首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fungal biology》2020,124(10):845-853
The genus Metarhizium is composed of entomopathogenic fungal biological control agents (BCAs) used for invertebrate pest control. The phylogenetic relationships of species within this genus are still under scrutiny as several cryptic species can be found. In this work, the mitochondrial (mt) genome of Metarhizium brunneum ARSEF 4556 was fully sequenced and a comparative genome analysis was conducted with 7 other available mt genomes, belonging to 5 Metarhizium species: M. anisopliae, M. brunneum, M. robertsii, M. guizhouense and M. majus. Results showed that Metarhizium demonstrates greater conserved stability than other fungal mt genomes. Furthermore, this analysis located 7 diverse regions in both intergenic domains and gene fragments which were ideal for species/strain discrimination. The sequencing of these regions revealed several SNPs among 38 strains tested, 11 of which were uncharacterized. Single gene phylogenies presented variable results which may be used further for intra-species discrimination. Phylogenetic trees based on the concatenation of mt domains and the nuclear ITS1-5.8S-ITS2 region showed discrimination of the species studied and allowed the identification of uncharacterized strains. These were mostly placed within species M. anisopliae and M. brunneum. Five strains clustered together in a clade related to M. brunneum, suggesting that they comprise a cryptic species.  相似文献   

2.
An effective DNA marker for authenticating the genus Salvia was screened using seven DNA regions (rbcL, matK, trnL–F, and psbA–trnH from the chloroplast genome, and ITS, ITS1, and ITS2 from the nuclear genome) and three combinations (rbcL + matK, psbA–trnH + ITS1, and trnL–F + ITS1). The present study collected 232 sequences from 27 Salvia species through DNA sequencing and 77 sequences within the same taxa from the GenBank. The discriminatory capabilities of these regions were evaluated in terms of PCR amplification success, intraspecific and interspecific divergence, DNA barcoding gaps, and identification efficiency via a tree-based method. ITS1 was superior to the other marker for discriminating between species, with an accuracy of 81.48%. The three combinations did not increase species discrimination. Finally, we found that ITS1 is a powerful barcode for identifying Salvia species, especially Salvia miltiorrhiza.  相似文献   

3.

Background

Multilocus PCR coupled with electrospray ionization mass spectrometry (PCR/ESI-MS) is a new strategy for pathogen identification, but information about its application in fungal identification remains sparse.

Methods

One-hundred and twelve strains and isolates of clinically important fungi and Prototheca species were subjected to both rRNA gene sequencing and PCR/ESI-MS. Three regions of the rRNA gene were used as targets for sequencing: the 5′ end of the large subunit rRNA gene (D1/D2 region), and the internal transcribed spacers 1 and 2 (ITS1 and ITS2 regions). Microbial identification (Micro ID), acquired by combining results of phenotypic methods and rRNA gene sequencing, was used to evaluate the results of PCR/ESI-MS.

Results

For identification of yeasts and filamentous fungi, combined sequencing of the three regions had the best performance (species-level identification rate of 93.8% and 81.8% respectively). The highest species-level identification rate was achieved by sequencing of D1/D2 for yeasts (92.2%) and ITS2 for filamentous fungi (75.8%). The two Prototheca species could be identified to species level by D1/D2 sequencing but not by ITS1 or ITS2. For the 102 strains and isolates within the coverage of PCR/ESI-MS identification, 87.3% (89/102) achieved species-level identification, 100% (89/89) of which were concordant to Micro ID on species/complex level. The species-level identification rates for yeasts and filamentous fungi were 93.9% (62/66) and 75% (27/36) respectively.

