首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous pathogen exposure is an important predictor of the probability of becoming infected. This is deeply understood for vertebrate hosts, and increasingly so for invertebrate hosts. Here, we test if an initial pathogen exposure changes the infection outcome to a secondary pathogen exposure in the natural host–pathogen system Daphnia magna and Pasteuria ramosa. Hosts were initially exposed to an infective pathogen strain, a non-infective pathogen strain or a control. The same hosts underwent a second exposure, this time to an infective pathogen strain, either immediately after the initial encounter or 48 h later. We observed that an initial encounter with a pathogen always conferred protection against infection compared with controls.  相似文献   

2.
Understanding the biology of the tuberculosis pathogen during dormant asymptomatic infection, called latent tuberculosis is crucial to decipher a resilient therapeutic strategy for the disease. Recent discoveries exhibiting presence of pathogen’s DNA and bacilli in mesenchymal stem cells (MSCs) of human and mouse despite completion of antitubercular therapy, indicates that these specific cells could be one of the niches for dormant Mycobacterium tuberculosis in humans. To determine if in vitro infection of human MSCs could recapitulate the in vivo characteristics of dormant M. tuberculosis, we examined survival, phenotype, and drug susceptibility of the pathogen in MSCs. When a very low multiplicity of infection (1:1) was used, M. tuberculosis could survive in human bone marrow derived MSCs for more than 22 days without any growth. At this low level of infection, the pathogen did not cause any noticeable host cell death. During the later phase of infection, MSC-residing M. tuberculosis exhibited increased expression of HspX (a 16-kDa alpha-crystallin homolog) with a concurrent increase in tolerance to the frontline antitubercular drugs Rifampin and isoniazid. These results present a human MSC-based intracelllular model of M. tuberculosis infection to dissect the mechanisms through which the pathogen acquires and maintains dormancy in the host.  相似文献   

3.
Despite its importance as a model organism very little is known about the interaction between Drosophila and its microsporidian pathogens. Here we report on the relative susceptibility of Drosophila melanogaster life history stages to infection by Tubulinosema kingi, and on patterns of pathogen proliferation. We find that only larvae can be infected, and that this susceptibility decreases with larval age. Following infection, the pathogen shows little subsequent proliferation in larvae, a limited amount in pupae while it replicates greatly in adults. We present evidence that the host launches a cellular immune response after infection with the pathogen, although its effectiveness remains to be demonstrated.  相似文献   

4.
Metamorphosis is often characterized by profound changes in morphology and physiology that can affect the dynamics of species interactions. For example, the interaction between a pathogen and its host may differ depending on the life stage of the host or pathogen. One pathogen that infects hosts with complex life cycles is the emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis (Bd). We sought to determine how conditions at the larval stage can affect variation in development and patterns of Bd infection across amphibian life stages. We used outdoor experimental mesocosms to simulate natural pond habitats and manipulated the presence of Bd, the larval density, and the number of host species in larvae of two co-occurring amphibian species (Rana cascadae and Pseudacris regilla). We found that infection differed between species throughout development; P. regilla consistently had higher infection severity compared to R. cascadae. Additionally, while up to 100% of larvae were infected, only 18.2% of R. cascadae and 81.5% of P. regilla were infected after metamorphosis. This indicates that amphibians have the ability to recover from Bd infection as they undergo metamorphosis. Higher larval densities in P. regilla led to a shorter larval period, and individuals with a shorter larval period had lower infection severity. This led to a trend where P. regilla larvae reared at high densities tended to have lower infection prevalence after metamorphosis. We also found that exposure to Bd increased larval mortality and prolonged the larval period in P. regilla, indicating that P. regilla are susceptible to the negative effects of Bd as larvae. This study demonstrates that host density, species composition, and pathogen exposure may all interact to influence development and infection in hosts with complex life cycles.  相似文献   

5.
Infection by pathogens is strongly affected by the diet or condition of the prospective host. Studies that examine the impact of diet have mainly focused on single pathogens; however, co‐infections within a single host are thought to be common. Different pathogen groups might respond differently to resource availability and diverse infections could increase the costs of host defense, meaning the outcome of mixed infections under varying dietary regimes is likely to be hard to predict. We used the generalist cabbage looper, Trichoplusia ni and two of its pathogens, the DNA virus Tni nucleopolyhedrovirus (TniSNPV) and the entomopathogenic fungus, Beauveria bassiana to examine how nutrient reduction affected the outcome of mixed pathogen infection. We challenged insects with a low or high effective dose of virus, alone or combined with a single dose of fungus. We manipulated food availability after pathogen challenge by diluting artificial diet with cellulose, a non‐nutritious bulking agent, and examined its impact on host and pathogen fitness. Reducing diet quantity did not alter overall or pathogen‐specific mortality. In all cases, TniSNPV‐induced mortality was negatively affected by fungus challenge. Similarly, Bbassiana‐induced mortality was negatively affected by TniSNPV challenge, but only at the higher virus dose. Dietary dilution mainly affected Bbassiana speed of kill when mixed with a high dose of TniSNPV, with an increase in the duration of fungal infection when cellulose was low (high quantity). One pathogen dominated the production of transmission stages in the cadavers and co‐infection did not affect the yield of either pathogen. There was no evidence that co‐infections were more costly to the survivors of pathogen challenge. In conclusion, dietary dilution did not determine the outcome of mixed pathogen infection, but it had more subtle effects, that differed between the two pathogens and could potentially alter pathogen recycling and host–pathogen dynamics.  相似文献   

