首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study focused on the evaluation of antibacterial property of silver nanoparticles (AgNPs) synthesized using mango flower extract. The morphology of the synthesized AgNPs was observed under transmission electron microscopy and the particles have shown spherical shape in the range of 10–20 nm. X-ray powder diffraction analysis confirmed the crystalline nature of the AgNPs. The atomic percentage of the Ag element in the nanoparticles was about 7.58% which is greater than the other elements present in the sample. The AgNPs showed extensive lethal effect on both Gram-positive (Staphylococcus sp.) and Gram-negative (Klebsiella sp., Pantoea agglomerans, and Rahnella sp.) bacteria. The extensive lethal effect of AgNPs against clinically important pathogens demonstrated that the mango flower mediated AgNPs could be applied as potential antibacterial agent to control the bacterial population in the respective industries.  相似文献   

2.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   

3.
Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO2NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO2NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15–70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP–MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO2 NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO2NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO2 NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.  相似文献   

4.
The emergence of multidrug resistance in pathogenic bacteria limits the utilization of available antibiotics. The development of alternate options to treat infectious diseases is the need of the day.The present study was aimed to synthesize, characterize and evaluate the bioactive properties of silver nanoparticles. Endophytic bacterium Bacillus cereus (MT193718) isolated from Berberis lycium was used to synthesize biocompatible silver nanoparticles. Antibacterial properties of AgNPs were evaluated against clinically isolated multidrug-resistant strains of Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. AgNPs indicated significant antibacterial activity against S. aureus and K. pneumoniae fwith a zone of inhibition of 17 and 18 mm at a concentration of 1000 µg/ mL with minimum inhibitory concentration of 15.6 and 62.5 µg/mL respectively. Significant antioxidant activity with an IC50 value of 9.5 µg/mL was recorded. Biosynthesized AgNPs were found compatible with red blood cells at a concentration of 31.5 µg/ml with no clumping of erythrocytes. The study suggested that AgNPs synthesized by the endophytic bacterium Bacillus cereus are biologically active and can be used as antioxidant and antibacterial agents against drug-resistant bacteria.  相似文献   

5.
Numerous studies investigated the biosynthesis of silver nanoparticles (AgNPs); however, there is a large gap for the ideal time-consuming process and their cytotoxicity. Herein, for the first time, rapid AgNPs was synthesized in a short time span, using Piper betle leaf (PBL) extract by applying microwave exposure. PB-AgNPs antibacterial activity and cell compatibility were enhanced by capping with chitosan (CS@PB-AgNPs). The synthesized nanoparticles were characterized by bioanalytical techniques. PB-AgNPs expressed significant antibacterial activity against Gram-positive and Gram-negative bacterial pathogens, while hybrid CS@PB-AgNPs presented the enhanced bactericidal activity. In addition, PB-AgNPs exhibited IC50 value of 140 μg/mL against RAW 264.7 macrophages and 100 μg/mL against lung cancer cells while, CS capping reduced its toxicity at IC50 values of 400 μg/mL and 180 μg/mL respectively were affirmed by MTT, apoptosis and DNA damage detection. Overall it was demonstrated that CS capping could be a phenomenal finding to improve the biomedical potential of AgNPs.  相似文献   