Conclusions

rRNA gene sequencing provides accurate identification information, with the best results obtained by a combination of ITS1, ITS2 and D1/D2 sequencing. Our preliminary data indicated that PCR/ESI-MS method also provides a rapid and accurate identification for many clinical relevant fungi.  相似文献   

4.
《Mycoscience》2020,61(5):219-225
Improved understanding of mycorrhizal diversity in mycoheterotrophic (MH) plants is a key element of studies that investigate their evolution. MH plants are completely dependent on their mycorrhizal fungi for carbon. Mycorrhizal fungi of the MH genus Yoania (Orchidaceae), which is distributed in East Asia, have yet to be identified. We identified the mycobionts of three Japanese Yoania species, Y. amagiensis, Y. flava, and Y. japonica, by sequencing the internal transcribed spacer regions of nuclear ribosomal DNA. The sequences obtained were assigned to five operational taxonomic units (OTUs), among which four belonged to the genus Physisporinus (Meripilaceae, Polyporales) and one to Thelephoraceae. Yoania flava and Y. japonica were specifically associated with a single OTU of Physisporinus, while Y. amagiensis was associated with four Physisporinus OTUs. A phylogenetic analysis showed that fungal sequences from species of two other MH orchid genera, Cyrtosia and Galeola, also belonged to Physisporinus and were closely related to the Yoania mycobionts. This is the first study to report that (i) wood-rotting Physisporinus fungi form mycorrhizae with plant species, and (ii) have an important role in orchid mycoheterotrophy.  相似文献   

5.
6.
《Fungal biology》2022,126(1):75-81
Mycoviruses may influence the pathogenicity of disease-causing fungi. Although mycoviruses have been found in some chytrid fungi, limited testing has not detected them in Batrachochytrium dendrobatidis (Bd), the cause of the devastating amphibian disease, chytridiomycosis. Here we conducted a survey for mycovirus presence in 38 Bd isolates from Australia (n = 31), Brazil (n = 5) and South Korea (n = 2) with a combination of modern high-throughput sequencing and conventional dsRNA cellulose chromatography. Mycoviruses were not detected in any isolates. This result was unexpected, given the long evolutionary history of Bd, as well as the high prevalence of mycoviruses in related fungal species. Given our widespread sampling in Australia and the limited number of Bd introductions, we suggest that mycoviruses are uncommon or absent from Australian Bd. Testing more isolates from regions where Bd originated, as well as regions with high diversity or low fungal virulence may identify mycoviruses that could aid in disease control.  相似文献   

7.
Isolates of the most important Puccinia species that have been reported on Chrysanthemum × morifolium were collected and the sequences of their ribosomal DNA internal transcribed spacers ITS1 and ITS2 were determined and used as phylogenetic markers. The focus of this study was on Puccinia horiana, due to its quarantine status and its impact in commercial chrysanthemum production. Three technical adjustments were needed to reliably obtain the nucleotide sequences starting from fresh or dried samples. The complete rDNA ITS nucleotide sequences of P. horiana, Puccinia chrysanthemi, and Puccinia tanaceti isolates of varying age and geographic origin were determined. We also identified an as yet undescribed Puccinia species on six old herbarium samples from chrysanthemum. This new species is morphologically similar to P. chrysanthemi and near identical to recent rust samples from Artemisia tridentata. P. tanaceti could not be confirmed as a pathogen of chrysanthemum. Different rDNA ITS sequences were present in P. horiana, with intra-isolate and inter-isolate variability in the length of three nucleotide repeat regions in the different rDNA tandem copies. We also identified three ITS types within P. horiana, with the rarer types displaying up to 67 bp nucleotide sequence differences. These rarer ITS types were detected at low copy number in all isolates. In general, very little rDNA ITS sequence variation was observed between P. horiana isolates from 1903 and 2003, and among isolates from different continents. Phylogenetic analyses using distance, Maximum Likelihood and Bayesian methods confirmed P. horiana, P. chrysanthemi, and the new Puccinia sp. as well-resolved groups, with P. horiana clustering in the clade where the economically important rust species of the Poaceae are located, and P. chrysanthemi and the new Puccinia sp. clustering in the clade where the majority of the rust fungi with hosts in the Asteraceae is located.  相似文献   

