首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为探明植食性昆虫对受重金属胁迫的寄主植物的生理生态响应机制,本研究用Cd胁迫下银中杨的叶片饲养舞毒蛾幼虫,分析舞毒蛾幼虫对食物的利用情况以及其对Cd的排毒代谢机制.结果表明: 取食Cd胁迫下银中杨的叶片后,舞毒蛾3~6龄幼虫体内的Cd浓度和Cd含量均显著高于对照,但随着幼虫龄期增长,其体内Cd浓度显著降低,而Cd含量有不同程度的提高;舞毒蛾幼虫粪便和虫蜕中的Cd浓度均显著高于对照;舞毒蛾3~5龄幼虫的食物消耗率显著高于对照,而转化率显著低于对照;3~4龄幼虫的食物利用率均与对照差异不显著,但在5龄时显著低于对照.说明在Cd胁迫下,舞毒蛾幼虫能通过有效的排毒代谢途径将体内富集的部分Cd排出体外,且高龄幼虫的排毒代谢能力强于低龄幼虫;舞毒蛾幼虫体质量的增加会对体内的Cd浓度形成一种稀释效应;舞毒蛾幼虫能通过调整食物消耗率和转化率之间的比例,来维持其正常生长发育所需的食物利用率,但超过一定限度后仍会造成食物利用率降低.  相似文献   

2.
Heavy metal contamination of the forest pest insect Lymantria dispar (L.) (Lepidoptera; Lymantriidae), the gypsy moth, can alter its haemolymph composition, as has already been shown for carbohydrates and lipids in recent studies. L. dispar larvae are frequently parasitized by Glyptapanteles liparidis (Bouché) (Hymenoptera; Braconidae) larvae, which can—to some extent—regulate the population size of the pest insect. The parasitoids feed on the haemolymph of L. dispar larvae; hence, a different haemolymph composition of the host alters the trophic situation of the parasitoids. The aim of the present study was to investigate whether metal contamination also affects the concentrations of free amino acids in L. dispar haemolymph, and protein concentrations in their haemolymph and tissue. L. dispar larvae were parasitized on the first day of the second instar and then reared on diets contaminated with Cd, Pb, Cu or Zn at two concentrations each. Haemolymph and total body tissue of the larvae (fourth instar/third day) were analyzed. The concentrations of the free amino acids were elevated in five out of the eight contamination groups (Cd6, Pb4, Cu6, Cu10, Zn60), whereas haemolymph protein concentrations were significantly reduced in all contaminated individuals. The haemolymph protein concentration was 18 mg/ml in the control group and decreased to less than 10 mg/ml due to cadmium and zinc contamination at both concentrations and in the low copper contamination group. In contrast, total body proteins (136 g/mg dry weight in the control group) were elevated due to heavy metal stress. Analyses of haemolymph protein concentrations during the fourth instar demonstrated an increase of the proteins from day one to day four (followed by a decrease on the fifth day) in the control group and the cadmium contamination group. A steady increase of proteins from the first to the fifth day in the copper and zinc contaminated larvae indicated a retarded development in these groups. Thus, the present study along with other recent studies demonstrated, that heavy metal stress changes the concentrations of all main haemolymph compounds of L. dispar larvae.  相似文献   

3.
NADPH oxidase activity was measured in third to sixth instar gypsy moth larvae fed oak or pine foliage. Activity levels ranged from 400 to 1,900 pmol NADPH oxidized/min/mg microsomal protein, but enzyme activity was not correlated with host plant ingested. Similarly, activity levels in larvae fed diets containing inducers, such as the terpenoid α-pinene or pentamethylbenzene, ranged from 700 to 1,500 pmol NADPH oxidized/min/mg protein, levels that were comparable to those measured for larvae fed control diets. O-demethylase activity in older instar gypsy moth larvae fed pine averaged 109 pmol p-nitrophenol/min/mg protein, and activity levels in those fed diet containing α-pinene ranged from 22 to 55 pmol/min/mg protein. Although statistically significant, these induced O-demethylase levels are well below those observed for Heliothis zea larvae. Our findings indicate that monooxygenases play a minor, if any, role in the ability of later instar gypsy moth larvae to develop successfully on pine foliage.  相似文献   

