首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Envelope protein of coronaviruses is a structural protein existing in both monomeric and homo-pentameric form. It has been related to a multitude of roles including virus infection, replication, dissemination and immune response stimulation. In the present study, we employed an immunoinformatic approach to investigate the major immunogenic domains of the SARS-CoV-2 envelope protein and map them among the homologue proteins of coronaviruses with tropism for animal species that are closely inter-related with the human beings population all over the world. Also, when not available, we predicted the envelope protein structural folding and mapped SARS-CoV-2 epitopes. Envelope sequences alignment provides evidence of high sequence homology for some of the investigated virus specimens; while the structural mapping of epitopes resulted in the interesting maintenance of the structural folding and epitope sequence localization also in the envelope proteins scoring a lower alignment score. In line with the One-Health approach, our evidences provide a molecular structural rationale for a potential role of taxonomically related coronaviruses in conferring protection from SARS-CoV-2 infection and identifying potential candidates for the development of diagnostic tools and prophylactic-oriented strategies.  相似文献   

2.
BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus that first occurred in Wuhan in December 2019. The spike glycoproteins and nucleocapsid proteins are the most common targets for the development of vaccines and antiviral drugs.ObjectiveWe herein analyze the rate of evolution along with the sequences of spike and nucleocapsid proteins in relation to the spatial locations of their epitopes, previously suggested to contribute to the immune response caused by SARS-CoV-2 infections.MethodsWe compare homologous proteins of seven human coronaviruses: HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63, HCoV-HKU1, MERS-CoV, and SARS-CoV-2. We then focus on the local, structural order-disorder propensity of the protein regions where the SARS-CoV-2 epitopes are located. ResultsWe show that most of nucleocapsid protein epitopes overlap the RNA-binding and dimerization domains, and some of them are characterized by a low rate of evolutions. Similarly, spike protein epitopes are preferentially located in regions that are predicted to be ordered and well- conserved, in correspondence of the heptad repeats 1 and 2. Interestingly, both the receptor-binding motif to ACE2 and the fusion peptide of spike protein are characterized by a high rate of evolution.ConclusionOur results provide evidence for conserved epitopes that might help develop broad-spectrum SARS-CoV-2 vaccines.  相似文献   

3.
The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.

Profiling of antibody binding from naïve and COVID-19 convalescent human sera to the entire proteome of SARS-CoV-2 and other human, bat and pangolin coronaviruses identifies 79 B cell epitopes throughout the SARS-CoV-2 proteome, finding that the most sensitive and specific binding occurred in the membrane (M) protein, and revealing cross-reactivity patterns.  相似文献   

4.
The Bacillus Calmette-Guérin (BCG) vaccine is known to have protective effects not only against tuberculosis but also against other unrelated infectious diseases caused by different pathogens. Several epidemiological studies have also documented the beneficial influence of BCG vaccine in reducing both susceptibility to and severity of SARS-CoV-2 infection. The protective, non-specific effects of BCG vaccination would be related to an antigen-independent enhancement of the innate immunity, termed trained immunity. However, the knowledge that heat shock protein (HSP)65 is the main antigen of Mycobacterium bovis BCG prompted us to verify whether sequence similarity existed between HSP65 and SARS-CoV-2 spike (S) and nuclear (N) proteins that could support an antigen-driven immune protection of BCG vaccine. The results of the in silico investigation showed an extensive sequence similarity of HSP65 with both the viral proteins, especially SARS-CoV-2 S, that also involved the regions comprising immunodominant epitopes. The finding that the predicted B cell and CD4+ T cell epitopes of HSP65 shared strong similarity with the predicted B and T cell epitopes of both SARS-CoV-2 S and N would support the possibility of a cross-immune reaction of HSP65 of BCG with SARS-CoV-2.  相似文献   