6.
In green chemistry, the application of a biogenic material as a mediator in nanoparticles formation is an innovative nanotechnology. Our current investigation aimed at testing the cytotoxic potential and antimicrobial ability of silver nanoparticles (AgNPs) that were prepared using Calligonum comosum roots and Azadirachta indica leaf extracts as stabilizing and reducing agents. An agar well diffusion technique was employed to detect synthesized AgNPs antibacterial ability on Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus bacterial strains. Furthermore, their cytotoxic capability against LoVo, MDA-MB231 and HepG2 ca cells was investigated. For phyto-chemical detection in the biogenic AgNPs the Fourier-transform infrared spectroscopy (FT-IR) was considered. Zeta sizer, TEM (Transmission Electron Microscope) and FE-SEM (Field Emission Scanning Electron Microscope) were used to detect biogenic AgNPs’ size and morphology. The current results showed the capability of tested plant extract for conversion of Ag ions to AgNPs with a mean size ranging between 90.8 ± 0.8 and 183.2 ± 0.7 nm in diameter. Furthermore, prepared AgNPs exhibited apoptotic potential against HepG2, LoVo, and MDA-MB 231cell with IC50 ranging between 10.9 and 21.4 μg/ml and antibacterial ability in the range of 16.0 ± 0.1 to 22.0 ± 1.8 mm diameter. Activation of caspases in AgNPs treated cells could be the main indicator for their positive effect causing apoptosis. The current investigation suggested that the green production of AgNPs could be a suitable substitute to large-scale production of AgNPs, since stable and active nanoparticles could be obtained.  相似文献   

7.
Italian ryegrass is one of main feed for livestock animals/birds. It has potential antioxidant metabolites that can improve their health and protect them against various infectious diseases. In this work, we studied synthesis of silver nanoparticles assisted by forage crop Lolium multiflorum as a green synthesis way. Potential antibacterial efficacy of these synthesized nanosized silver nanoparticles against poultry pathogenic bacteria was then studied. Aqueous extract of IRG was used as reducing agent for bio-reduction of silver salt to convert Ag+ to Ag0 metallic nano-silver. Size, shape, metallic composition, functional group, and crystalline nature of these synthesized silver nanoparticles were then characterized using UV–Vis spectrophotometer, FESEM, EDX, FT-IT, and XRD, respectively. In addition, antibacterial effects of these synthesized AgNPs against poultry pathogenic bacteria were evaluated by agar well diffusion method. UV–Vis spectra showed strong absorption peak of 440–450 nm with differ reaction time ranging from 30 min to 24 h. FESEM measurements revealed particles sizes of around 20–100 nm, majority of which were spherical in shape while a few were irregular. These biosynthesized silver nanoparticles using IRG extract exhibited strong antibacterial activities against poultry pathogenic microorganisms, including Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, and Bacillus subtilis. Overall results confirmed that IRG plant extract possessed potential bioactive compounds for converting silver ions into nanosized silver at room temperature without needing any external chemical for redox reaction. In addition, such synthesized AgNPs showed strong antibacterial activities against pathogenic bacteria responsible for infectious diseases in poultry.  相似文献   

8.
Biological synthesis of silver nanoparticles (AgNPs) by Cheatomorpha antennia and its in vitro and in vivo antibacterial activity against Vibrio harveyi in Macrobrachium rosenbergii was demonstrated in the study. In vitro growth curve analysis, cell viability and bacterial inhibitory assays were performed to test the efficacy of synthesised AgNPs against bacteria. Sodium caseinate was used as an encapsulating agent to deliver the antibacterial drugs and the commercial process of microencapsulation comprises the antibacterial bioelements for oral administration to improve the disease resistance of AgNPs against V. harveyi due to the eco-friendly for non-toxic behaviour of nanoparticle and their treatment. Characterisation of antibacterial silver was performed by UV spectroscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy and Scanning Electron Microscopy. The peak at 420 nm showed the presence of nanoparticles in the solution and the crystal nature of the particle was identified by the XRD. FTIR characterised the functional harveyi biomolecules and further SEM confirmed the size of the nanoparticles around 24 ± 2.4 nm. Experimental pathogenicity of V. harveyi showed 100% mortality at the 120th hour. Treatment of encapsulated AgNPs was administered orally for the relative percentage of survival which acquired almost 90% of survival till 30 days of exposure. In conclusion, the microencapsulation of AgNPs in the biopolymer matrices promotes the health, growth responses, immunity and disease resistance of encapsulated AgNPs with an improved relative percentage of survival.  相似文献   