4.
Abstract. Food selection behaviour, food utilization efficiency and growth performance of a generalist insect, the gypsy moth ( Lymantria dispar (L.), Lepidoptera: Lymantriidae), were examined with respect to variation in food nitrogen concentration. The results suggest that gypsy moth do not suffer physiologically and in fact may benefit from intraplant variation by selective feeding. When provided with diet cubes containing identical nitrogen concentrations, control larvae tended to consume food from a single cube. This behaviour contrasted with that of larvae provided cubes differing in nitrogen concentration. These larvae tended to consume more from the high nitrogen cube, but allocated feeding more evenly among diet cubes than did control larvae. Overall, larvae mixed foods so as to obtain a mean concentration of 2.9-3.2% nitrogen, a concentration assumed to approximate the 'intake target'. Larvae confined to single nitrogen concentrations mitigated the impact of imbalanced diets on body composition via both pre-ingestive and post-ingestive compensation. When confined to a specific nitrogen concentration, larvae adjusted their intake to the point of best compromise. In this case, this was the geometrically closest point to the estimated intake target. Larvae with a choice of foods that deviated more than ±1% from each other in nitrogen concentration grew as well as or better than larvae without a choice but given identical mean nitrogen concentrations. These results demonstrate that selectivity and nitrogen consumption by gypsy moth larvae are altered according to the particular choices available. Insects may benefit from intraplant variation in food quality because such variation provides the opportunity to choose foods and mix them in ways that permit close matching with the intake target. Variation may be particularly important to insects which must offset changing nutritional demands.  相似文献   

5.
Silkworm (Bombyx mori) larvae were reared on an artificial diet containing cadmium (Cd) at concentrations of 5 and 80 micrograms/g wet diet from hatching to the fourth instar and then for 5 days at the fifth instar, respectively. Concentrations of Cd and other elements in the alimentary canal, Malpighian tubes, silk gland, fat body and other organs were determined simultaneously by inductively coupled argon plasma-atomic emission spectrometry. Cd was accumulated in the alimentary canal and Malpighian tubes at concentrations of 1100 and 470 micrograms/g dry wt, respectively. The distribution of Cd in the supernatants of the two highly accumulated organs were determined on an SW column by high performance liquid chromatography-atomic absorption spectrophotometry. Cd was primarily bound to inducible high molecular weight Cd-binding proteins.  相似文献   

6.
The gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis, overlap geographically as well as in their host ranges. Adult female swallowtails are incapable of distinguishing between damaged and undamaged leaves, and the opportunities for competition between these two species are numerous. We designed field and laboratory experiments to look for evidence of indirect competition between P. canadensis and L. dispar larvae. Swallowtail caterpillars were reared in the laboratory on leaves from gypsy-moth-defoliated and undefoliated trees to explore host-plant effects. We tested for pathogen-mediated interactions by rearing swallowtail larvae on both sterilized and unsterilized leaves from defoliated and undefoliated sources. In addition, we measured the effects of known gypsy moth pathogens, as well as gypsy moth body fluids, on the growth and survival of swallowtail larvae. Field experiments were designed to detect the presence of parasitoid-mediated competition, as well: we recorded parasitism of swallowtail caterpillars placed in the field either where there were no gypsy moth larvae present, or where we had artificially created dense gypsy moth populations. We found evidence that swallowtails were negatively affected by gypsy moths in several ways: defoliation by gypsy moths depressed swallowtail growth rate and survival, whether leaves were sterilized or not; sterilization significantly reduced the effect of defoliation, and gypsy moth body fluids proved lethal; and swallowtail caterpillars suffered significantly increased rates of parasitism when they were placed in the field near gypsy moth infestations.  相似文献   