8.
Tibouchina urvilleana Cogn. is native to southern Brazil and currently cultivated as an important ornamental shrub in frost free areas around the world. Its rapid vegetative growth and sterility suggests that it might be of hybrid origin. In this study, Internal Transcribed Spacer (ITS) of nuclear ribosomal DNA and chloroplast trnL-trnF spacer from T. urvilleana and three other congeneric species were sequenced to test its hybrid status. Cloning sequencing revealed two distinct types of ITS sequences from T. urvilleana, with one type almost identical with Tibouchina aspera. Genetic distance between the two types was much larger than the average interspecific genetic distances calculated from other Tibouchina species. Sequencing of chloroplast trnL-trnF spacer showed that T. urvilleana has identical sequence with T. aspera, but differed from other congeneric species by one nucleotide substitution and two indels. Molecular data demonstrated clearly that T. urvilleana indeed was a hybrid, with T. aspera or closely related species acting as the maternal parent.  相似文献   

9.
Fungi in the orders Ophiostomatales and Microascales (Ascomycota), often designated as ophiostomatoid fungi, are frequent associates of scolytine bark and ambrosia beetles that colonize hardwood and coniferous trees. Several species, e.g., Ophiostoma novo-ulmi, are economically damaging pathogens of trees. Because little is known regarding the ophiostomatoid fungi in Europe, we have explored the diversity of these fungi associated with hardwood-infesting beetles in Poland. This study aims to clarify the associations between fungi in the genera Ambrosiella, Graphium (Microascales), Graphilbum, Leptographium, Ophiostoma and Sporothrix (Ophiostomatales) and their beetle vectors in hardwood ecosystems. Samples associated with 18 bark and ambrosia beetle species were collected from 11 stands in Poland. Fungi were isolated from adult beetles and galleries. Isolates were identified based on morphology, DNA sequence comparisons for five gene regions (ITS, LSU, ßT, TEF 1-α, and CAL) and phylogenetic analyses. In total, 36 distinct taxa were identified, including 24 known and 12 currently unknown species. Several associations between fungi and bark and ambrosia beetles were recorded for the first time. In addition, associations between Dryocoetes alni, D. villosus, Hylesinus crenatus, Ernoporus tiliae, Pteleobius vittatus and ophiostomatoid fungi were reported for the first time, and Sporothrix eucastanea was reported for the first time outside of the USA. Among the species of Ophiostomatales, 14 species were in Ophiostoma s. l., two species were in Graphilbum, nine species were in Sporothrix, and seven species were in Leptographium s. l. Among the species of Microascales, three species were in Graphium, and one was in Ambrosiella. Twenty taxa were present on the beetles and in the galleries, twelve only on beetles, and four only in galleries. Bark and ambrosia beetles from hardwoods appear to be regular vectors, with ophiostomatoid fungi present in all the beetle species. Most ophiostomatoid species had a distinct level of vector/host specificity, although Ophiostoma quercus, the most frequently encountered species, also had the greatest range of beetle vectors and tree hosts. Plant pathogenic O. novo-ulmi was found mainly in association with elm-infesting bark beetles (Scolytus multistriatus, S. scolytus, and P. vittatus) and occasionally with H. crenatus on Fraxinus excelsior and with Scolytus intricatus on Quercus robur.  相似文献   

10.
11.
In this study, we analyzed air samples collected from several sites within the Mogao Grottoes, Dunhuang, China. The samples were collected each month from September 2008 to August 2009 from an open cave (OC), a semi-open cave (SC), a closed cave (CC), and the entrance (EN) of the Mogao Grottoes. Sampling was carried out using a six-stage Andersen FA-I sampler; then samples were cultured and fungal isolates were identified by partial sequencing of their internal transcribed spacer (ITS) region. Eleven different fungal genera were found, and the most prevalent was Cladosporium, followed by Fusarium, Penicillium, Alternaria, and Aspergillus. The fungal community composition varied among the four sites. Fungal community structure was significantly related to site (r = −0.293, p = 0.039) and to time of year (r = −0.523, p = 0.000). The concentrations and abundance of airborne fungi varied greatly throughout the year at the four sampling sites. Meteorological parameters (e.g., temperature, relative humidity) and the number of visitors also influenced both abundance and community structure of airborne fungi in the Mogao Grottoes.  相似文献   

