首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population structure of Anopheles gambiae in Africa was studied using 11 microsatellite loci in 16 samples from 10 countries. All loci are located outside polymorphic inversions. Heterogeneity among loci was detected and two putative outlier loci were removed from analyses aimed at capturing genome-wide patterns. Two main divisions of the gene pool were separated by high differentiation (F(ST) > 0.1). The northwestern (NW) division included populations from Senegal, Ghana, Nigeria, Cameroon, Gabon, Democratic Republic of Congo (DRC), and western Kenya. The southeastern (SE) division included populations from eastern Kenya, Tanzania, Malawi, and Zambia. Inhospitable environments for A. gambiae along the Rift Valley partly separate these divisions. Reduced genetic diversity in the SE division and results of an analysis based on private alleles support the hypothesis that a recent bottleneck, followed by colonization from the NW populations shaped this structure. In the NW division, populations possessing the M rDNA genotype appeared to form a monophyletic clade. Although genetic distance increased with geographic distance, discontinuities were suggested between certain sets of populations. The absence of heterozygotes between sympatric M and S populations in the DRC and the high differentiation in locus 678 (F(ST)>0.28) contrasted with low differentiation in all other loci (-0.02相似文献   

2.
Members of the Anopheles gambiae complex are major malaria vectors in Africa. We tested the hypothesis that the range and relative abundance of the two major vectors in the complex, An. gambiae sensu stricto and An. arabiensis, could be defined by climate. Climate was characterized at mosquito survey sites by extracting data for each location from climate surfaces using a Geographical Information System. Annual precipitation, together with annual and wet season temperature, defined the ranges of both vectors and were used to map suitable climate zones. Using data from West Africa, we found that where the species were sympatric, An. gambiae s.s. predominated in saturated environments, and An. arabiensis was more common in sites subject to desiccation (r2 = 0.875, p < 0.001). We used the nonlinear equation that best described this relationship to map habitat suitability across Africa. This simple model predicted accurately the relative abundance of both vectors in Tanzania (rs = 0.745, p = 0.002), where species composition is highly variable. The combined maps of species'' range and relative abundance showed very good agreement with published maps. This technique represents a new approach to mapping the distribution of malaria vectors over large areas and may facilitate species-specific vector control activities.  相似文献   

3.
ABSTRACT: BACKGROUND: The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. METHODS: Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. RESULTS: A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. CONCLUSIONS: Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities.  相似文献   

4.
A dual port olfactometer was used to study the response of Anopheles gambiae Giles sensu stricto to odours of human and animal origin. Human odour consisted of human skin emanations collected on a nylon stocking, which was worn for 24 h. This was tested alone or together with 4.5% carbon dioxide, the concentration in human and cattle breath. Cattle odours consisted of cow skin emanations and/or carbon dioxide. Cow skin emanations were collected by tying a nylon stocking ('cow sock') around the hind leg of a cow for 12 h. Anopheles gambiae s.s. was consistently highly attracted by human odour, which is consistent with the high degree of anthropophily in this mosquito. Anopheles gambiae s.s. was not attracted by human or cattle equivalent volumes of carbon dioxide and this gas did not enhance the effect of human skin residues. Furthermore, A. gambiae s.s. showed a high degree of aversion to cow odour. When human odour and cow odour were tested together in the same port, mosquitoes were still highly attracted, indicating that whilst cattle odour may deter A. gambiae s.s., these mosquitoes can detect human odour in the presence of cattle odour. It was concluded that carbon dioxide plays a minor role in the host seeking behaviour of A. gambiae s.s., whilst host specific cues such as human skin residues play a major role and very effectively demonstrated anthropophilic behaviour in the laboratory.  相似文献   

