 biosynthesis. The serosal cells represent a hitherto unrecognized source of methyl transferase activity and of JH3 production. Degradation of JH3 to JH3-acid was also observed.Dedicated to Professor Herbert Röller on the occasion of his 60th birthday  相似文献   

11.
12.
We investigated the effect of fifteen 1,5-disubstituted imidazoles (1,5-dis) on juvenile hormone III (JH III) and methyl farnesoate (MF) biosynthesis by the corpora allata (CA) of the mosquito Aedes aegypti in vitro. Four compounds (TH-35, TH-83, TH-62 and TH-28) significantly decreased JH biosynthesis in the CA dissected from 3-day old sugar-fed females. The decrease of JH synthesis was not always associated with increased MF. TH-30 and TH-83 increased MF levels, while TH-85 and TH-61 significantly decreased MF levels. Five compounds (TH-26, TH-60, TH-83, TH-35 and TH-30) significantly inhibited JH biosynthesis in the CA dissected from females 15 h after a blood meal. Four 1,5-dis (TH-30, TH-26, TH-28 and TH-66) caused MF increases in CA from blood-fed females. 1,5-Disubstituted imidazoles had higher inhibitory activity on JH synthesis when substituted at position 5 by a 3-benzyloxyphenyl group and at position 1 by a benzyl group (such as TH-35). Inhibition of JH and MF biosynthesis by TH-35 was age-dependent and influenced by nutritional status; inhibition differed when evaluated in the CA dissected from sugar-fed females at different days after emergence and in the CA dissected from females at different hours after a blood meal. Inhibition was always higher when the CA was more active. The addition of TH-35 significantly reduced the stimulatory effect of Aedes-allatotropin and farnesoic acid on JH synthesis. This is the first report of an inhibitory effect of 1,5-disubstituted imidazoles on JH synthesis in Diptera.  相似文献   

13.
The titer of juvenile hormone (JH) is determined by three factors: its rate of synthesis, its rate of degradation, and the degree to which JH is protected from degradation by binding to a diversity of JH-binding proteins. All three of these factors vary throughout the life history of an insect and contribute to variation in the JH titer. The relative importance of each of these factors in determining variation in the JH titer is not known and can, presumably, differ in different life stages and different species. Here we develop a mathematical model for JH synthesis, degradation, and sequestration that allows us to describe quantitatively how each of these contribute to the titer of total JH and free JH in the hemolymph. Our model allows for a diversity of JH-binding proteins with different dissociation constants, and also for a number of different modes of degradation and inactivation. The model can be used to analyze whether data on synthesis and degradation are compatible with the observed titer data. We use the model to analyze two data sets, from Manduca and Gryllus, and show that in both cases, the known data on synthesis and degradation cannot account for the observed JH titers because the role of JH sequestration by binding proteins is greatly underestimated, and/or the in vivo rate of JH degradation is greatly overestimated. These analyses suggest that there is a critical need to develop a better understanding of the in vivo role of synthesis, sequestration and degradation in JH titer regulation.  相似文献   

14.
15.
In the cricket, Teleogryllus commodus, eggs, haemolymph of 7th and 8th (last)-larval instars, and haemolymph of adults of both sexes contain only juvenile hormone III. While in the male the hormone titre is independent of previous mating experience, juvenile hormone concentration in haemolymph taken from females 36–38 hr after mating (an event which is followed by oviposition) is at a level 5 times higher than that of virgin females. Based on data gleaned from several research groups the identification of juvenile hormone III as the exclusive juvenile hormone in the Order Orthopteroidea is discussed.  相似文献   

16.
Temporally distinct, head-mediated processes regulate vitellogenic development as well as juvenile hormone (JH)-mediated development of ovarian follicles of Aedes aegypti. In blood-fed adult mosquitoes, vitellogenic development is stimulated during the first day after blood is imbibed and JH secretion is stimulated 2 days later. JH secretion in recently ecdysed adult mosquitoes is stimulated during or shortly before ecdysis. These observations suggest that vitellogenesis follows blood-ingestion, whereas JH activity may secondarily be promoted by vitellogenesis. It may be that vitellogenesis and JH activity are mediated by different brain hormones  相似文献   

17.
Juvenile hormones (JHs) are synthesized by the corpora allata (CA) and play a key role in insect development. A decrease of JH titer in the last instar larvae allows pupation and metamorphosis to proceed. As the anti-metamorphic role of JH comes to an end, the CA of the late pupa (or pharate adult) becomes again “competent” to synthesize JH, which would play an essential role orchestrating reproductive maturation. In the present study, we provide evidence that ecdysis triggering hormone (ETH), a key endocrine factor involved in ecdysis control, acts as an allatotropic regulator of JH biosynthesis, controlling the exact timing of CA activation in the pharate adult mosquito. Analysis of the expression of Aedes aegypti ETH receptors (AeaETHRs) revealed that they are present in the CA and the corpora cardiaca (CC), and their expression peaks 4 h before eclosion. In vitro stimulation of the pupal CA glands with ETH resulted in an increase in JH synthesis. Consistent with this finding, silencing AeaETHRs by RNA interference (RNAi) in pupa resulted in reduced JH synthesis by the CA of one day-old adult females. Stimulation with ETH resulted in increases in the activity of juvenile hormone acid methyltransferase (JHAMT), a key JH biosynthetic enzyme. Furthermore, inhibition of IP3R-operated mobilization of endoplasmic reticulum Ca2+ stores prevented the ETH-dependent increases of JH biosynthesis and JHAMT activity. All together these findings provide compelling evidence that ETH acts as a regulatory peptide that ensures proper developmental timing of JH synthesis in pharate adult mosquitoes.  相似文献   

