首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RTTN (Rotatin) (OMIM 614833) is a large centrosomal protein coding gene. RTTN mutations are responsible for syndromic forms of malformation of brain development, leading to polymicrogyria, microcephaly, primordial dwarfism, seizure along with many other malformations. In this study we have identified a compound heterozygous mutation in RTTN gene having NM_173630 c.5225A > G p.His1742Arg in exon 39 and NM_173630 c.6038G > T p.Cys2013Phe in exon 45 of a consanguineous Saudi family leading to brain malformation, seizure, developmental delay, dysmorphic feature and microcephaly. Whole exome sequencing (WES) techniques was used to identify the causative mutation in the affected members of the family. WES data analysis was done and obtained data were further confirmed by using Sanger sequencing analysis. Moreover, the mutation was ruled out in 100 healthy control from normal population. To the best of our knowledge the novel compound heterozygous mutation observed in this study is the first report from Saudi Arabia. The identified compound heterozygous mutation will further explain the role of RTTN gene in development of microcephaly and neurodevelopmental disorders.  相似文献   

2.
Waardenburg syndrome (WS) is a congenital hereditary disease, attributed to the most common symptoms of sensorineural deafness and iris hypopigmentation. It is also known as the hearing-pigmentation deficient syndrome. Mutations on SOXl0 gene often lead to congenital deafness and has been shown to play an important role in the pathogenesis of WS. We investigated one family of five members, with four patients exhibiting the classic form of WS2, whose DNA samples were analyzed by the technique of Whole-exome sequencing (WES). From analysis of WES data, we found that both the mother and all three children in the family have a heterozygous mutation on the Sex Determining Region Y - Box 10 (SOX10) gene. The mutation was c.298_300delinsGG in exon 2 of SOX10 (NM_006941), which leads to a frameshift of nine nucleotides, hence the amino acids (p. S100Rfs*9) are altered and the protein translation may be terminated prematurely. Further flow cytometry confirmed significant down-regulation of SOX10 protein, which indicated the SOX10 gene mutation was responsible for the pathogenesis of WS2 patients. In addition, we speculated that some other mutated genes might be related to disease phenotype in this family, which might also participate in promoting the progression of WS2.  相似文献   

3.
Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(?)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(?)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex.  相似文献   

4.
Primary microcephaly (MCPH) is a rare developmental defect characterized by impaired cognitive functions, retarded neurodevelopment and reduced brain size. It is genetically heterogeneous and so far more than 17 genes associated with this disease have been identified. Primary microcephaly type 1 (MCPH1) gene encodes a protein called microcephalin, which is implicated in chromosome condensation and DNA damage induced cellular responses. It is suggested to play a role in neurogenesis and regulation of the size of the cerebral cortex. Whole exome sequencing revealed a novel, homozygous frameshift mutation (c.373_374delAA) in MCPH1 gene in exon 5 resulting in frameshift change from p.Lys125Glusfs*7. Our report presents the results of the simultaneous analysis of the trio exome data of both unaffected parents and their affected son. A homozygous frameshift variant in the MCPH1 gene was identified as a plausible candidate causal variant for the clinical phenotype in this family.  相似文献   

5.
6.
Using whole-exome sequencing, we have identified in ten families 14 individuals with microcephaly, developmental delay, intellectual disability, hypotonia, spasticity, seizures, sensorineural hearing loss, cortical visual impairment, and rare autosomal-recessive predicted pathogenic variants in spermatogenesis-associated protein 5 (SPATA5). SPATA5 encodes a ubiquitously expressed member of the ATPase associated with diverse activities (AAA) protein family and is involved in mitochondrial morphogenesis during early spermatogenesis. It might also play a role in post-translational modification during cell differentiation in neuronal development. Mutations in SPATA5 might affect brain development and function, resulting in microcephaly, developmental delay, and intellectual disability.  相似文献   

7.
Acromesomelic dysplasia, type Maroteaux is a disorder characterized by disproportionate short stature predominantly affecting the middle and distal segments of the upper and lower limbs. It is an autosomal recessive disorder due to mutation in NPR2 gene which impairs skeletal growth. To screen the mutations in the gene NPR2, all of its coding exons and splice junction sites were PCR amplified from genomic DNA of affected individuals of four families and sequenced. Four homozygous mutations in four different families were identified. These include three novel mutations including a deletion frameshift mutation (p.Cys586Ter), one nonsense mutation (p.Arg479Ter), one missense mutation (p.Val187Asp) and one reported missense mutation (p.Tyr338Cys). The study describes phenotypes of Indian patients and expands the mutation spectrum of the disorder.  相似文献   