7.
Summary Survival and body composition of starving gypsy moth larvae initially reared on aspen foliage or artificial diet differeing in nitrogen (N) and carbohydrate concentration were examined under laboratory conditions. Diet nitrogen concentration strongly affected starvation resistance and body composition, but diet carbohydrate content had no effects on these. Within any single diet treatment, greater body mass afforded greater resistance to starvation. However, starving larvae reared on 1.5% N diet survived nearly three days longer than larvae reared on 3.5% N diet. Larvae reared on artificial diet survived longer than larvae reared on aspen. Differences in survival of larvae reared on artificial diet with low and high nitrogen concentrations could not be attributed to variation in respiration rates, but were associated with differences in body composition. Although percentage lipid in larvae was unaffected by diet nitrogen concentration, larvae reared on 1.5% N diet had a higher percentage carbohydrate and lower percentage protein in their bodies prior to starvation than larvae reared on 3.5% N diet. Hence, larger energy reserves of larvae reared on low nitrogen diet may have contributed to their greater starvation resistance. Whereas survival under food stress was lower for larvae reared on high N diets, growth rates and pupal weights were higher, suggesting a tradeoff between rapid growth and survival. Larger body size does not necessarily reflect larger energy reserves, and, in fact, larger body size accured via greater protein accumulation may be at the expense of energy reserves. Large, fast-growing larvae may be more fit when food is abundant, but this advantage may be severely diminished under food stress. The potential ecological and evolutionary implications of a growth/survival tradeoff are discussed.  相似文献   

8.
Summary The tissue distribution of Cu, Cd, Pb, Zn, and Ca in the earthworm Lumbricus rubellus living in non-polluted and heavy-metal polluted soils was investigated. Cd, Pb and Zn were primarily accumulated within the posterior alimentary canal. As the whole-worm Pb burden increased, the proportion of the metal accumulated within this tissue fraction increased. A similar pattern was found for Zn. By contrast, 70%–76% of the Cd burden was found in the posterior alimentary canal, irrespective of the whole-worm Cd content. The accumulation of Cd, Pb and Zn primarily in the posterior alimentary canal prevents dissemination of large concentrations of these metals into other earthworm tissues, and may thus represent a dextoxification strategy based on accumulative immobilisation. Cu was distributed fairly evenly in the tissue fractions investigated. There was no evidence of sequestration of this metal. The apparent lack of a detoxification strategy may contribute to the well-known susceptibility of earthworms to low environmental Cu concentrations. Indeed, earthworms from the site of highest soil Cu (Ecton) were markedly smaller than those from the other sites sampled. The highest Ca concentrations were found in the anterior alimentary canal, and were related to calciferous gland activity. A large proportion of Ca was also stored as a physiologically available pool in the posterior alimentary canal. Despite huge variations in soil Ca concentrations, the body wall Ca levels were fairly similar in L. rubellus from all the study sites. Thus, L. rubellus may become physiologically adapted to soils of exceptionally low Ca concentration. The observations are discussed in the context of the merits of analysing specific tissues, rather than whole organisms, for the purpose of monitoring metal bioaccumulation.  相似文献   

9.
Effects of a gypsy moth attack on the productivity of Larix sibirica on tree-ring width were analyzed in a case study of a mountain site in the western Khentey in the northern Mongolian forest-steppe ecotone. A major aim of the study was to assess whether reduced productivity by gypsy moth herbivory could contribute to fluctuations of the forest edge to the steppe in larch-dominated woodlands. In the year of the infestation, larch trees at the forest edge lost 90% of their needles and latewood formation was strongly reduced. However, earlywood formation was widely completed before the gypsy moth attack and, therefore, total tree-ring width was not below the average of the five years prior to infestation. In the two years following the gypsy moth invasion, annual stem increment was strongly reduced. Trees growing 30–100 m inside the forest showed a much weaker response of tree-ring widths to the gypsy moth infestation consistent with significantly higher defoliation at forest edge than in the forest interior. Old trees exhibited a stronger growth decline than middle-aged trees, indicating higher infestation of dominant, exposed trees, which are thought to be better accessible to the wind-dispersed gypsy moth larvae hatching in the early growing season on the steppe. Under the current climate, occasional growth reductions are thought to be of little effect on the performance of L. sibirica, as fast-growing competitors of other tree species, which are not or hardly affected by gypsy moth, are absent.  相似文献   

10.
R. M. Weseloh 《BioControl》1993,38(4):435-439
Calosoma sycophanta L. adults were fed either gypsy moth (Lymantria dispar L.) larvae or split grapes for set periods of time while their reproduction was monitored. Few female beetles reproduced unless fed gypsy moth larvae during the first week after they ended hibernation. Even females initially fed grapes that were later fed larvae had reduced reproduction. The implications these results have for relationships between beetle and gypsy moth populations are discussed.  相似文献   