6.
Diet has a significant effect on pathogen infections in animals and the consumption of secondary metabolites can either enhance or mitigate infection intensity. Secondary metabolites, which are commonly associated with herbivore defense, are also frequently found in floral nectar. One hypothesized function of this so-called toxic nectar is that it has antimicrobial properties, which may benefit insect pollinators by reducing the intensity of pathogen infections. We tested whether gelsemine, a nectar alkaloid of the bee-pollinated plant Gelsemium sempervirens, could reduce pathogen loads in bumble bees infected with the gut protozoan Crithidia bombi. In our first laboratory experiment, artificially infected bees consumed a daily diet of gelsemine post-infection to simulate continuous ingestion of alkaloid-rich nectar. In the second experiment, bees were inoculated with C. bombi cells that were pre-exposed to gelsemine, simulating the direct effects of nectar alkaloids on pathogen cells that are transmitted at flowers. Gelsemine significantly reduced the fecal intensity of C. bombi 7 days after infection when it was consumed continuously by infected bees, whereas direct exposure of the pathogen to gelsemine showed a non-significant trend toward reduced infection. Lighter pathogen loads may relieve bees from the behavioral impairments associated with the infection, thereby improving their foraging efficiency. If the collection of nectar secondary metabolites by pollinators is done as a means of self-medication, pollinators may selectively maintain secondary metabolites in the nectar of plants in natural populations.  相似文献   

7.
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as “ecological filters” for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology.  相似文献   

8.
The trade‐off between within‐host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life‐history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross‐kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within‐host infection rate and transmission potential. The strains differed in the measured life‐history traits and their correlations. Moreover, we found that under virus coinfection, within‐host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within‐host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within‐host and between‐host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between‐hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within‐host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade‐off between within‐host infection load and transmission may be strain specific, and that the pathogen life‐history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.  相似文献   

9.
10.
Evolutionary history of species, their geographic ranges, ecological ranges, genetic diversity, and resistance to pathogen infection, have been viewed as being mutually linked through a complex network of interactions. Previous studies have described simple correlations between pairs of these factors, while rarely separated the direct effects among multiple interacting factors. This study was to separate the effect of multiple interacting factors, to reveal the strength of the interactions among these factors, and to explore the mechanisms underlying the ecological and evolutionary processes shaping the geographic range, genetic diversity and fitness of species. I assembled comparative data on evolutionary history, geographic range, ecological range, genetic diversity, and resistance to pathogen infection for thirteen Banksia species from Australia. I used structural equation modelling to test multivariate hypotheses involving evolutionary history, geographic range, genetic diversity and fitness. Key results are: (1) Species with longer evolutionary times tend to occupy larger geographic ranges; (2) higher genetic diversity is directly associated with longer flowering duration in Banksia; and (3) species with higher genotypic diversity have higher level of resistance to infection caused by the pathogen Phytophthora cinnamomi, whereas heterozygosity has the opposite relationship with capacity of resistance to the infections caused by this pathogen. These results revealed a mutually linked and complex network of interactions among gene, species, environment and pathogen in evolutionary and ecological scales. These findings also have great practical significance and help to provide preemptive management options in pathogen control.  相似文献   

11.
Epithelial surfaces of most animals are colonized by diverse microbial communities. Although it is generally agreed that commensal bacteria can serve beneficial functions, the processes involved are poorly understood. Here we report that in the basal metazoan Hydra, ectodermal epithelial cells are covered with a multilayered glycocalyx that provides a habitat for a distinctive microbial community. Removing this epithelial microbiota results in lethal infection by the filamentous fungus Fusarium sp. Restoring the complex microbiota in gnotobiotic polyps prevents pathogen infection. Although mono-associations with distinct members of the microbiota fail to provide full protection, additive and synergistic interactions of commensal bacteria are contributing to full fungal resistance. Our results highlight the importance of resident microbiota diversity as a protective factor against pathogen infections. Besides revealing insights into the in vivo function of commensal microbes in Hydra, our findings indicate that interactions among commensal bacteria are essential to inhibit pathogen infection.  相似文献   