12.
Endophytic fungi show no symptoms of their presence but can influence the performance and vitality of host trees. The potential use of endophytes to indicate vitality has been previously realized, but a standard protocol has yet to be developed due to an incomplete understanding of the factors that regulate endophyte communities. Using a culture-free molecular approach, we examined the extent to which host genotype influences the abundance, species richness, and community composition of endophytic fungi in Norway spruce needles. Briefly, total DNA was extracted from the surface-sterilized needles of 30 clones grown in a nursery field and the copy number of the fungal internal transcribed spacer (ITS) region of ribosomal DNA was estimated by quantitative PCR. Fungal species richness and community composition were determined by denaturing gradient gel electrophoresis and DNA sequencing. We found that community structure and ITS copy number varied among spruce clones, whereas species richness did not. Host traits interacting with endophyte communities included needle surface area and the location of cuttings in the experimental area. Although Lophodermium piceae is considered the dominant needle endophyte of Norway spruce, we detected this species in only 33 % of samples. The most frequently observed fungus (66 %) was the potentially pathogenic Phoma herbarum. Interestingly, ITS copy number of endophytic fungi correlated negatively with the richness of ectomycorrhizal fungi and thus potential interactions between fungal communities and their influence on the host tree are discussed. Our results suggest that in addition to environmental factors, endophyte communities of spruce needles are determined by host tree identity and needle surface area.  相似文献   

13.
《Fungal biology》2022,126(5):342-355
Stem blight is a major disease of blueberry caused by Botryosphaeriaceae fungi. Chemical and cultural management options are limited, putting emphasis on breeding efforts to identify sources of resistance. The efficacy and durability of host resistance could be impacted by the species composition of the pathogen population in a region and by the isolates employed in the screenings used to identify the resistance. Samples (365) were collected from southern highbush (SHB) and rabbiteye blueberry (REB) cultivars from 28 sites in the southeastern US (AL, FL, GA, NC, and SC). Colony morphology identified 86% of the isolates as Botryosphaeriaceae. Conidia morphology and Maximum Likelihood analysis of the Internal Transcribed Spacer rDNA regions (ITS), translation elongation factor one alpha (tef1-α), and β-tubulin were used to identify isolates at genera or species level. A PCR-restriction fragment length polymorphism (PCR-RFLP) test was used to identify isolates to genus. Neofusicoccum and Lasiodiplodia were the predominant genera. N. kwambonambiense, N. ribis, L. theobromae and L. pseudotheobromae were the most common species isolated. Phylogenies conducted with a limited number of isolates indicated non-clonal and potentially diverse populations occur on blueberry that warrant additional study. Botryosphaeria corticis, B. dothidea, and Diplodia seriata were isolated infrequently.  相似文献   

14.
The nucleotide sequence of the 5.8S rRNA gene and the flanked internal transcribed spacer (ITS) regions of six Trichomonas vaginalis isolates with different metronidazole sensitivity and geographic origin were genotyped. A multiple sequence alignment was performed with different sequences of other isolates available at the GenBank/EMBL/DDBJ databases, which revealed 5 different sequence patterns. Although a stable mutation in position 66 of the ITS1 (C66T) was observed in 26% (9/34) of the T. vaginalis sequences analyzed, there was 99.7% ITS nucleotide sequence identity among isolates for this sequence. The nucleotide sequence variation among other species of the genus Trichomonas ranged from 3.4% to 9.1%. Surprisingly, the % identity between T. vaginalis and Pentatrichomonas hominis was ~ 83%. There was > 40% divergence in the ITS sequence between T. vaginalis and Tritrichomonas spp., including Tritrichomonas augusta, Tritrichomonas muris, and Tritrichomonas nonconforma and with Tetratrichomonas prowazeki. Dendrograms grouped the trichomonadid sequences in robust clades according to their genera. The absence of nucleotide divergence in the hypervariable ITS regions between T. vaginalis isolates suggests the early divergence of the parasite. Importantly, these data show this ITS1-5.8S rRNA-ITS2 region suitable for inter-species differentiation.  相似文献   

