首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Platyrrhini (New World monkeys, NWm) are a group of primates characterized by behavioral and reproductive traits that are otherwise uncommon among primates, including social monogamy, direct paternal care, and twin births. As a consequence, the study of Platyrrhine primates is an invaluable tool for the discovery of the genetic repertoire underlying these taxon‐specific traits. Recently, high conservation of vasopressin (AVP) sequence, in contrast with high variability of oxytocin (OXT), has been described in NWm. AVP and OXT functions are possible due to interaction with their receptors: AVPR1a, AVPR1b, AVPR2, and OXTR; and the variability in this system is associated with the traits mentioned above. Understanding the variability in the receptors is thus fundamental to understand the function and evolution of the system as a whole. Here we describe the variability of AVPR1b coding region in 20 NWm species, which is well‐known to influence behavioral traits such as aggression, anxiety, and stress control in placental mammals. Our results indicate that 4% of AVPR1b sites may be under positive selection and a significant number of sites under relaxed selective constraint. Considering the known role of AVPR1b, we suggest that some of the changes described here for the Platyrrhini may be a part of the genetic repertoire connected with the complex network of neuroendocrine mechanisms of AVP–OXT system in the modulation of the HPA axis. Thus, these changes may have promoted the emergence of social behaviors such as direct paternal care in socially monogamous species that are also characterized by small body size and twin births.  相似文献   

2.
The arginine vasopressin V1a receptor gene (AVPR1A) has been implicated in increased partner preference and pair bonding behavior in mammalian lineages. This observation is of considerable importance for studies of social monogamy, which only appears in a small subset of primate taxa, including the Argentinean owl monkey (Aotus azarai). Thus, to investigate the possible influence of AVPR1A on the evolution of social behavior in owl monkeys, we sequenced this locus in a wild population from the Gran Chaco. We also assessed the interspecific variation of AVPR1A in platyrrhine species that represent a set of phylogenetically and behaviorally disparate taxa. The resulting data revealed A. azarai to have a unique genic structure for AVPR1A that varies in coding sequence and microsatellite repeat content relative to other primate and mammalian species. Specifically, one repetitive region that has been the focus in studies of human AVPR1A diversity, “RS3,” is completely absent in A. azarai and all other platyrrhines examined. This finding suggests that, if AVPR1A modulates behavior in owl monkeys and other neotropical primates, it does so independent of this region. These observations have also provided clues about the process by which the range of social behavior in the Order Primates evolved through lineage-specific neurogenetic variation.  相似文献   

3.
Oxytocin (OXT) is an important neurohypophyseal hormone that influences wide spectrum of reproductive and social processes. Eutherian mammals possess a highly conserved sequence of OXT (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly). However, in this study, we sequenced the coding region for OXT in 22 species covering all New World monkeys (NWM) genera and clades, and characterize five OXT variants, including consensus mammalian Leu8-OXT, major variant Pro8-OXT, and three previously unreported variants: Ala8-OXT, Thr8-OXT, and Phe2-OXT. Pro8-OXT shows clear structural and physicochemical differences from Leu8-OXT. We report multiple predicted amino acid substitutions in the G protein-coupled OXT receptor (OXTR), especially in the critical N-terminus, which is crucial for OXT recognition and binding. Genera with same Pro8-OXT tend to cluster together on a phylogenetic tree based on OXTR sequence, and we demonstrate significant coevolution between OXT and OXTR. NWM species are characterized by high incidence of social monogamy, and we document an association between OXTR phylogeny and social monogamy. Our results demonstrate remarkable genetic diversity in the NWM OXT/OXTR system, which can provide a foundation for molecular, pharmacological, and behavioral studies of the role of OXT signaling in regulating complex social phenotypes.  相似文献   

4.

Background

Arginine vasopressin (AVP) plays a role in social behavior, through receptor AVPR1A. The promoter polymorphism AVPR1A RS3 has been associated with human social behaviors, and with acute response to stress. Here, the relationships between AVPR1A RS3, early-life stressors, and social interaction in adulthood were explored.

Methods

Adult individuals from a Swedish population-based cohort (n = 1871) were assessed for self-reported availability of social integration and social attachment and for experience of childhood adversities. Their DNA samples were genotyped for the microsatellite AVPR1A RS3.