5.
6.
Global warming may affect the future pattern of many arthropod-borne diseases, yet the relationship between temperature and development has been poorly described for many key vectors. Here the development of the aquatic stages of Africa's principal malaria vector, Anopheles gambiae s.s. Giles, is described at different temperatures. Development time from egg to adult was measured under laboratory conditions at constant temperatures between 10 and 40 degrees C. Rate of development from one immature stage to the next increased at higher temperatures to a peak around 28 degrees C and then declined. Adult development rate was greatest between 28 and 32 degrees C, although adult emergence was highest between 22 and 26 degrees C. No adults emerged below 18 degrees C or above 34 degrees C. Non-linear models were used to describe the relationship between developmental rate and temperature, which could be used for developing process-based models of malaria transmission. The utility of these findings is demonstrated by showing that a map where the climate is suitable for the development of aquatic stages of A. gambiae s.s. corresponded closely with the best map of malaria risk currently available for Africa.  相似文献   

7.
Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance phenotype in malaria vectors.  相似文献   

8.
9.
Host preference and blood feeding are restricted to female mosquitoes. Olfaction plays a major role in host-seeking behaviour, which is likely to be associated with a subset of mosquito olfactory genes. Proteins involved in olfaction include the odorant receptors (ORs) and the odorant-binding proteins (OBPs). OBPs are thought to function as a carrier within insect antennae for transporting odours to the olfactory receptors. Here we report the annotation of 32 genes encoding putative OBPs in the malaria mosquito Anopheles gambiae and their tissue-specific expression in two mosquito species of the Anopheles complex; a highly anthropophilic species An. gambiae sensu stricto and an opportunistic, but more zoophilic species, An. arabiensis. RT-PCR shows that some of the genes are expressed mainly in head tissue and a subset of these show highest expression in female heads. One of the genes (agCP1588) which has not been identified as an OBP, has a high similarity (40%) to the Drosophila pheromone-binding protein 4 (PBPRP4) and is only expressed in heads of both An. gambiae and An. arabiensis, and at higher levels in female heads. Two genes (agCP3071 and agCP15554) are expressed only in female heads and agC15554 also shows higher expression levels in An. gambiae. The expression profiles of the genes in the two members of the Anopheles complex provides the first step towards further molecular analysis of the mosquito olfactory apparatus.  相似文献   

10.
Behavioural and electrophysiological responses of Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) to human skin emanations collected on glass beads were studied using a dual-port olfactometer and electroantannography. Glass beads to which skin emanations from human hands had been transferred elicited a level of attraction similar to a human hand. The attractiveness of these handled glass beads faded away 4 h after transfer onto the beads. Storage at -20 degrees C for up to 8 weeks showed a decreased but still attractive effect of the beads. In a choice test between one individual and four others, the emanations from the reference individual were significantly more attractive in three out of four cases. The headspace of handled glass beads elicited a dose-dependent EAG response. The substances causing EAG activity could be removed partially by dichloromethane, ethanol and pentane-ether. Glass beads provide a suitable neutral substrate for the transfer of human odour to enable chemical analysis of the human skin emanations for identification of kairomones of anthropophilic mosquitoes.  相似文献   

11.
Anopheles gambiae Giles s.s. and Anopheles arabiensis Patton (Diptera: Culicidae) are major vectors of malaria in Nigeria. We used 1115 bp of the mitochondrial COI gene to assess their population genetic structures based on samples from across Nigeria (n = 199). The mtDNA neighbour-joining tree, based on F(ST) estimates, separated An. gambiae M and S forms, except that samples of An. gambiae M from Calabar clustered with all the An. gambiae S form. Anopheles arabiensis and An. gambiae could be combined into a single star-shaped, parsimonious haplotype network, and shared three haplotypes. Haplotype diversity values were high in An. arabiensis and An. gambiae S, and intermediate in An. gambiae M; all nucleotide diversities were relatively low. Taken together, patterns of haplotype diversity, the star-like genealogy of haplotypes, five of seven significant neutrality tests, and the violation of the isolation-by-distance model indicate population expansion in An. arabiensis and An. gambiae S, but the signal was weak in An. gambiae M. Selection is supported as an important factor shaping genetic structure in An. gambiae in Nigeria. There were two geographical subdivisions in An. arabiensis: one included all southern localities and all but two central localities; the other included all northern and two central localities. Re-analysing an earlier microsatellite dataset of An. arabiensis using a Bayesian method determined that there were two distinctive clusters, northern and southern, that were fairly congruent with the mtDNA subdivisions. There was a trend towards decreasing genetic diversity in An. arabiensis from the northern savannah to the southern rainforest that corroborated previous data from microsatellites and polytene chromosomes.  相似文献   