9.
In this report, we describe the effect of Gemini surfactants1, 6-Bis (N, N-hexadecyldimethylammonium) adipate (16-6-16) on synthesis, stability and antibacterial activity of silver nanoparticles (AgNPs). The stabilizing effect of Gemini surfactant and aggregation behavior of AgNPs was evaluated by plasmonic property and morphology of the AgNPs were characterized by UV–vis spectroscopy, Dynamic Light Scattering (DLS), X-ray diffraction (XRD), High resolution transmission electron microscopy (HRTEM) and Energy dispersive X-ray analysis (EDX) techniques. Interestingly, the formation of quite mono-dispersed spherical particles was found. Apart from the stabilizing role, the Gemini surfactant has promoted the agglomeration of individual AgNPs in small assemblies whose Plasmon band features differed from those of the individual nanoparticles. The antibacterial activity of the synthesized AgNPs on Gram-negative and Gram-positive bacterium viz., E. coli and S. aureus was carried out by plate count, growth kinetics and cell viability assay. Furthermore, the mechanism of antibacterial activity of AgNPs was tested by Zeta potential and DLS analysis, to conclude that surface charge of AgNPs disrupts the cells causing cell death.  相似文献   

10.
E. Z. Gomaa 《Microbiology》2016,85(2):207-219
A green, simple and effective approach was performed to synthesize potent silver nanoparticles using bacterial exopolysaccharide as both a reducing and stabilizing agent. The formation of nanoparticles was first screened by measuring the surface plasmon resonance peak around 400 nm using UV-vis spectroscopy. The morphology of the synthesized AgNPs was determined using TEM, which indicated that the AgNPs were spherical in shape and with an average size of 11–25 nm. The presence of elemental silver of the AgNPs was confirmed by EDX analysis. The possible functional groups of EPS responsible for the reduction and stabilization of AgNPs were evaluated using FTIR. The EPS reduced AgNPs showed excellent antibacterial, and antibiofilm activities against various human pathogenic bacteria. In addition, the efficiency of AgNPs with various broad-spectrum antibiotics against the tested strains was evaluated. It is evident that, the antibacterial and antibiofilm activities of the selected antibiotics were increased in the presence of AgNPs. The increase in activity was more pronounced for gram-negative bacteria Pseudomonas aeruginosa and E. coli. Interestingly, the combination of antibiotics with AgNPs has significantly increased the membrane protein leakage and ROS generation than antibiotics or AgNPs alone. This work supports that AgNPs can be used to enhance the activity of existing antibiotics against gram-negative and gram-positive bacteria for the treatment of infectious diseases.  相似文献   

11.
Allium cepa and garlic Allium sativa plants were used to evaluate their potential synthesis of silver nanoparticles and their antibacterial effect on Streptococcus pneumoniae and Pseudomonas aeruginosa. Transmission electron microscopy (SEM) was used to distinguish the morphology of the nanoparticles attained from plant extracts. Energy dispersive X-ray (EDX) spectrometer established the existence of elemental sign of the silver and homogenous allocation of silver nanoparticles. Diffraction by using X ray (XRD) analysis for the formed AgNPs revealed spherical plus cubical shapes structure with different planes ranged between 111 and 311 planes. The antibacterial action of AgNPs against vaginal pathogens, Streptococcus pneumoniae and Pseudomonas aeruginosa was recognized. Our work showed a rapid, eco-safety and suitable method for the synthesis of AgNPs from Allium cepa and garlic Allium sativa extracts and can be used in biomedical applications.  相似文献   