5.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected hundreds of millions of people all over the world and thus threatens human life. Clinical evidence shows that SARS-CoV-2 infection can cause several neurological consequences, but the existing antiviral drugs and vaccines have failed to stop its spread. Therefore, an understanding of the response to SARS-CoV-2 infection of hosts is vital to find a resultful therapy. Here, we employed a K18-hACE2 mouse infection model and LC-MS/MS to systematically evaluate the acetylomes of brain cortexes in the presence and absence of SARS-CoV-2 infection. Using a label-free strategy, 3829 lysine acetylation (Kac) sites in 1735 histone and nonhistone proteins were identified. Bioinformatics analyses indicated that SARS-CoV-2 infection might lead to neurological consequences via acetylation or deacetylation of important proteins. According to a previous study, we found 26 SARS-CoV-2 proteins interacted with 61 differentially expressed acetylated proteins with high confidence and identified one acetylated SARS-CoV-2 protein nucleocapsid phosphoprotein. We greatly expanded the known set of acetylated proteins and provide the first report of the brain cortex acetylome in this model and thus a theoretical basis for future research on the pathological mechanisms and therapies of neurological consequences after SARS-CoV-2 infection.  相似文献   

6.
SARS Coronavirus 2 (SARS-CoV-2) emerged in late 2019, leading to the Coronavirus Disease 2019 (COVID-19) pandemic that continues to cause significant global mortality in human populations. Given its sequence similarity to SARS-CoV, as well as related coronaviruses circulating in bats, SARS-CoV-2 is thought to have originated in Chiroptera species in China. However, whether the virus spread directly to humans or through an intermediate host is currently unclear, as is the potential for this virus to infect companion animals, livestock, and wildlife that could act as viral reservoirs. Using a combination of surrogate entry assays and live virus, we demonstrate that, in addition to human angiotensin-converting enzyme 2 (ACE2), the Spike glycoprotein of SARS-CoV-2 has a broad host tropism for mammalian ACE2 receptors, despite divergence in the amino acids at the Spike receptor binding site on these proteins. Of the 22 different hosts we investigated, ACE2 proteins from dog, cat, and cattle were the most permissive to SARS-CoV-2, while bat and bird ACE2 proteins were the least efficiently used receptors. The absence of a significant tropism for any of the 3 genetically distinct bat ACE2 proteins we examined indicates that SARS-CoV-2 receptor usage likely shifted during zoonotic transmission from bats into people, possibly in an intermediate reservoir. Comparison of SARS-CoV-2 receptor usage to the related coronaviruses SARS-CoV and RaTG13 identified distinct tropisms, with the 2 human viruses being more closely aligned. Finally, using bioinformatics, structural data, and targeted mutagenesis, we identified amino acid residues within the Spike–ACE2 interface, which may have played a pivotal role in the emergence of SARS-CoV-2 in humans. The apparently broad tropism of SARS-CoV-2 at the point of viral entry confirms the potential risk of infection to a wide range of companion animals, livestock, and wildlife.

A study using a combination of surrogate entry assays and live virus suggests that SARS-CoV-2 may have a broad host-range, revealing that the virus''s spike protein can use a broad range of host ACE2 receptors to enter cells and that the sequence of this protein might have changed during the zoonotic jump into humans.  相似文献   

7.
For many years, EBV vaccine development efforts have concentrated on the use of structural Ag, gp350, and have been directed toward Ab-mediated blocking virus attachment to the target cell. There is increasing evidence to suggest that the development of neutralizing Abs in vaccinated animals does not always correlate with protection; nevertheless, it has been postulated that gp350-specific T cell-mediated immune responses may have an effector role in protection. This hypothesis has largely remained untested. In the present study, we demonstrate that CTL from acute infectious mononucleosis patients display strong ex vivo reactivity against the EBV structural Ags, gp85 and gp350. Moreover, long-term follow up studies on infectious mononucleosis-recovered individuals showed that these individuals maintain gp350- and gp85-specific memory CTL, albeit at low levels, in the peripheral blood. These results strongly suggest that CTL specific for EBV structural proteins may play an important role in the control of EBV infection during acute infection. More importantly, we also show that prior immunization of HLA A2/Kb transgenic mice with gp350 and gp85 CTL epitopes induced a strong epitope-specific CTL response and afforded protection against gp85- or gp350-expressing vaccinia virus challenge. These results have important implications for future EBV vaccine design and provides evidence, for the first time, that CTL epitopes from EBV structural proteins may be used for establishing strong antiviral immunity against EBV infection.  相似文献   