11.
Summary The midgut pH of late instar gypsy moth (Lymantria dispar L.) larvae is strongly alkaline, and varies with diet, larval stadium, and time since feeding. Midgut pH rises with time since feeding, and does so more quickly, reaching greater maximum values, on some diets than others. Leaf tissues of 23 tree species resist increases in alkalinity differentially; this trait and differing initial leaf pH may explain the impact of diet on gut pH. Third instar larvae may have gut conditions favorable for tannin-protein binding shortly after ingesting certain foods, but with time midgut alkalinity becomes great enough to dissociate tannin-protein complexes. Older instars rarely exhibit gut pHs low enough to permit tannin activity. Alkaline gut conditions may explain the gypsy moth's ability to feed on many tanniniferous plant species, especially in later instars. Consequences for pathogen effectiveness are discussed.  相似文献   

12.
Abstract:  In the laboratory we investigated a kaolin-based crop protectant, Surround® WP, that was mixed in a spray carrier (94% water, 2% methanol, 4% Triton X100) and applied as particle film against gypsy moth Lymantria dispar (L.) and forest tent caterpillar Malacosoma disstria Hubner. Paired-choice feeding tests showed that gypsy moth larvae were significantly (P < 0.05) less disposed to feed on red oak Quercus rubrus L. treated with high concentrations (60 and 120 g/l carrier) of kaolin than on untreated foliage. There was no significant difference (P > 0.05) between gypsy moth's consumption of kaolin-treated and untreated red oak when given a single food choice, but the adults were less inclined to oviposit on the kaolin-treated surfaces than on controls. However, no kaolin treatment completely deterred gypsy moth feeding or oviposition. Kaolin particle film did not influence forest tent caterpillar feeding and there were insufficient data to evaluate the effect of kaolin on the species' oviposition. The spray carrier did not increase the efficacy of the kaolin, but as an independent, albeit impractical treatment it constrained feeding by both insect species but did not affect gypsy moth oviposition. These initial laboratory findings suggest that applying kaolin-based particle film to forests would present significant challenges; but if these could be surmounted, the technique might assist in the management of gypsy moth but not likely in that of forest tent caterpillar.  相似文献   

13.
To understand how ambient temperature affect the gypsy moth larvae, and provide a theoretical basis for pest control in different environments. Fourth instar gypsy moth larvae were incubating for 3 hr at 15℃, 20℃, 25℃, 30℃, 35℃, and 40℃, respectively. Afterward, digestive and antioxidant enzyme activities, total antioxidant capacity, and intestinal microflora community were analyzed to reveal how the caterpillars respond to ambient temperature stress. Results showed that both digestive and antioxidant enzymes were regulated by the ambient temperature. The optimum incubation temperatures of protease, amylase, trehalase, and lipase in gypsy moth larvae were 30℃, 25℃, and 20℃, respectively. When the incubation temperature was deviated optimum temperatures, digestive enzyme activities would be downregulated depending on the extent of temperature stress. In addition, glutathione S‐transferase, peroxidase, catalase, and polyphenol oxidase would be activated under a sufferable temperature stress, but superoxide dismutase and carboxylesterase (CarE) would be inhibited. In addition, results showed that the top two abundant phyla were Proteobacteria and Firmicutes. The phylum Firmicutes abundance was decreased and phylum Proteobacteria abundance was increased by ambient temperature stress. Moreover, it suggested that gypsy moth caterpillars at different ambient temperature mainly differed from each other by Escherichia‐Shigella and Bifidobacterium in control, Acinetobacter in T15, and Lactobacillus in T40, respectively.  相似文献   