12.
The sediment marine samples were obtained from several places along the coastline of the Tuticorin shoreline, Tamil Nadu, India were separated for the presence of bioactive compound producing actinobacteria. The actinobacterial strain was subjected to 16Sr RNA sequence cluster analysis and identified as Nocardiopsis dassonvillei- DS013 NCBI accession number: KM098151. Bacterial mediated synthesis of nanoparticles gaining research attention owing its wide applications in nonmedical biotechnology. In the current study, a single step eco-friendly silver nanoparticles (AgNPs) were synthesized from novel actinobacteria Nocardiopsis dassonvillei- DS013 has been attempted. The actinobacterial mediated silver nanoparticles were characterized by TEM, UV–Visible, XRD, FT-IR spectroscopy. The initial detection of AgNPs was identified using UV–Vis spectrum and confirmed by the appearance of absorbance peak at 408 nm. A Fourier transform infrared spectroscopy (FT-IR) result reveals the presence of protein component in the culture supernatant may act as protecting agents. The XRD pattern indicated that the typical peaks reveal the presence of nanoparticles. The TEM morphology confirms the formation of circular and non uniform distributions of AgNPs with the size range from 30 to 80 nm. The antibacterial activity of both isolated actinobacterial (IA) and silver nanoparticles mediated actinobacterial (SNA) of Nocardiopsis dassonvillei- DS013 were done by well diffusion method against selected clinical isolates of bacteria, namely Escherichia coli, Enterococcus sp., Pseudomonas sp., Klebsiella sp., Proteus sp., Shigella sp., Bacillus subtilis, and Streptococcus sp. When compared to isolated actinobacteria, the SNA shows the better antibacterial activity against clinical isolates.  相似文献   

13.
In the field of nano-biotechnology, silver nanoparticles (AgNPs) share a status of high repute owing to their remarkable medicinal values. Biological synthesis of environment-friendly AgNPs using plant extracts has emerged as the beneficial alternative approach to chemical synthesis. In the current study, we have synthesized biogenic silver nanoparticles (PG-AgNPs) using the peel extract of Punica granatum as a reducing and stabilizing agent. The as-synthesized PG-AgNPs were characterized and evaluated for their antibacterial and anticancer potential. UV–Visible spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirmed the formation of biogenic PG-AgNPs. The antibacterial potential was assessed against the biofilm of Listeria monocytogenes. The PG-AgNPs were efficacious against sessile bacteria and their biofilm as well. The as-synthesized nanoparticles at sub-MIC values showed dose-dependent inhibition of biofilm formation. Corroborating results were observed under crystal violet assay, Congo red staining, Confocal microscopy and SEM analysis. The anticancer ability of the nanoparticles was evaluated against MDA-MB-231 metastatic breast cancer cells. As evident from the MTT results, PG-AgNPs significantly reduced the cell viability in a dose-dependent manner. Exposure of MDA-MB-231 cells led to the accumulation of reactive oxygen species (ROS). Morphological changes and DNA fragmentation showed the strong positive effect of PG-AgNPs on the induction of apoptosis. Collectively, the as-synthesized PG-AgNPs evolved with synergistically emerged attributes that were effective against L. monocytogenes and also inhibited its biofilm formation; moreover, the system displayed lower cytotoxic manifestation towards mammalian cells. In addition, the PG-AgNPs embodies intriguing anticancer potential against metastatic breast cancer cells.  相似文献   

14.
The aim of this study was to biosynthesis silver nanoparticles from the fungus Nigrospora sphaerica isolated from soil samples and to examine their activity against five human pathogenic strains of bacteria viz. Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Staphylococcus aureus using disc diffusion method. The synergistic effect of silver nanoparticles in combination with commonly used antibiotic Gentamycin against the selected bacteria was also examined. The synthesized silver nanoparticles from free-cell filtrate were characterized by using UV–Vis spectrophotometer analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). UV–Vis spectrophotometer analysis showed a peak at 420 nm indicating the synthesis of silver nanoparticles, FTIR analysis verified the detection of protein capping of silver nanoparticles while SEM micrographs revealed that the silver nanoparticles are dispersed and aggregated and mostly having spherical shape within the size range between 20 and 70 nm. The synthesized silver nanoparticles exhibited a varied growth inhibition activity (15–26 mm diam inhibition zones) against the tested pathogenic bacteria. A remarkable increase of bacterial growth inhibition (26–34 mm diam) was detected when a combination of silver nanoparticles and Gentamycin was used. A significant increase in fold area of antibacterial activity was observed when AgNPs in combination with Gentamycin was applied. The synthesized silver nanoparticles produced by the fungus N. sphaerica is a promising to be used as safe drug in medical therapy due to their broad spectrum against pathogenic bacteria.  相似文献   