Results

Among males, particularly those homozygous for the long alleles of AVPR1A RS3 were vulnerable to childhood adversity for their social attachment in adulthood. A similar vulnerability to childhood adversity among long allele carriers was found on adulthood social integration, but here both males and females were influenced.

Limitation

Data were self-reported and childhood adversity data were retrospective.

Conclusions

Early-life stress influenced the relationship between AVPR1A genetic variants and social interaction. For social attachment, AVPR1A was of importance in males only. The findings add to previous reports on higher acute vulnerability to stress in persons with long AVPR1A RS3 alleles and increased AVP levels.  相似文献   

5.
Central arginine vasopressin receptor 1A (AVPR1A) modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC) transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory regions surrounding the AVPR1A locus are responsible for differential receptor protein expression patterns across species and that they are likely to contribute to species-specific behavioral variation. The humanized AVPR1A mouse is a potential preclinical model for further understanding the regulation of receptor gene expression and the impact of variation in receptor expression on behaviors, and should be useful for screening drugs targeting human AVPR1A, taking advantage of the expression of human AVPR1A in human-relevant brain regions.KEY WORDS: AVPR1A, Humanized mouse, Social behavior, Species-specific, Microsatellite, Autism  相似文献   

6.
The vasopressin system has been implicated in the regulation of social behavior and cognition in humans, nonhuman primates and other social mammals. In chimpanzees, polymorphisms in the vasopressin V1a receptor gene (AVPR1A) have been associated with social dimensions of personality, as well as to responses to sociocommunicative cues and mirror self‐recognition. Despite evidence of this association with social cognition and behavior, there is little research on the neuroanatomical correlates of AVPR1A variation. In the current study, we tested the association between AVPR1A polymorphisms in the RS3 promotor region and gray matter covariation in chimpanzees using magnetic resonance imaging and source‐based morphometry. The analysis identified 13 independent brain components, three of which differed significantly in covariation between the two AVPR1A genotypes (DupB?/? and DupB+/?; P < .05). DupB+/? chimpanzees showed greater covariation in gray matter in the premotor and prefrontal cortex, basal forebrain, lunate and cingulate cortex, and lesser gray matter covariation in the superior temporal sulcus and postcentral sulcus. Some of these regions were previously found to differ in vasopressin and oxytocin neural fibers between nonhuman primates, and in AVPR1A gene expression in humans with different RS3 alleles. This is the first report of an association between AVPR1A and gray matter covariation in nonhuman primates, and specifically links an AVPR1A polymorphism to structural variation in the social brain network. These results further affirm the value of chimpanzees as a model species for investigating the relationship between genetic variation, brain structure and social cognition with relevance to psychiatric disorders, including autism.  相似文献   

7.
Dancing, which is integrally related to music, likely has its origins close to the birth of Homo sapiens, and throughout our history, dancing has been universally practiced in all societies. We hypothesized that there are differences among individuals in aptitude, propensity, and need for dancing that may partially be based on differences in common genetic polymorphisms. Identifying such differences may lead to an understanding of the neurobiological basis of one of mankind's most universal and appealing behavioral traits—dancing. In the current study, 85 current performing dancers and their parents were genotyped for the serotonin transporter (SLC6A4: promoter region HTTLPR and intron 2 VNTR) and the arginine vasopressin receptor 1a (AVPR1a: promoter microsatellites RS1 and RS3). We also genotyped 91 competitive athletes and a group of nondancers/nonathletes (n = 872 subjects from 414 families). Dancers scored higher on the Tellegen Absorption Scale, a questionnaire that correlates positively with spirituality and altered states of consciousness, as well as the Reward Dependence factor in Cloninger's Tridimensional Personality Questionnaire, a measure of need for social contact and openness to communication. Highly significant differences in AVPR1a haplotype frequencies (RS1 and RS3), especially when conditional on both SLC6A4 polymorphisms (HTTLPR and VNTR), were observed between dancers and athletes using the UNPHASED program package (Cocaphase: likelihood ratio test [LRS] = 89.23, p = 0.000044). Similar results were obtained when dancers were compared to nondancers/nonathletes (Cocaphase: LRS = 92.76, p = 0.000024). These results were confirmed using a robust family-based test (Tdtphase: LRS = 46.64, p = 0.010). Association was also observed between Tellegen Absorption Scale scores and AVPR1a (Qtdtphase: global chi-square = 26.53, p = 0.047), SLC6A4 haplotypes (Qtdtphase: chi-square = 2.363, p = 0.018), and AVPR1a conditional on SCL6A4 (Tdtphase: LRS = 250.44, p = 0.011). Similarly, significant association was observed between Tridimensional Personality Questionnaire Reward Dependence scores and AVPR1a RS1 (chi-square = 20.16, p = 0.01). Two-locus analysis (RS1 and RS3 conditional on HTTLPR and VNTR) was highly significant (LRS = 162.95, p = 0.001). Promoter repeat regions in the AVPR1a gene have been robustly demonstrated to play a role in molding a range of social behaviors in many vertebrates and, more recently, in humans. Additionally, serotonergic neurotransmission in some human studies appears to mediate human religious and spiritual experiences. We therefore hypothesize that the association between AVPR1a and SLC6A4 reflects the social communication, courtship, and spiritual facets of the dancing phenotype rather than other aspects of this complex phenotype, such as sensorimotor integration.  相似文献   