12.
13.
While learning to avoid toxic food is common in mammals and occurs in some insects, learning to avoid cues associated with infectious pathogens has received little attention. We demonstrate that Drosophila melanogaster show olfactory learning in response to infection with their virulent intestinal pathogen Pseudomonas entomophila. This pathogen was not aversive to taste when added to food. Nonetheless, flies exposed for 3 h to food laced with P. entomophila, and scented with an odorant, became subsequently less likely to choose this odorant than flies exposed to pathogen-laced food scented with another odorant. No such effect occurred after an otherwise identical treatment with an avirulent mutant of P. entomophila, indicating that the response is mediated by pathogen virulence. These results demonstrate that a virulent pathogen infection can act as an aversive unconditioned stimulus which flies can associate with food odours, and thus become less attracted to pathogen-contaminated food.  相似文献   

14.
Most pathogen detection tests are imperfect, with a sensitivity < 100%, thereby resulting in the potential for a false negative, where a pathogen is present but not detected. False negatives in a sample inflate the number of non-detections, negatively biasing estimates of pathogen prevalence. Histological examination of tissues as a diagnostic test can be advantageous as multiple pathogens can be examined and providing important information on associated pathological changes to the host. However, it is usually less sensitive than molecular or microbiological tests for specific pathogens. Our study objectives were to 1) develop a hierarchical occupancy model to examine pathogen prevalence in spring Chinook salmon Oncorhynchus tshawytscha and their distribution among host tissues 2) use the model to estimate pathogen-specific test sensitivities and infection rates, and 3) illustrate the effect of using replicate within host sampling on sample sizes required to detect a pathogen. We examined histological sections of replicate tissue samples from spring Chinook salmon O. tshawytscha collected after spawning for common pathogens seen in this population: Apophallus/echinostome metacercariae, Parvicapsula minibicornis, Nanophyetus salmincola/ metacercariae, and Renibacterium salmoninarum. A hierarchical occupancy model was developed to estimate pathogen and tissue-specific test sensitivities and unbiased estimation of host- and organ-level infection rates. Model estimated sensitivities and host- and organ-level infections rates varied among pathogens and model estimated infection rate was higher than prevalence unadjusted for test sensitivity, confirming that prevalence unadjusted for test sensitivity was negatively biased. The modeling approach provided an analytical approach for using hierarchically structured pathogen detection data from lower sensitivity diagnostic tests, such as histology, to obtain unbiased pathogen prevalence estimates with associated uncertainties. Accounting for test sensitivity using within host replicate samples also required fewer individual fish to be sampled. This approach is useful for evaluating pathogen or microbe community dynamics when test sensitivity is <100%.  相似文献   

15.
Computer models of disease take a systems biology approach toward understanding host-pathogen interactions. In particular, data driven computer model calibration is the basis for inference of immunological and pathogen parameters, assessment of model validity, and comparison between alternative models of immune or pathogen behavior. In this paper we describe the calibration and analysis of an agent-based model of Leishmania major infection. A model of macrophage loss following uptake of necrotic tissue is proposed to explain macrophage depletion following peak infection. Using Gaussian processes to approximate the computer code, we perform a sensitivity analysis to identify important parameters and to characterize their influence on the simulated infection. The analysis indicates that increasing growth rate can favor or suppress pathogen loads, depending on the infection stage and the pathogen's ability to avoid detection. Subsequent calibration of the model against previously published biological observations suggests that L. major has a relatively slow growth rate and can replicate for an extended period of time before damaging the host cell.  相似文献   

16.
Understanding the interactions between pathogen, crop and vector are necessary for the development of disease control practices of vector-borne pathogens. For instance, resistant plant genotypes can help constrain disease symptoms due to infections and limit pathogen spread by vectors. On the other hand, genotypes susceptible to infection may increase pathogen spread owing to their greater pathogen quantity, regardless of their symptom status. In this study, we evaluated under greenhouse conditions the relative levels of resistance (i.e. relatively lower pathogen quantity) versus tolerance (i.e. less symptom severity) of 10 commercial grapevine (Vitis vinifera) cultivars to Pierce’s disease etiological agent, the bacterium Xylella fastidiosa. Overall, no correlation was detected between pathogen quantity and disease severity, indicating the existence of among-cultivar variation in plant response to infection. Thompson Seedless and Barbera were the two most susceptible among 10 evaluated cultivars. Rubired showed the least severe disease symptoms and was categorized as one of the most resistant genotypes in this study. However, within each cultivar the degree of resistance/tolerance was not consistent across sampling dates. These cultivar and temporal differences in susceptibility to infection may have important consequences for disease epidemiology and the effectiveness of management protocols.  相似文献   