8.
The development of next generation sequencing techniques has facilitated the detection of mutations at an unprecedented rate. These efficient tools have been particularly beneficial for extremely heterogeneous disorders such as autosomal recessive non-syndromic hearing loss, the most common form of genetic deafness. GJB2 mutations are the most common cause of hereditary hearing loss. Amongst them the NM_004004.5: c.506G > A (p.Cys169Tyr) mutation has been associated with varying severity of hearing loss with unclear segregation patterns. In this study, we report a large consanguineous Emirati family with severe to profound hearing loss fully segregating the GJB2 missense mutation p.Cys169Tyr. Whole exome sequencing (WES), in silico, splicing and expression analyses ruled out the implication of any other variants and confirmed the implication of the p.Cys169Tyr mutation in this deafness family. We also show preliminary murine expression analysis that suggests a link between the TMEM59 gene and the hearing process. The present study improves our understanding of the molecular pathogenesis of hearing loss. It also emphasizes the significance of combining next generation sequencing approaches and segregation analyses especially in the diagnosis of disorders characterized by complex genetic heterogeneity.  相似文献   

9.
In this study, we have performed autozygosity mapping on a large consanguineous Pakistani family segregating with intellectual disability. We identified two large regions of homozygosity-by-descent (HBD) on 16q12.2–q21 and 16q24.1–q24.3. Whole exome sequencing (WES) was performed on an affected individual from the family, but initially, no obvious mutation was detected. However, three genes within the HBD regions that were not fully captured during the WES were Sanger sequenced and we identified a five base pair deletion (actually six base pairs deleted plus one base pair inserted) in exon 7 of the gene FBXO31. The variant segregated completely in the family, in recessive fashion giving a LOD score of 3.95. This variant leads to a frameshift and a premature stop codon and truncation of the FBXO31 protein, p.(Cys283Asnfs*81). Quantification of mRNA and protein expression suggests that nonsense-mediated mRNA decay also contributes to the loss of FBXO31 protein in affected individuals. FBXO31 functions as a centrosomal E3 ubiquitin ligase, in association with SKP1 and Cullin-1, involved in ubiquitination of proteins targeted for degradation. The FBXO31/SKP1/Cullin1 complex is important for neuronal morphogenesis and axonal identity. FBXO31 also plays a role in dendrite growth and neuronal migration in developing cerebellar cortex. Our finding adds further evidence of the involvement of disruption of the protein ubiquitination pathway in intellectual disability.  相似文献   

10.
Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration.  相似文献   

11.
12.
Heparan and chondroitin/dermatan sulfated proteoglycans have a wide range of roles in cellular and tissue homeostasis including growth factor function, morphogen gradient formation, and co-receptor activity. Proteoglycan assembly initiates with a xylose monosaccharide covalently attached by either xylosyltransferase I or II. Three individuals from two families were found that exhibited similar phenotypes. The index case subjects were two brothers, individuals 1 and 2, who presented with osteoporosis, cataracts, sensorineural hearing loss, and mild learning defects. Whole exome sequence analyses showed that both individuals had a homozygous c.692dup mutation (GenBank: NM_022167.3) in the xylosyltransferase II locus (XYLT2) (MIM: 608125), causing reduced XYLT2 mRNA and low circulating xylosyltransferase (XylT) activity. In an unrelated boy (individual 3) from the second family, we noted low serum XylT activity. Sanger sequencing of XYLT2 in this individual revealed a c.520del mutation in exon 2 that resulted in a frameshift and premature stop codon (p.Ala174Profs35). Fibroblasts from individuals 1 and 2 showed a range of defects including reduced XylT activity, GAG incorporation of 35SO4, and heparan sulfate proteoglycan assembly. These studies demonstrate that human XylT2 deficiency results in vertebral compression fractures, sensorineural hearing loss, eye defects, and heart defects, a phenotype that is similar to the autosomal-recessive disorder spondylo-ocular syndrome of unknown cause. This phenotype is different from what has been reported in individuals with other linker enzyme deficiencies. These studies illustrate that the cells of the lens, retina, heart muscle, inner ear, and bone are dependent on XylT2 for proteoglycan assembly in humans.  相似文献   