12.
Gene flow in malaria vectors is usually estimated based on differentiation indices (e.g., F(ST)) in order to predict the contemporary spread of genes such as those conferring resistance to insecticides. This approach is reliant on a number of assumptions, the most crucial, and the one most likely to be violated in these species, being mutation-migration-drift equilibrium. Tests of this assumption for the African malaria vectors Anopheles gambiae and Anopheles arabiensis are the focus of this study. We analyzed variation at 18 microsatellite loci and the ND5 region of the mitochondrial genome in two populations of each species. Equilibrium was rejected by six of eight tests for the A. gambiae population from western Kenya and by three tests in eastern Kenya. In western Kenya, all departures from equilibrium were consistent with a recent population expansion, but in eastern Kenya, there were traces of a recent expansion and a bottleneck. Equilibrium was also rejected by two of the eight tests for both A. arabiensis populations; the departure from equilibrium was consistent with an expansion. These multiple-locus tests detected a genomewide effect and therefore a demographic event rather than a locus-specific effect, as would be caused by selection. Disequilibrium due to a recent expansion in these species implies that rates of gene flow, as inferred from differentiation indices, are overestimates as they include a historical component. We argue that the same effect applies to the majority of pest species due to the correlation of their demography with that of humans.  相似文献   

13.
Anopheles gambiae sensu stricto Giles (Diptera: Culicidae) is the main malaria vector in sub‐Saharan Africa. Mated females show a circadian rhythm of spontaneous activity under constant environmental conditions that extends across the scotophase (subjective night). The effect of host‐associated cues [i.e. human foot odour supplemented with carbon dioxide (CO2)] on this nocturnal activity pattern is studied in laboratory‐reared A. gambiae s.s. M molecular form. Sixteen mated females (5–10 days old) are held in individual chambers (diameter 3.5 cm, length 4.5 cm) in a wind‐tunnel with a continuous flow (8.0 cm s?1) of clean air. At the onset of hours 3, 6 and 10 of the scotophase, their behaviour is recorded on video for 15 min in clean moving air and then for the next 15 min, with a specific treatment present in the clean airstream: (i) constant CO2 (4.8%) plus human odour; (ii) pulsed CO2 (5 s of every 30 s) plus human odour or (iii) control (clean air). Activities of individual mosquitoes are scored by direct observation of the video records for the incidents of ‘resting’, ‘walking’, ‘jumping’ and ‘flying’ in each of the 15‐min observation periods. There is a significant interaction between hour and treatment on mean changes in female activity level (P = 0.00004). Constant treatment increases the level of activity of A. gambiae females significantly, although only in hour 3 of the scotophase (P < 0.01), whereas pulsed and control treatments show no significant effect throughout the scotophase. Patterns of spontaneous activity in individual A. gambiae females thus appear to be modulated by host‐associated cues, resulting in a more active phase early in the night than might be expected from records of spontaneous activity under constant environmental conditions. Possible ecological and experimental implications of such an increase in activity are discussed in relation to host‐seeking behaviour.  相似文献   

14.

Background

Agricultural pesticides may play a profound role in selection of resistance in field populations of mosquito vectors. The objective of this study is to investigate possible links between agricultural pesticide use and development of resistance to insecticides by the major malaria vector Anopheles arabiensis in northern Sudan.