8.
Evaluation of immunogenic epitopes for universal vaccine development in the face of ongoing SARS-CoV-2 evolution remains a challenge. Herein, we investigate the genetic and structural conservation of an immunogenically relevant epitope (C662–C671) of spike (S) protein across SARS-CoV-2 variants to determine its potential utility as a broad-spectrum vaccine candidate against coronavirus diseases. Comparative sequence analysis, structural assessment, and molecular dynamics simulations of C662–C671 epitope were performed. Mathematical tools were employed to determine its mutational cost. We found that the amino acid sequence of C662–C671 epitope is entirely conserved across the observed major variants of SARS-CoV-2 in addition to SARS-CoV. Its conformation and accessibility are predicted to be conserved, even in the highly mutated Omicron variant. Costly mutational rate in the context of energy expenditure in genome replication and translation can explain this strict conservation. These observations may herald an approach to developing vaccine candidates for universal protection against emergent variants of coronavirus.  相似文献   

9.
The nucleocapsid (N) protein of SARS-CoV-2 has been reported to have a high ability of liquid-liquid phase separation, which enables its incorporation into stress granules (SGs) of host cells. However, whether SG invasion by N protein occurs in the scenario of SARS-CoV-2 infection is unknow, neither do we know its consequence. Here, we used SARS-CoV-2 to infect mammalian cells and observed the incorporation of N protein into SGs, which resulted in markedly impaired self-disassembly but stimulated cell cellular clearance of SGs. NMR experiments further showed that N protein binds to the SG-related amyloid proteins via non-specific transient interactions, which not only expedites the phase transition of these proteins to aberrant amyloid aggregation in vitro, but also promotes the aggregation of FUS with ALS-associated P525L mutation in cells. In addition, we found that ACE2 is not necessary for the infection of SARS-CoV-2 to mammalian cells. Our work indicates that SARS-CoV-2 infection can impair the disassembly of host SGs and promote the aggregation of SG-related amyloid proteins, which may lead to an increased risk of neurodegeneration. Supplementary InformationThe online version contains supplementary material available at 10.1007/s13238-022-00905-7.  相似文献   

10.
SARS-CoV and SARS-CoV-2 encode spike proteins that bind human ACE2 on the cell surface to enter target cells during infection. A small fraction of humans encode variants of ACE2, thus altering the biochemical properties at the protein interaction interface. These and other ACE2 coding mutants can reveal how the spike proteins of each virus may differentially engage the ACE2 protein surface during infection. We created an engineered HEK 293T cell line for facile stable transgenic modification, and expressed the major human ACE2 allele or 28 of its missense mutants, 24 of which are possible through single nucleotide changes from the human reference sequence. Infection with SARS-CoV or SARS-CoV-2 spike pseudotyped lentiviruses revealed that high ACE2 cell-surface expression could mask the effects of impaired binding during infection. Drastically reducing ACE2 cell surface expression revealed a range of infection efficiencies across the panel of mutants. Our infection results revealed a non-linear relationship between soluble SARS-CoV-2 RBD binding to ACE2 and pseudovirus infection, supporting a major role for binding avidity during entry. While ACE2 mutants D355N, R357A, and R357T abrogated entry by both SARS-CoV and SARS-CoV-2 spike proteins, the Y41A mutant inhibited SARS-CoV entry much more than SARS-CoV-2, suggesting differential utilization of the ACE2 side-chains within the largely overlapping interaction surfaces utilized by the two CoV spike proteins. These effects correlated well with cytopathic effects observed during SARS-CoV-2 replication in ACE2-mutant cells. The panel of ACE2 mutants also revealed altered ACE2 surface dependencies by the N501Y spike variant, including a near-complete utilization of the K353D ACE2 variant, despite decreased infection mediated by the parental SARS-CoV-2 spike. Our results clarify the relationship between ACE2 abundance, binding, and infection, for various SARS-like coronavirus spike proteins and their mutants, and inform our understanding for how changes to ACE2 sequence may correspond with different susceptibilities to infection.  相似文献   