15.
Several attempts have been made for green synthesis of silver nanoparticles (AgNPs) using different plant extracts. Present study revealed that, antioxidant, antibacterial and cytotoxic AgNPs were synthesized using terpenes-rich extract (TRE) of environmentally notorious Lantana camara L. leaves. AgNPs were characterized by advanced techniques like UV–Visible and Infra red spectroscopy; XRD, SEM techniques as terpenes coated sphere shaped NPs with average diameter 425 nm. Further, on evaluation, AgNPs were found to exhibit dose – dependent antioxidant potential, good to moderate antibacterial activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa; and toxicity on Brine shrimp (A. salinanauplii) with LD50 value 514.50 µg/ml.  相似文献   

16.

Background

Biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, time-effective and environmentally friendly technologies for nano-materials synthesis. This paper reports the one pot green synthesis of silver nanoparticles (AgNPs) using the leaf bud extract of a mangrove plant, Rhizophora mucronata and their antimicrobial effects against aquatic pathogens. Highly stable AgNPs were synthesized by treating the mangrove leaf bud extract with aqueous silver nitrate solution at 15?psi pressure and 121°C for 5 minutes.

Results

The biosynthesized AgNPs were characterized by UV-visible spectrum, at 426?nm. The X-Ray Diffraction (XRD) pattern revealed the face-centered cubic geometry of AgNPs. Fourier Transform Infra Red (FTIR) spectroscopic analysis was carried out to identify the possible biomolecules responsible for biosynthesis of AgNPs from the leaf bud extract. The size and shape of the well-dispersed AgNPs were documented with the help of High Resolution Transmission Electron Microscopy (HRTEM) with a diameter ranged from 4 to 26?nm. However a maximum number of particles were observed at 4?nm in size. The antibacterial effects of AgNPs were studied against aquatic pathogens Proteus spp., Pseudomonas fluorescens and Flavobacterium spp., isolated from infected marine ornamental fish, Dascyllus trimaculatus.

Conclusion

This study reveals that the biosynthesized AgNPs using the leaf bud extract of a mangrove plant (R. mucronata) were found equally potent to synthetic antibiotics. The size of the inhibition zone increases when the concentration of the AgNPs increased and varies according to species.  相似文献   

17.
The use of silver nanoparticles (AgNPs) with their novel and distinct physical, chemical, and biological properties, has proven to be an alternative for the development of new antibacterial agents. In particular, the possibility to generate AgNPs coated with novel capping agents, such as phytomolecules obtained via a green synthesis (G-AgNPs), is attracting great attention in scientific research.Recently, we showed that membrane interactions seem to be involved in the antibacterial activity of AgNPs obtained via a green chemical synthesis using the aqueous leaf extract of chicory (Cichorium intybus L.). Furthermore, we observed that these G-AgNPs exhibited higher antibacterial activity than those obtained by chemical synthesis.In order to achieve the green AgNPs mode of action as well as their cellular target, we aimed to study the antibacterial activity of this novel green AgNPs against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The effect of the G-AgNPs on the bacterial surface was first evaluated by zeta potential measurements and correlated with direct plate count agar method. Afterwards, atomic force microscopy was applied to directly unravel the effects of these G-AgNPs on bacterial envelopes.Overall, the data obtained in this study seems correlate with a multi-step mechanism by which G-AgNPs-lipid membrane interactions is the first step prior to membrane disruption, resulting in antibacterial activity.  相似文献   