Methodology/Principal Findings

Entomological surveys were conducted during two agricultural seasons in six urban and peri-urban sites in Khartoum state. Agro-sociological data were collected from 240 farmers subjected to semi-structured questionnaires based on knowledge attitude and practice (KAP) surveys. Susceptibility status of An. arabiensis (n=6000) was assessed in all sites and during each season using WHO bioassay tests to DDT, deltamethrin, permethrin, Malathion and bendiocarb. KAP analysis revealed that pesticide application was common practice among both urban and peri-urban farmers, with organophosphates and carbamates most commonly used. Selection for resistance is likely to be greater in peri-urban sites where farmers apply pesticide more frequently and are less likely to dispose of surpluses correctly. Though variable among insecticides and seasons, broad-spectrum mortality was slightly, but significantly higher in urban than peri-urban sites and most marked for bendiocarb, to which susceptibility was lowest. Anopheles arabiensis from all sites showed evidence of resistance or suspected resistance, especially pyrethroids. However, low-moderate frequencies of the L1014F kdr allele in all sites, which was very strongly associated with DDT, permethrin and deltamethrin survivorship (OR=6.14-14.67) suggests that resistance could increase rapidly.

Conclusions

Ubiquitous multiple-resistance coupled with presence of a clear mechanism for DDT and pyrethroids (kdr L1014F) in populations of An. arabiensis from Khartoum-Sudan suggests careful insecticide management is essential to prolong efficacy. Our findings are consistent with agricultural insecticide use as a source of selection for resistance and argue for coordination between the integrated vector control program and the Ministry of Agriculture to permit successful implementation of rational resistance management strategies.  相似文献   

15.
The relative efficacy of a mechanical (Prokopack) collection method vs. manual aspiration in the collection of resting mosquitoes was evaluated in northern Tanzania before and after an intervention using indoor residual spraying and longlasting insecticide‐treated nets. In smoke‐free houses mosquitoes were collected from the roof and walls, but in smoky houses mosquitoes were found predominantly on the walls. Anopheles gambiae (Diptera: Culicidae) constituted 97.7% of the 312 An. gambiae complex specimens identified before but only 19.3% of the 183 identified after the intervention. A single sampling with the Prokopack collected a third of the available insects. Anopheles gambiae completed its gonotrophic development indoors, whereas Anopheles arabiensis did so outdoors. In both species gonotrophic development took 2 days. Most unfed resting An. arabiensis collected outdoors were virgins, whereas the majority of engorged insects were parous (with well‐contracted sacs). Daily survival was estimated to be 80.0%. Only 9.4% of the engorged An. arabiensis collected outdoors and 47.1% of those collected indoors had fed on humans. Using the Prokopack sampler is more efficient than manual methods for the collection of resting mosquitoes. Malaria transmission may have been affected by a change in vector composition resulting from a change in feeding, rather than reduced survival. Monitoring the proportions of members of the An. gambiae complex may provide signals of an impending breakdown in control.  相似文献   

16.
Anopheles gambiae larvae have frequently been observed to dive, but the ecology of this behavior has not been extensively examined. We manipulated food level, water depth, and temperature for individually‐reared larvae and observed diving activity. Larvae dived more often under low food, which suggests that they dive to forage. There was only weak evidence for effects of water depth or temperature on diving. Experimental results are discussed in the context of energy budgets. Understanding larval ecology of this species is important for predicting how it will respond to environmental change. Further study is needed to assess the role that larval diving plays in both feeding ecology and thermal regulation of this and other medically important species.  相似文献   

17.
Abstract. Differential responses of the mosquitoes Anopheles arabiensis and An. gambiae sensu stricto to house-spraying with DDT or lambda-cyhalothrin were evaluated in relation to chromosomal inversion polymorphism, feeding and resting behaviour of these malaria vectors in Tanzania. Blood-fed mosquitoes from pit traps outdoors, exit traps on windows and indoor-resting catches were identified cytogenetically and the chromosomal inversion frequencies compared between samples and species. Their outdoor-resting behaviour was assessed by a mark–release–recapture experiment and by determining the proportion of freshly blood-fed individuals in exit traps. The source of bloodmeals was analysed by an ELISA method. Endophagic females of An. arabiensis were more likely than those of An. gambiae to exit from a house on the night of blood-feeding. Only in one out of three villages was there evidence that chromosomally distinct individuals within a species had different preferences for resting sites. There were indications, but not conclusive evidence, that mosquitoes caught indoors or outdoors had a tendency to return to the same type of resting site. In villages sprayed with either insecticide, the mean age of the vector populations was greatly reduced, compared with those in the unsprayed villages. An. arabiensis females exited from DDT sprayed houses after blood-feeding, whereas with lambda-cyhalothrin those exiting were mostly unfed and there was a decline in the human blood index. The excitorepellency of DDT was perceived as a disadvantage, whereas lambda-cyhalothrin apparently had more impact on malaria transmission by An. arabiensis.  相似文献   