11.
In response to the recent SARS-CoV-2 pandemic, a number of labs across the world have reallocated their time and resources to better our understanding of the virus. For some viruses, including SARS-CoV-2, viral proteins can undergo phase separation: a biophysical process often related to the partitioning of protein and RNA into membraneless organelles in vivo. In this review, we discuss emerging observations of phase separation by the SARS-CoV-2 nucleocapsid (N) protein—an essential viral protein required for viral replication—and the possible in vivo functions that have been proposed for N-protein phase separation, including viral replication, viral genomic RNA packaging, and modulation of host-cell response to infection. Additionally, since a relatively large number of studies examining SARS-CoV-2 N-protein phase separation have been published in a short span of time, we take advantage of this situation to compare results from similar experiments across studies. Our evaluation highlights potential strengths and pitfalls of drawing conclusions from a single set of experiments, as well as the value of publishing overlapping scientific observations performed simultaneously by multiple labs.  相似文献   

12.
The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective.  相似文献   

13.
Inoculation of naked DNA has been applied for the development of prophylactic and therapeutic vaccines against different viral infections. To study the humoral immune response induced by DNA vaccination we cloned the entire nucleocapsid protein-encoding sequence of the Puumala hantavirus strain Vranica/H?lln?s into the CMV promoter-driven expression unit of the plasmid pcDNA3, generating pcDNA3-VR1. A single dose injection of 50 microg of plasmid DNA into each M. tibialis anterior of BALB/c mice induced a high-titered antibody response against the nucleocapsid protein as documented 6 and 11 weeks after immunisation. PEPSCAN analysis of a serum pool of the pcDNA3-VR1-vaccinated animals revealed antibodies reacting with epitopes covering the whole nucleocapsid protein. The epitope-specificity of the immune response induced by DNA vaccination seems to reflect the antibody response in experimentally virus-infected bank voles (the natural host of the Puumala virus) and humans. The data suggest that DNA vaccination could be used for the identification of highly immunogenic epitopes in viral proteins.  相似文献   

14.
While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203–205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral ‘RG’ motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2’s continued adaptation to human infection.  相似文献   

15.
COVID-19 caused by SARS-CoV-2 is pandemic with a severe morbidity and mortality rate across the world. Despite the race for effective vaccine and drug against further expansion and fatality rate of this novel coronavirus, there is still lack of effective antiviral therapy. To this effect, we deemed it necessary to identify potential B and T cell epitopes from the envelope S protein. This can be used as potential targets to develop anti-SARS-CoV-2 vaccine preparations. In this study, we used immunoinformatics to identify conservative B and T cell epitopes for S proteins of SARS-CoV-2, which might play roles in the initiation of SARS-CoV-2 infection. We identified the B cell and T cell peptide epitopes of S protein and their antigenicity, as well as the interaction between the peptide epitopes and human leucocyte antigen (HLA). Among the B cell epitopes, ‘EILDITPCSFGGVS’ has the highest score of antigenicity and great immunogenicity. In T cell epitopes, MHC-I peptide ‘KIADYNYKL’ and MHC-II peptide ‘LEILDITPC’ were identified as high antigens. Besides, docking analysis showed that the predicted peptide ‘KIADYNYKL’ was closely bound to the HLA-A*0201. The results of molecular dynamics simulation through GROMACS software showed that ‘HLA-A*0201~peptide’ complex was very stable. And the peptide we selected could induce the T cell response similar to that of SARS-CoV-2 infection. Moreover, the predicted peptides were highly conserved in different isolates from different countries. The antigenic epitopes presumed in this study were effective new vaccine targets to prevent SARS-CoV-2 infection.  相似文献   