17.
Cryptococcus neoformans (C. neoformans) is an opportunistic fungal pathogen that mainly infects immunocompromised individuals such as AIDS patients. Although cell surface receptors for recognition of C. neoformans have been studies intensively, cytoplasmic recognition of this pathogen remains unclear. As an important detector of pathogen infection, inflammasome can sense and get activated by infection of various pathogens, including pathogenic fungi such as Candida albicans and Aspergillus fumigatus. Our present study showed that acapsular C. neoformans (cap59Δ) activated the NLRP3-, but not AIM2-nor NLRC4- inflammasome. During this process, viability of the fungus was required. Moreover, our in vivo results showed that during the pulmonary infection of cap59Δ, immune cell infiltration into the lung and effective clearance of the fungus were both dependent on the presence of NLRP3 inflammasome. In summary, our data suggest that the capsule of C. neoformans prevents recognition of the fungus by host NLRP3 inflammasome and indicate that manipulation of inflammasome activity maybe a novel approach to control C. neoformans infection.  相似文献   

18.
The extent and speed at which pathogens adapt to host resistance varies considerably. This presents a challenge for predicting when—and where—pathogen evolution may occur. While gene flow and spatially heterogeneous environments are recognized to be critical for the evolutionary potential of pathogen populations, we lack an understanding of how the two jointly shape coevolutionary trajectories between hosts and pathogens. The rust pathogen Melampsora lini infects two ecotypes of its host plant Linum marginale that occur in close proximity yet in distinct populations and habitats. In this study, we found that within-population epidemics were different between the two habitats. We then tested for pathogen local adaptation at host population and ecotype level in a reciprocal inoculation study. Even after controlling for the effect of spatial structure on infection outcome, we found strong evidence of pathogen adaptation at the host ecotype level. Moreover, sequence analysis of two pathogen infectivity loci revealed strong genetic differentiation by host ecotype but not by distance. Hence, environmental variation can be a key determinant of pathogen population genetic structure and coevolutionary dynamics and can generate strong asymmetry in infection risks through space.  相似文献   

19.
Helicobacter pylori (H. pylori) contributes to various gastric diseases such as chronic gastritis, gastric ulcer, and gastric carcinoma. Host innate immune response against the pathogen plays a significant role in elimination of pathogen infection. Importantly, pathogen elimination is closely related to numerous inflammatory-related genes that participate in complex biological response of cells to harmful stimuli. Here we studied effects of the KH-type splicing regulatory protein (KSRP), a RNA-binding protein, on innate immune response against H. pylori infection. We found that H. pylori infection downregulated KSRP expression directly, and that KSRP overexpression repressed upregulation of CXCL-2 expression induced by H. pylori and facilitated H. pylori proliferation in vitro. Similarly, KSRP overexpression in H. pylori mice also facilitated H. pylori proliferation and colonization, and induced more severe gastric mucosal damage. Intriguingly, CXCL-2 and HMOX-1 were upregulated in H. pylori infected mice after KSRP overexpression. This difference in expression of these genes implicated that KSRP was closely associated with and directly participated in the innate immune response against H. pylori. These results were beneficial for understanding the in vivo function of KSRP on innate immune response against pathogen infection.  相似文献   

20.
Many pathogens infect more than one host species, and clarifying how these different hosts contribute to pathogen dynamics can facilitate the management of pathogens and can lend insight into the functioning of pathogens in ecosystems. In this study, we investigated a suite of native and non-native amphibian hosts of the pathogen Batrachochytrium dendrobatidis (Bd) across multiple scales to identify potential mechanisms that may drive infection patterns in the Colorado study system. Specifically, we aimed to determine if: 1) amphibian populations vary in Bd infection across the landscape, 2) amphibian community composition predicts infection (e.g., does the presence or abundance of any particular species influence infection in others?), 3) amphibian species vary in their ability to produce infectious zoospores in a laboratory infection, 4) heterogeneity in host ability observed in the laboratory scales to predict patterns of Bd prevalence in the landscape. We found that non-native North American bullfrogs (Lithobates catesbeianus) are widespread and have the highest prevalence of Bd infection relative to the other native species in the landscape. Additionally, infection in some native species appears to be related to the density of sympatric L. catesbeianus populations. At the smaller host scale, we found that L. catesbeianus produces more of the infective zoospore stage relative to some native species, but that this zoospore output does not scale to predict infection in sympatric wild populations of native species. Rather, landscape level infection relates most strongly to density of hosts at a wetland as well as abiotic factors. While non-native L. catesbeianus have high levels of Bd infection in the Colorado Front Range system, we also identified Bd infection in a number of native amphibian populations allopatric with L. catesbeianus, suggesting that multiple host species are important contributors to the dynamics of the Bd pathogen in this landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号