13.
The diagnosis of childhood neurological disorders remains challenging given the overlapping clinical presentation across subgroups and heterogeneous presentation within subgroups. To determine the underlying genetic cause of a severe neurological disorder in a large consanguineous Pakistani family presenting with severe scoliosis, anarthria and progressive neuromuscular degeneration, we performed genome-wide homozygosity mapping accompanied by whole-exome sequencing in two affected first cousins and their unaffected parents to find the causative mutation. We identified a novel homozygous splice-site mutation (c.3512+1G>A) in the ALS2 gene (NM_020919.3) encoding alsin that segregated with the disease in this family. Homozygous loss-of-function mutations in ALS2 are known to cause juvenile-onset amyotrophic lateral sclerosis (ALS), one of the many neurological conditions having overlapping symptoms with many neurological phenotypes. RT-PCR validation revealed that the mutation resulted in exon-skipping as well as the use of an alternative donor splice, both of which are predicted to cause loss-of-function of the resulting proteins. By examining 216 known neurological disease genes in our exome sequencing data, we also identified 9 other rare nonsynonymous mutations in these genes, some of which lie in highly conserved regions. Sequencing of a single proband might have led to mis-identification of some of these as the causative variant. Our findings established a firm diagnosis of juvenile ALS in this family, thus demonstrating the use of whole exome sequencing combined with linkage analysis in families as a powerful tool for establishing a quick and precise genetic diagnosis of complex neurological phenotypes.  相似文献   

14.
Proteoglycan (PG) synthesis begins with the sequential addition of a “linker chain”, made up of four sugar residues, to a specific region of a core protein. Defects in the enzymes catalyzing steps two to four of the linker chain synthesis have been shown to cause autosomal recessive human phenotypes while no mutation has yet been reported in humans for the xylosyltransferases 1 and 2 (XT1 and XT2), the initiating enzymes in the linker chain formation. Here, we present a consanguineous Turkish family with two affected individuals presenting with short stature, distinct facial features, alterations of fat distribution, and moderate intellectual disability. X-rays showed only mild skeletal changes in the form of a short femoral neck, stocky and plump long bones and thickened ribs. Using a combination of whole-exome sequencing (WES), determination of homozygous stretches by WES variants, and classical linkage analysis, we identified the homozygous missense mutation c.C1441T in XYLT1, encoding XT1, within a large homozygous stretch on chromosome 16p13.12-p12.1. The mutation co-segregated with the phenotype in the family, is not found in over 13,000 alleles in the exome variant server and is predicted to change a highly conserved arginine at position 481 (p.R481W) located in the putative catalytical domain. Immunostaining of primary patient fibroblasts showed a loss of predominance of Golgi localization in mutant cells. Moreover, western blot analysis of decorin in cell culture supernatant demonstrated glycosylation differences between patient and control cells. Our data provide evidence that functional alterations of XT1 cause an autosomal recessive short stature syndrome associated with intellectual disability.  相似文献   

15.
Background:Junctional epidermolysis bullosa (JEB) is an autosomal recessive skin disorder with defective adhesion of dermal- epidermal within the lamina lucida region of the basement membrane zone. The main characterization of JEB is blistering and fragile skin and mucous membrane. Laminins are noncollagenous part of basement membrane and classified as a family of extracellular matrix glycoprotein. Laminins contain three chains: Laminin α, Laminin β and Laminin γ. LAMC2 (laminin subunit gamma 2) gene encodes γ subunit of laminin and its mutation contributes to JEB. Here, we report a disease-causing nonsense mutation and a large deletion mutation in LAMC2 gene in two families affected by JEB.Methods:Whole exome sequencing (WES) was carried out on the mother of patient in family I and the patient himself in family II to detect the underlying mutations. Then, sanger sequencing was performed to confirm the identified mutations.Results:Next generation sequencing (NGS) data analysis of the first family showed a novel, nonsense mutation in LAMC2 gene (LAMC2: NM_005562: exon14:c.C2143T: p.R715X). The heterozygous state of the mutation was confirmed by sanger sequencing in the parents and unaffected brother. In Family II, NGS data had no coverage in the large area of LAMC2 gene. Thus, to confirm the possible deletion sanger sequencing was done and blasting of sequence showed the deleted region of 9.4 kb (exon10-17) in LAMC2 gene.Conclusion:In summary, current study reported a novel disease-causing premature termination codon (PTC) mutation in LAMC2 gene and a large deletion mutation in patients affected by JEB.Key Words: Junctional Epidermolysis Bullosa, LAMC2 gene, Novel mutation, Skin disorder  相似文献   

16.

Background

Most mitochondrial and cytoplasmic aminoacyl-tRNA synthetases (aaRSs) are encoded by nuclear genes. Syndromic disorders resulting from mutation of aaRSs genes display significant phenotypic heterogeneity. We expand aaRSs-related phenotypes through characterization of the clinical and molecular basis of a novel autosomal-recessive syndrome manifesting severe mental retardation, ataxia, speech impairment, epilepsy, short stature, microcephaly, hypogonadism, and growth hormone deficiency.