18.
Host-seeking behaviour in newly emerged Aedes aegypti (L.) females is not expressed immediately after adult eclosion but develops gradually over a period of approximately 3-4 days. This development is accompanied by an apparent maturation of the antennal chemosensory afferent neurons involved in the detection of the airborne host attractant lactic acid. Since these events coincide in time with juvenile hormone-dependent previtellogenic ovarian growth and since the expression of other reproduction-associated behaviour has previously been shown to be dependent on juvenile hormone, the effects of juvenile hormone removal and replacement on the development of host-seeking behaviour and the response characteristics of the lactic acid-sensitive receptors were investigated. No effect of juvenile hormone removal by allatectomy or juvenile hormone replacement or augmentation by topical application of the juvenile hormone mimic methoprene was found. It was concluded that this hormone is not involved in the appearance of host-seeking behaviour or the apparent maturation of the lactic acid receptors that occurs during early imaginal life.  相似文献   

19.
Juvenile hormone III levels and juvenile hormone esterase activity were measured in whole body extracts and haemolymph, respectively, of female Aedes aegypti. The amount of juvenile hormone, determined by coupled gas chromatography-mass spectrometry, rose over the first 2 days after emergence from 0.7 to 7.5 ng/g, and then slowly fell over the next 5 days in females not given a blood meal. In females fed blood, juvenile hormone levels fell during the first 3 h to 2.3 ng/g. The rate of decline then slowed so that levels had reached their lowest point (0.4 ng/g) by 24 h after the blood meal. By 48 h, levels started to rise again until 96 h when they were equivalent to pre-blood meal levels.Juvenile hormone esterase activity in the haemolymph of females was measured with a partition assay. The esterase activity showed small fluctuations in unfed animals. In females fed blood on the 3rd day after emergence, the juvenile hormone esterase activity rose slowly to a peak at 36 h. At 42 h it began to decline, and by 66 h it had returned to pre-blood meal levels. Thus, juvenile hormone levels and juvenile hormone esterase activity were inversely correlated after a blood meal. Both the ovary and fat body produce juvenile hormone esterase in organ culture.Juvenile hormone III acid was the only metabolite produced after incubation of haemolymph with racemic-labelled juvenile hormone III. Juvenile hormone acid, diol, and acid diol were the main metabolic products seen in whole animal extracts after topical application of labelled hormone. About 25% of topically applied, labelled juvenile hormone appears in the haemolymph as the acid diol, and 50% of this is excreted in the urine immediately after the blood meal. Topical application of BEPAT (S-benzyl-O-ethyl phosphoramidothiolate), a specific inhibitor of juvenile hormone esterase, resulted in the absence of juvenile hormone acid and a reduction in the acid diol. Both BEPAT and methoprene, a juvenile hormone analogue, caused a reduction in egg hatch when applied topically 30 h after a blood meal, demonstrating that the decline in juvenile hormone levels after a blood meal is necessary for normal egg development and suggesting that the decline is mediated, at least in part, by juvenile hormone esterase.  相似文献   

20.
The juvenile hormone esterase (JHE) activity in Galleria mellonella larvae was measured after exposure to different experimental conditions that affect larval-pupal transformation. The data show that stimulation of production of JHE is closely coupled with the developmental signals that intiate larval-pupal metamorphosis. Injury, which delays pupation, delays the appearance of JHE activity if the larvae are injured within 48 hr after the last larval moult. Chilling of day-0 larvae induces a supernumerary larval moult and inhibits the appearance of JHE. However, JHE activity increases in chilled larvae when their commitment for an extra larval moult is reversed by starvation. Starvation is effective in reversing the commitment for an extra larval moult if commenced within 48 hr after chilling, thereby suggesting a critical period for that commitment. These data suggest that the stimulus for JHE synthesis and/or release occurs approximately within 48 hr after the last larval ecdysis. A series of studies involving implantation of brain, suboesophageal ganglion and fat body into chilled, as well as chilled and ligated larvae suggest that a factor from the brain is involved in stimulation or production of JHE in Galleria larvae.JH, which suppresses JHE activity in day-3, -5 and early day-6 Galleria larvae, stimulates the production of JHE in late day-6 larvae, suggesting that reprogramming in larval fat body may occur on day 6 of the last larval stadium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号