14.
1. Interactions between invertebrate herbivores with different feeding modes are common on long-lived woody plants. In cases where one herbivore facilitates the success of another, the consequences for their shared host plant may be severe. Eastern hemlock (Tsuga canadensis), a canopy-dominant conifer native to the eastern U.S., is currently threatened with extirpation by the invasive stylet-feeding hemlock woolly adelgid (Adelges tsugae). The effect of adelgid on invasive hemlock-feeding folivores remains unknown. 2. This study evaluated the impact of feeding by hemlock woolly adelgid on gypsy moth (Lymantria dispar) larval preference for, and performance on, eastern hemlock. To assess preference, 245 field-grown hemlocks were surveyed for gypsy moth herbivory damage and laboratory paired-choice bioassays were conducted. To assess performance, gypsy moth larvae were reared to pupation on adelgid-infested or uninfested hemlock foliage, and pupal weight, proportional weight gain, and larval period were analysed. 3. Adelgid-infested hemlocks experienced more gypsy moth herbivory than did uninfested control trees, and laboratory tests confirmed that gypsy moth larvae preferentially feed on adelgid-infested hemlock foliage. Gypsy moth larvae reared to pupation on adelgid-infested foliage gained more weight than larvae reared on uninfested control foliage. 4. These results suggest that the synergistic effect of adelgid and gypsy moth poses an additional threat to eastern hemlock that may increase extirpation risk and ecological impact throughout most of its range.  相似文献   

15.
We examined the effects of CO2-mediated changes in the foliar chemistry of paper birch (Betula papyrifera) and white pine (Pinus strobus) on performance of the gypsy moth (Lymantria dispar). Trees were grown under ambient or enriched CO2 conditions, and foliage was subjected to plant chemical assays and insect bioassays. Enriched CO2 atmospheres reduced foliar nitrogen levels and increased condensed tannin levels in birch but not in pine. Foliar carbohydrate concentrations were not markedly altered by CO2 environment. Gypsy moth performance was significantly affected by CO2 level, species, and the CO2 x species interaction. Under elevated CO2 conditions, growth was reduced for larvae fed birch, while development was prolonged for larvae fed pine. Although gypsy moths performed better overall on birch than pine, birch-fed larvae were influenced more by CO2-mediated changes in host quality.  相似文献   

16.
Effects of various single and two species diets on the performance of gypsy moth (Lymantria dispar (L.)) were studied when this insect was reared from hatch to population on intact host trees in the field. The tree species used for this study were red oak (Quercus rubra L.), white oak (Q. alba L.), bigtooth aspen (Populus grandidentata Michaux), and trembling aspen (P. tremuloides Michaux). These are commonly available host trees in the Lake States region. The study spanned two years and was performed at two different field sites in central Michigan. Conclusions drawn from this study include: (1) Large differences in gypsy moth growth and survival can occur even among diet sequences composed of favorable host species. (2) Larvae that spent their first two weeks feeding on red oak performed better during this time period than larvae on all other host species in terms of mean weight, mean relative growth rate (RGR), and mean level of larval development, while larvae on a first host of bigtooth aspen were ranked lowest in terms of mean weight, RGR, and level of larval development. (3) Combination diets do not seem to be inherently better or worse than diets composed of only a single species; rather, insect performance was affected by the types of host species eaten and the time during larval development that these host species were consumed instead of whether larvae ate single species diets or mixed species diets. (4) In diets composed of two host species, measures of gypsy moth performance are affected to different extents in the latter part of the season by the two different hosts; larval weights and development rates show continued effects of the first host fed upon while RGRs, mortality, and pupal weights are affected strongly by the second host type eaten. (5) Of the diets investigated in this study, early feeding on red oak followed by later feeding on an aspen, particularly trembling aspen, is most beneficial to insects in terms of attaining high levels of performance throughout their lives.  相似文献   

17.
The gypsy moth (Lymantria dispar) is an insect folivore that feeds on a broad range of hosts, and undergoes intermittent outbreaks that cause extensive tree mortality. Like many other herbivorous insects, gypsy moth larvae consume a substrate that is low in nitrogen. Gypsy moth larvae have been known to cannibalize under crowded conditions in the laboratory. In this study, we assessed the influence of nitrogen and density on cannibalism behavior in gypsy moth larvae. Cannibalism rates increased with decreased nitrogen and increased density. There was no interaction between these two parameters. Developmental experiments confirmed that low dietary nitrogen is detrimental, in agreement with previous studies. In a second experiment, we assessed the influence of previous cannibalism experiences on subsequent cannibalism behavior. Gypsy moth larvae that had previously cannibalized other larvae subsequently exhibited higher cannibalism rates than those larvae that had not cannibalized. In conclusion, low nitrogen, high larval density, and previous cannibalism experience are important factors contributing to gypsy moth larval cannibalism. Future studies are needed to estimate benefits to larvae, and to more closely approximate field conditions.  相似文献   