16.
Intraviral protein-protein interactions (PPIs) of SARS-CoV-2 in host cells may provide useful information for deep understanding of virology of SARS-CoV-2. In this study, 22 of 55 interactions of the structural and accessory proteins of SARS-CoV-2 were identified by biomolecular fluorescence complementation (BiFC) assay. The nucleocapsid (N) protein was found to have the most interactions among the structural and accessory proteins of SARS-CoV-2, and also specifically interacted with the putative packaging signal (PS) of SARS-CoV-2. We also demonstrated that the PS core containing PS576 RNA bears a functional PS, important for the assembly of the viral RNA into virus like particles (VLPs), and the packaging of SARS-CoV-2 RNA was N dependent.  相似文献   

17.
18.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19) in humans, has a broad host range, and is able to infect domestic and wild animal species. Notably, white-tailed deer (WTD, Odocoileus virginianus), the most widely distributed cervid species in the Americas, were shown to be highly susceptible to SARS-CoV-2 in challenge studies and reported natural infection/exposure rates approaching 30–40% in free-ranging WTD in the U.S. Thus, understanding the infection and transmission dynamics of SARS-CoV-2 in WTD is critical to prevent future zoonotic transmission to humans, at the human-WTD interface during hunting or venison farming, and for implementation of effective disease control measures. Here, we demonstrated that following intranasal inoculation with SARS-CoV-2 B.1 lineage, WTD fawns (~8-month-old) shed infectious virus up to day 5 post-inoculation (pi), with high viral loads shed in nasal and oral secretions. This resulted in efficient deer-to-deer transmission on day 3 pi. Consistent a with lack of infectious SARS-CoV-2 shedding after day 5 pi, no transmission was observed to contact animals added on days 6 and 9 pi. We have also investigated the tropism and sites of SARS-CoV-2 replication in adult WTD (3–4 years of age). Infectious virus was detected up to day 6 pi in nasal secretions, and from various respiratory-, lymphoid-, and central nervous system tissues, indicating broad tissue tropism and multiple sites of virus replication. The study provides important insights on the infection and transmission dynamics of SARS-CoV-2 in WTD, a wild animal species that is highly susceptible to infection and with the potential to become a reservoir for the virus in the field.  相似文献   

19.
The sequence diversity of 45 Opa outer membrane proteins from Neisseria meningitidis, Neisseria gonorrhoeae, Neisseria sicca, and Neisseria flava indicates that horizontal genetic exchange of opa alleles has been rare between these species. A two-dimensional structural model containing four surface-exposed loops was constructed based on rules derived from porin crystal structure and on conservation of sequence homology within transmembrane β-strands. The minimal continuous epitopes recognized by 23 monoclonal antibodies were mapped to loops 2 and 3. Some of these epitopes are localized on the bacterial cell surface, in support of the model.  相似文献   

20.
Enterovirus A71 (EV-A71) is one of the main causative agents of hand, foot and mouth disease (HFMD). Unlike other enteroviruses that cause HFMD, EV-A71 is more frequently associated with severe neurological complications and fatality. To date, no effective licensed antivirals are available to combat EV-A71 infection. Little is known about the immunogenicity of viral non-structural proteins in humans. Previous studies have mainly focused on characterization of epitopes of EV-A71 structural proteins by using immunized animal antisera. In this study, we have characterized human antibody responses against the structural and non-structural proteins of EV-A71. Each viral protein was cloned and expressed in either bacterial or mammalian systems, and tested with antisera by western blot. Results revealed that all structural proteins (VP1-4), and non-structural proteins 2A, 3C and 3D were targets of EV-A71 IgM, whereas EV-A71 IgG recognized all the structural and non-structural proteins. Sixty three synthetic peptides predicted to be immunogenic in silico were synthesized and used for the characterization of EV-A71 linear B-cell epitopes. In total, we identified 22 IgM and four IgG dominant epitopes. Synthetic peptide PEP27, corresponding to residues 142–156 of VP1, was identified as the EV-A71 IgM-specific immunodominant epitope. PEP23, mapped to VP1 41–55, was recognized as the EV-A71 IgG cross-reactive immunodominant epitope. The structural protein VP1 is the major immunodominant site targeted by anti-EV-A71 IgM and IgG antibodies, but epitopes against non-structural proteins were also detected. These data provide new understanding of the immune response to EV-A71 infection, which benefits the development of diagnostic tools, potential therapeutics and subunit vaccine candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号