Results

A G>A variant in exon 29 of VARS2 (c.3650G>A) (NM_006295) was identified in the index case. This homozygous variant was confirmed by Sanger sequencing and segregated with disease in the family studied. The c.3650G>A change results in alteration of arginine to histidine at residue 1217 (R1217H) of the mature protein and is predicted to be pathogenic.

Conclusions

These findings contribute to a growing list of aaRSs disorders, broadens the spectrum of phenotypes attributable to VARS2 mutations, and provides new insight into genotype-phenotype correlations among the mitochondrial synthetase genes.
  相似文献   

17.
18.
Hairy Elbows Syndrome (Hypertrichosis Cubiti; OMIM# 139600) is a rare syndrome, and characterized by the presence of long vellus hair localized on the extensor surfaces of the distal third of the arms and proximal third of the forearm bilaterally. Occasionally hypertrichosis of other body regions may accompany hairy elbows. About half of the reported patients have short stature. Aside from short stature other relatively rare abnormalities related with this syndrome were also described. Most of the reported cases were sporadic, but autosomal dominant as well as autosomal recessive inheritance patterns have also been postulated. In this report, we present a girl with Hairy Elbows syndrome who has both characteristic and uncommon findings of the syndrome. She has excessive hair on her elbows, along with short stature, microcephaly, joint hyperlaxity, thin-long-webbed neck, dysmorphic facial features and mental retardation.  相似文献   

19.

Background

Noonan syndrome (NS) and Noonan syndrome with multiple lentigines (NSML) are autosomal dominant developmental disorders. NS and NSML are caused by abnormalities in genes that encode proteins related to the RAS-MAPK pathway, including PTPN11, RAF1, BRAF, and MAP2K. In this study, we diagnosed ten NS or NSML patients via targeted sequencing or whole exome sequencing (TS/WES).

Methods

TS/WES was performed to identify mutations in ten Chinese patients who exhibited the following manifestations: potential facial dysmorphisms, short stature, congenital heart defects, and developmental delay. Sanger sequencing was used to confirm the suspected pathological variants in the patients and their family members.

Results

TS/WES revealed three mutations in the PTPN11 gene, three mutations in RAF1 gene, and four mutations in BRAF gene in the NS and NSML patients who were previously diagnosed based on the abovementioned clinical features. All the identified mutations were determined to be de novo mutations. However, two patients who carried the same mutation in the RAF1 gene presented different clinical features. One patient with multiple lentigines was diagnosed with NSML, while the other patient without lentigines was diagnosed with NS. In addition, a patient who carried a hotspot mutation in the BRAF gene was diagnosed with NS instead of cardiofaciocutaneous syndrome (CFCS).

Conclusions

TS/WES has emerged as a useful tool for definitive diagnosis and accurate genetic counseling of atypical cases. In this study, we analyzed ten Chinese patients diagnosed with NS and related disorders and identified their correspondingPTPN11, RAF1, and BRAF mutations. Among the target genes, BRAF showed the same degree of correlation with NS incidence as that of PTPN11 or RAF1.
  相似文献   

20.
Lamellar ichthyosis (LI, OMIM no. 242300) is a severe autosomal recessive genodermatosis with an estimated prevalence of 1:200,000. LI represents one end of the spectrum of congenital recessive ichthyosis (CRI). Mutations in the gene for transglutaminase-1 (TGM1) are responsible for many cases of LI and occur throughout the coding sequence of the gene. Our analyses of patients with CRI revealed a common TGM1 mutation involving loss of the intron 5 splice acceptor site leading to alternative splicing of the message. We found families in which the splice acceptor site mutation was homozygous, and families where the patients were compound heterozygotes for the splice acceptor site mutation and another TGM1 mutation. A mutation at this same site occurs in the majority of Norwegian patients as a founder effect. In our ethnically diverse patient population, none of whom have known Norwegian ancestry, haplotype analysis of the TGM1 chromosomal region also suggested the existence of a founder effect. Comparison of the common haplotype in our data with the Norwegian data showed that 2/7 of our splice acceptor site mutation chromosomes had the full reported Norwegian haplotype, and the remaining five chromosomes exhibited recombination at the most distal marker studied. History, family origins, and haplotype analysis suggested that the mutation originally arose on a German background and was introduced into Norway around 800-1000 AD. We also found a limited correlation between genotype and phenotype in our study, with the four homozygous patients having less severe disease than many of the heterozygotes, and no patient with a splice acceptor site mutation having erythroderma or a congenital ichthyosiform erythroderma phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号