18.
Abstract

Biosynthesis of metal nanoparticles is an area of interest among researchers because of its eco-friendly approach. Current study focuses at biosynthesis of silver nanoparticles (AgNPs) and optimization of physico-chemical conditions to obtain mono-dispersed and stable AgNPs having antimicrobial activity. Initially Bacillus mojavensis BTCB15 produced silver nanoparticles (AgNPs) of 105?nm. Silver nanoparticles (AgNPs) were characterized by particle size analyzer, UV-Vis Spectroscopy, Fourier transforms infrared spectroscopy (FTIR), Atomic force microscopy (AFM), and X-ray diffraction (XRD). Whereas, under optimal conditions of temperature 55?°C, pH 8, addition of surfactant Tween 20, and metal ion K2SO4, about 104% size reduction was achieved with average size of 2.3nm. Molecular characterization revealed 98% sequence homology with Bacillus mojavensis. AgNPs exhibited antibacterial activity at concentrations ranging from 0.5 to 2.5?µg/µl against Escherichia coli BTCB03, Klebsiella pneumonia BTCB04, Acinetobacter sp. BTCB05, and Pseudomonas aeruginosa BTCB01 but none against Staphylococcus aureus BTCB02. Highest antibacterial activity was observed at 0.27?µg/µl and lowest at 0.05?µg/µl of AgNPs indicated by zone of inhibition. Conclusively, under optimum conditions, Bacillus mojavensis BTCB15 was able to produce AgNPs of 2.3?nm size and had antibacterial activity against multi drug resistant pathogens.  相似文献   

19.
Silver nanoparticles (AgNPs) have gained great interest in nanotechnology, biotechnology and medicine. The green synthesis of nanoparticles has received an increasing attention because of it’s maximize efficiency and minimize health and environmental hazards as compared to other conventional chemical synthesis. In this study, we reported biosynthesis of AgNPs by aqueous Annona squamosa L. leaf extract and its characterization by UV-visible spectroscopy (UV–vis), Field emission gun scanning electron microscopy (FEG-SEM), X-ray energy dispersive spectroscopy (EDX), Transmission electron microscopy (TEM), Selected-area electron diffraction (SAED) and Fourier transform infra-red spectroscopy (FTIR). The results indicated that AgNPs formed were spherical in shape with size ranging from 14 to 40 nm with an average diameter 28.47 nm. Furthermore, it was observed that the AgNPs exhibited an antibacterial activity against different Gram positive and Gram negative microorganisms. Our report confirmed that the ALE is a very good eco-friendly and nontoxic bioreductant for the synthesis of AgNPs and opens up further opportunities for fabrication of antibacterial drugs, medical devices and wound dressings.  相似文献   

20.
The current study described the systematic and detailed extracellular synthesis method of silver nanoparticles (AgNPs) using Streptomyces hirsutus strain SNPGA-8 by green synthesis method. The AgNPs were subjected for characterizations using UV–Vis, FTIR, TGA, TEM, EDX, XRD, and zeta-potential analyses. The antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, Escherichia coli, Candida albicans, Alternaria alternata, Candida glabrata and Fusarium oxysporum was determined by the agar well diffusion technique. The cytotoxicity of AgNPs against human lung cancer (A549) was studied by MTT and ROS assays and capping of proteins of AgNPs from SDS-PAGE. In the UV–Vis., absorption peak was found at 418 nm, FTIR analysis revealed the infrared bands of specific functional groups from 3273 cm?1 to 428 cm?1; TEM data confirmed the spherical shape, smallest size of particle as 18.99 nm, while EDX analysis confirmed the elemental composition of AgNPs with 22.24% Ag. The XRD pattern confirmed the nature of AgNPs as crystalline, and zeta potential peak was found at ?24.6 mV indicating the higher stability. The AgNPs exhibited increased antimicrobial activity with increase in dosage volume and considerable MIC and MBC values against microbial pathogens. In the MTT cytotoxicity assay, the IC50 value of 31.41 μg/mL is obtained against A549 cell line, suggesting the potential of AgNPs to inhibit the tumour cells; and ROS assay displayed increased ROS production with increase in treatment time. Based on the results, it is evident that Streptomyces hirsutus strain SNPGA-8 AgNPs are potentially promising to be applied for biomedical uses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号