18.
The emergence of insecticide resistance in Anopheles (Diptera: Culicidae) mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and the frequency of knock‐down resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and Anopheles gambiae Giles from the Ojoo and Bodija areas of Ibadan, in southwest Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using World Health Organization (WHO) bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification; kdr genotyping was determined using the TaqMan real‐time polymerase chain reaction assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodija samples (n = 186) consisted of An. gambiae (91.4%) and An. coluzzii (8.1%) and included one An. coluzzii/An. gambiae hybrid specimen. All mosquitoes screened in Ojoo (n = 26) were An. gambiae. The 1014F kdr mutation was detected at frequencies of 24.5 and 5.8% in Bodija and Ojoo, respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the development of resistance and highlight the need to implement insecticide resistance management strategies.  相似文献   

19.
Benin has embraced World Health Organization-recommended preventive strategies to control malaria. Its National Malaria Control Programme is implementing and/or coordinating various actions and conducting evaluation trials of mosquito control strategies. Mosquito control is based on the use of insecticide-treated nets and indoor residual spraying, but the efficacy of these strategies to control malaria vectors is endangered by insecticide resistance. Here, we present the results of a nationwide survey on the status of insecticide susceptibility and resistance in Anopheles gambiae s.l. (Diptera: Culicidae) carried out in Benin in 2006-2007 (i.e. before extensive vector control was undertaken). Overall, our study showed that the S molecular form of An. gambiae s.s. predominates and is widely distributed across the country, whereas the frequency of the M form shows a strong decline with increasing latitude. Susceptibility to DDT, permethrin, carbosulfan and chlorpyrifos-methyl was assessed; individual mosquitoes were identified for species and molecular forms, and genotyped for the kdr and ace-1 loci. Full susceptibility to chlorpyrifos-methyl was recorded and very few samples displayed resistance to carbosulfan. High resistance levels to permethrin were detected in most samples and almost all samples displayed resistance to DDT. The kdr-Leu-Phe mutation was present in all localities and in both molecular forms of An. gambiae s.s. Furthermore, the ace-1(R) mutation was predominant in the S form, but absent from the M form. By contrast, no target modification was observed in Anopheles arabiensis. Resistance in the An. gambiae S molecular form in this study seemed to be associated with agricultural practices. Our study showed important geographic variations which must be taken into account in the vector control strategies that will be applied in different regions of Benin. It also emphasizes the need to regularly monitor insecticide resistance across the country and to adapt measures to manage resistance.  相似文献   

20.
A colony of Anopheles arabiensis Patton (Diptera: Culicidae) from the Sennar region of Sudan was selected for resistance to dichlorodiphenyltrichloroethane (DDT). Adults from the F-16 generation of the resistant strain were exposed to all four classes of insecticides approved for use in malaria vector control and showed high levels of resistance to them all (24-h mortalities: malathion, 16.7%; bendiocarb, 33.3%; DDT, 12.1%; dieldrin, 0%; deltamethrin, 24.0%; permethrin, 0%). Comparisons between the unselected base colony and the DDT-resistant strain showed elevated glutathione-S-transferase (P<0.05) in both sexes and elevated esterases (P<0.05) in males only. The Leu-Phe mutation in the sodium channel gene was detected by polymerase chain reaction and sequencing, but showed no correlation with the resistant phenotype. These results do not provide any explanation as to why this colony exhibits such widespread resistance and further studies are needed to determine the precise mechanisms involved. The implications for malaria vector control in central Sudan are serious and resistance management (e.g. through the rotational use of different classes of insecticides) is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号