8.
Re-Evaluating Primate Monogamy   总被引:1,自引:0,他引:1  
Researchers propose hypotheses for the occurrence of monogamy as a social system in primates based on the assumption that there are a group of primates, including humans, which live exclusively in "nuclear families" and share a similar set of social behaviors. Examining the primates purported to be "monogamous" reveals that they cover a wide range of grouping types, mating patterns, taxonomic groups, and evolutionary grades. While there are a few primate species that do live in small, two-adult groups and share a similar set of social behaviors, the vast majority of the supposed "monogamous" primates, including humans, do not. [monogamy, social systems, evolution, variability in social organization]  相似文献   

9.
There is extensive evidence in animal studies, particularly in vole species (Microtus), that oxytocin (OT) receptor and arginine-vasopressin (AVP) receptor 1a is critical for the regulation of maternal and paternal behavior, respectively. Human studies have gained insight into the relationship between both hormone receptor gene variants and behavior, but not between the variants and the underlying brain activity. To study this, we investigated the association between neural activation of the anterior prefrontal cortex (APFC) in mothers and fathers in response to their child smiling video stimuli to induce the positive affect related to attachment with their child, and genetic variants of OT receptor (OXTR) and AVP receptor 1A (AVPR1A). Overall, 43 mothers and 41 fathers participated, and each parent's child smiling was video recorded. Participants were then genotyped and underwent near-infrared spectroscopy to measure neural activation of the APFC while observing their own child smiling compared with an unfamiliar child. We found that the right inferior APFC was activated in response to child video stimuli in mothers and differential hemispheric activation of the inferior APFC in OXTR rs2254298-G/G mothers compared with -A carrier mothers, but not in fathers. Furthermore, we found a difference in the left inferior APFC activation between AVPR1A RS3-non-334 and -334 carrier fathers, but not mothers. Our results indicate a sex-dependent association between the genetic variants and the inferior APFC activations of maternal and paternal positive affect, analogous to the results reported in voles.  相似文献   

10.
Primates and other mammals show measurable, heritable variation in behavioral traits such as gregariousness, timidity, and aggression. Connections among behavior, environment, neuroanatomy, and genetics are complex, but small genetic differences can have large effects on behavioral phenotypes. One of the best examples of a single gene with large effects on natural variation in social behavior is AVPR1A, which codes for a receptor of the peptide hormone arginine vasopressin. Work on rodents shows a likely causal association between AVPR1A regulatory polymorphisms and social behavior. Chimpanzees also show variation in the AVPR1A regulatory region, with some individuals lacking a ca. 350-bp segment corresponding to a putative functional element. Thus, chimpanzees have a “short” allele (segment deletion) and a “long” allele (no deletion) at this locus. Here we compare AVPR1A variation in two chimpanzee populations, and we examine behavioral and hormonal data in relation to AVPR1A genotypes. We genotyped AVPR1A in a captive population of western chimpanzees (Pan troglodytes verus, New Iberia Research Center; N = 64) for which we had quantitative measures of personality (based on 15 behavioral style indices, calculated from 3 yr of observational data), dominance rank, and baseline testosterone levels. We also provide the first assessment of AVPR1A genotype frequencies in a wild eastern chimpanzee population (Pan troglodytes schweinfurthii, Ngogo community, Kibale National Park, Uganda; N = 26). Our results indicated that the AVPR1A long allele was associated with a “smart” social personality in captive western chimpanzees, independent of testosterone levels. Although the frequency of the long allele was relatively low in captive western chimpanzees (0.23), it was the major allele in wild eastern chimpanzees (0.62). Our finding that allele and genotype frequencies for the AVPR1A polymorphism differ among chimpanzee populations also highlights the need for comparative studies —across subspecies and research sites— in primate behavioral genetics.  相似文献   