18.
We examined the effects of various wounding treatments and genotypic variation on induced resistance in Populus (Salicales: Salicaceae) against herbivory by the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Second-instar larvae grew and consumed less on leaves from induced than non-induced trees. Likewise, larvae preferred leaf disks from non-induced trees. Among induction treatments, gypsy moth feeding had the strongest and most consistent effect in behavioral choice tests. Mechanical wounding of leaves and mechanical wounding plus application of gypsy moth regurgitant had intermediate effects, while application of jasmonic acid had the weakest overall effect. Under no-choice conditions, there were no consistent trends across clones in the ability of various treatments to elicit plant responses affecting the herbivore. Levels of constitutive and inducible resistance to herbivory varied significantly among 12 Populus clones. Larvae grew up to 30-fold more, and consumed up to 250-fold more on the most suitable than the least suitable clone. Prior feeding by gypsy moths reduced larval feeding up to 71.4% on the most highly inducible clone, but it had little or no effect for the least inducible clones. There was no evidence for a relationship between levels of inducible and constitutive resistance, or between inducible resistance and phylogenetic relatedness among clones. We discuss implications for the ecology and evolution of plant-insect interactions and the management of insect pests. Received: 12 October 1998 / Accepted: 22 March 1999  相似文献   

19.
The aim of the present study was to evaluate the role of arbuscular mycorrhizal (AM) fungi on metal uptake, oxidative effects and antioxidant defence mechanisms under cadmium (Cd) and lead (Pb) stresses in Cajanus cajan (L.) Millsp. (pigeonpea). Treatments consisted of two concentrations each of Cd (25 and 50 mg/kg of soil) and Pb (500 and 800 mg/kg of soil) singly as well as in combination. Both metals induced oxidative damage through increased lipid peroxidation, electrolyte leakage and hydrogen peroxide levels, but Cd was found to be more toxic than Pb. Compared with the effects of Cd or Pb alone, the combination of Cd and Pb acted synergistically; however, Pb immobilisation in soil controlled the uptake of Cd in plants. There was a direct correlation between the type of genotype, heavy metal content and oxidative damage in concentration dependent manner. Superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) increased under stress. The toxicity symptoms of the metal stress were significantly higher in Sel-141-97 genotype when compared with Sel-85 N. The high ratio of glutathione to its oxidised form, glutathione disulfide (GSH/GSSG), could be restored by means of higher glutathione reductase (GR) activity and increased GSH synthesis in mycorrhizal stressed plants. AM inoculations with Glomus mosseae significantly arrested uptake of Cd and Pb into the root system and further translocation into the above ground parts and led to decreased lipid peroxidation and electrolyte leakage. Increased activities of SOD, CAT, POX as well as GR were observed in all mycorrhizal stressed plants.  相似文献   

20.
  • 1 By examining variation in the abilities of polyphagous insects to develop on host plants with secondary metabolites that they have never encountered previously, we may be able to gain some insights into the nature of evolution of biochemical mechanisms to process plant secondary metabolites by phytophagous insects.
  • 2 The present study aimed to examine variation in the ability of gypsy moth larvae Lymantria dispar (Lymantriidae) to complete development on different species of the plant genus Eucalyptus (Myrtaceae). Leaves of at least some Eucalyptus species contain formylated phloroglucinol derivatives. These are secondary metabolites that are evolutionarily unfamiliar to the gypsy moth.
  • 3 Larvae of gypsy moth showed extremely variable responses in larval performance between Eucalyptus species, between individual trees within host plant species, between moth populations, and between individuals within moth populations.
  • 4 Larval survivorship was in the range 0–94%, depending on the host. Failure of at least some larvae to complete development on some Eucalyptus species indicates that gypsy moth larvae have a limited ability to process secondary metabolites in eucalypt leaves.
  • 5 At least some individuals, however, appear to already possess biochemical mechanisms that process the secondary metabolites in leaves of Eucalyptus species, and therefore the abilities of larvae to complete development on phylogenetically and chemically unfamiliar hosts are already present before the gypsy moth encounters these potential hosts.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号