11.
Empathy is the ability to recognize and share in the emotions of others. It can be considered a multifaceted concept with cognitive and emotional aspects. Little is known regarding the underlying neurochemistry of empathy and in the current study we used a neurogenetic approach to explore possible brain neurotransmitter pathways contributing to cognitive and emotional empathy. Both the oxytocin receptor (OXTR) and the arginine vasopressin receptor 1a (AVPR1a) genes contribute to social cognition in both animals and humans and hence are prominent candidates for contributing to empathy. The following research examined the associations between polymorphisms in these two genes and individual differences in emotional and cognitive empathy in a sample of 367 young adults. Intriguingly, we found that emotional empathy was associated solely with OXTR, whereas cognitive empathy was associated solely with AVPR1a. Moreover, no interaction was observed between the two genes and measures of empathy. The current findings contribute to our understanding of the distinct neurogenetic pathways involved in cognitive and emotional empathy and underscore the pervasive role of both oxytocin and vasopressin in modulating human emotions.  相似文献   

12.
Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.  相似文献   

13.

Background

The arginine vasopressin receptor (AVPR) and oxytocin receptor (OXTR) genes have been demonstrated to contribute to prosocial behavior. Recent research has focused on the manner by which these simple receptor genes influence prosociality, particularly with regard to the AVP system, which is modulated by the clock gene. The clock gene is responsible for regulating the human biological clock, affecting sleep, emotion and behavior. The current study examined in detail whether the influences of the OXTR and AVPR1b genes on prosociality are dependent on the clock gene.

Methodology/Principal Findings

This study assessed interactions between the clock gene (rs1801260, rs6832769) and the OXTR (rs1042778, rs237887) and AVPR1b (rs28373064) genes in association with individual differences in prosociality in healthy male Chinese subjects (n = 436). The Prosocial Tendencies Measure (PTM-R) was used to assess prosociality. Participants carrying both the GG/GA variant of AVPR1b rs28373064 and the AA variant of clock rs6832769 showed the highest scores on the Emotional PTM. Carriers of both the T allele of OXTR rs1042778 and the C allele of clock rs1801260 showed the lowest total PTM scores compared with the other groups.

Conclusions

The observed interaction effects provide converging evidence that the clock gene and OXT/AVP systems are intertwined and contribute to human prosociality.  相似文献   

14.
15.
16.
The goal of our study was to explore the effect of social isolation stress of varying durations on the plasma oxytocin (OT), messenger ribonucleic acid (mRNA) for oxytocin receptor (OTR), plasma arginine vasopressin (AVP) and mRNA for V1a receptor of AVP (V1aR) expression in the hypothalamus and heart of socially monogamous female and male prairie voles (Microtus ochrogaster). Continuous isolation for 4 weeks (chronic isolation) increased plasma OT level in females, but not in males. One hour of isolation every day for 4 weeks (repeated isolation) was followed by a significant increase in plasma AVP level. Chronic isolation, but not repeated isolation, significantly decreased OTR mRNA in the hypothalamus and heart in both sexes. Chronic isolation significantly decreased cardiac V1aR mRNA, but no effect on hypothalamic V1aR mRNA expression. We did not find a gender difference within repeated social isolation groups. The results of the present study reveal that although chronic social isolation can down-regulate gene expression for the OTR in both sexes, the release of the OT peptide was increased after chronic isolation only in females, possibly somewhat protecting females from the negative consequences of isolation. In both sexes repeated, but not chronic, isolation increased plasma AVP, which could be permissive for mobilization and thus adaptive in response to a repeated stressor. The differential effects of isolation on OT and AVP systems may help in understanding mechanisms through social interactions can be protective against emotional and cardiovascular disorders.  相似文献   

17.
Monogamy is a rare strategy among mammals but relatively common among primates. The study of the evolution of monogamy in mammals and primates is lacking empirical studies that assess the relationship between a pair‐living social organization and genetic monogamy. Sexual or genetic monogamy can only be assessed by performing molecular analyses and investigating rates of extra‐pair paternity (EPP). Studying the occurrence of EPP can provide valuable insights into reproductive strategies and their adaptive value. The indri is a pair‐living primate that lives in stable groups. Their social units are composed of the reproductive pair and up to four more individuals, but extra‐pair copulation (EPC) can occur. This raises the question of whether this event may or may not lead to EPP. Here, we investigated whether a pair‐living social organization corresponds to genetic monogamy in indris (Indri indri). We analyzed the paternity of 12 offspring from seven pairs using a set of six microsatellite loci on fecal samples (mean number of alleles 11.7 ± 1.8 (mean ± standard deviation). We found that in 92% of cases the genetic profile of the offspring matched the paired male of the group for all the loci considered. In the only case of paternity mismatch, the paternity assignment remained inconclusive. Our results show that I. indri genetic monogamy is the norm and supports the hypothesis that pair‐living social organization is associated with low EPP rate. Also, our results are in contrast with the hypothesis of infertility as a reason to engage in EPC for this species.  相似文献   

18.
Sawai H  Kawamoto Y  Takahata N  Satta Y 《Genetics》2004,166(4):1897-1907
New World monkeys (NWMs) occupy a critical phylogenetic position in elucidating the evolutionary process of major histocompatibility complex (MHC) class I genes in primates. From three subfamilies of Aotinae, Cebinae, and Atelinae, the 5'-flanking regions of 18 class I genes are obtained and phylogenetically examined in terms of Alu/LINE insertion elements as well as the nucleotide substitutions. Two pairs of genes from Aotinae and Atelinae are clearly orthologous to human leukocyte antigen (HLA) -E and -F genes. Of the remaining 14 genes, 8 belong to the distinct group B, together with HLA-B and -C, to the exclusion of all other HLA class I genes. These NWM genes are classified into four groups, designated as NWM-B1, -B2, -B3, and -B4. Of these, NWM-B2 is orthologous to HLA-B/C. Also, orthologous relationships of NWM-B1, -B2, and -B3 exist among different families of Cebidae and Atelidae, which is in sharp contrast to the genus-specific gene organization within the subfamily Callitrichinae. The other six genes belong to the distinct group G. However, a clade of these NWM genes is almost equally related to HLA-A, -J, -G, and -K, and there is no evidence for their orthologous relationships to HLA-G. It is argued that class I genes in simian primates duplicated extensively in their common ancestral lineage and that subsequent evolution in descendant species has been facilitated mainly by independent loss of genes.  相似文献   

19.

Background  

The vasopressin receptor type 1b (AVPR1B) is mainly expressed by pituitary corticotropes and it mediates the stimulatory effects of AVP on ACTH release; common AVPR1B haplotypes have been involved in mood and anxiety disorders in humans, while rodents lacking a functional receptor gene display behavioral defects and altered stress responses.  相似文献   

20.
In microtine and dwarf hamsters low levels of estrogen receptor alpha (ERα) in the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) play a critical role in the expression of social monogamy in males, which is characterized by high levels of affiliation and low levels of aggression. In contrast, monogamous Peromyscus males display high levels of aggression and affiliative behavior with high levels of testosterone and aromatase activity. Suggesting the hypothesis that in Peromyscus ERα expression will be positively correlated with high levels of male prosocial behavior and aggression. ERα expression was compared within the social neural network, including the posterior medial BST, MeA posterodorsal, medial preoptic area (MPOA), ventromedial hypothalamus (VMH), and arcuate nucleus in two monogamous species, P. californicus and P. polionotus, and two polygynous species, P. leucopus and P. maniculatus. The results supported the prediction, with male P. polionotus and P. californicus expressing higher levels of ERα in the BST than their polygynous counter parts, and ERα expression was sexually dimorphic in the polygynous species, with females expressing significantly more than males in the BST in both polygynous species and in the MeA in P. leucopus. Peromyscus ERα expression also differed from rats, mice and microtines as in neither the MPOA nor the VMH was ERα sexually dimorphic. The results supported the hypothesis that higher levels of ERα are associated with monogamy in Peromyscus and that differential expression of ERα occurs in the same regions of the brains regardless of whether high or low expression is associated with social monogamy. Also discussed are possible mechanisms regulating this differential relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号