15.
《Mycoscience》2020,61(4):190-196
Two scopulariopsis-like fungi were isolated when surveying fungi in pig farm soils in China. Sexual structures of these fungi were not observed and their conidia had spinous walls. Phylogenetic analysis based on nucleotide sequences of the internal transcribed spacer 1 and 2 and intervening 5.8S ribosomal RNA gene (ITS), large subunit ribosomal RNA gene (LSU), beta-tubulin (tub2) and translation elongation factor 1-alpha (tef1) gene showed that they were new members of the genus Microascus, and the name M. aculeatus and M. spinosporus were introduced. Genetically the two new species clustered in a well-supported clade close to M. longicollis, but differed in producing relatively long branches. Morphologically M. aculeatus could be distinguished by its conidia with sparse but long spines; M. spinosporus resembled three species of the genus Scopulariopsis, S. asperula, S. brevicaulis and S. flava, but was different in the color of colony and conidia, and the form of conidiophores.  相似文献   

16.
Although DNA barcoding has been widely used to identify plant species composition in temperate and tropical ecosystems, relatively few studies have used DNA barcodes to document both herbaceous and woody components of forest plot. A total of 201 species (72 woody species and 129 herbaceous species) representing 135 genera distributed across 64 families of seed plants were collected in a 25 ha CForBio subalpine forest dynamics plot. In total, 491 specimens were screened for three DNA regions of the chloroplast genome (rbcL, matK, and trnHpsbA) as well as the internal transcribed spacers (ITS) of nuclear ribosomal DNA. We quantified species resolution for each barcode separately or in combination using a ML tree‐based method. Amplification and sequencing success were highest for rbcL, followed by trnH‐psbA, which performed better than ITS and matK. The rbcL + ITS barcode had slightly higher species resolution rates (88.60%) compared with rbcL + matK (86.60%) and rbcL + trnH‐psbA (86.01%). The addition of trnH‐psbA or ITS to the rbcL + matK barcode only marginally increased species resolution rates, although in combination the four barcodes had the highest discriminatory power (90.21%). The situations where DNA barcodes did not discriminate among species were typically associated with higher numbers of co‐occurring con‐generic species. In addition, herbaceous species were much better resolved than woody species. Our study represents one of the first applications of DNA barcodes in a subalpine forest dynamics plot and contributes to our understanding of patterns of genetic divergence among woody and herbaceous plant species.  相似文献   

17.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

18.
Alveolar echinococcosis (AE) is a parasitosis that is expanding worldwide, including in Europe. The development of genotypic markers is essential to follow its spatiotemporal evolution. Sequencing of the commonly used mitochondrial genes cob, cox1, and nad2 shows low discriminatory power, and analysis of the microsatellite marker EmsB does not allow nucleotide sequence analysis. We aimed to develop a new method for the genotyping of Echinococcus multilocularis based on whole mitochondrial genome (mitogenome) sequencing, to determine the genetic diversity among 30 human visceral samples from French patients, and compare this method with those currently in use. Sequencing of the whole mitochondrial genome was carried out after amplification by PCR, using one uniplex and two multiplex reactions to cover the 13,738 bp of the mitogenome, combined with Illumina technology. Thirty complete mitogenome sequences were obtained from AE lesions. One showed strong identity with Asian genotypes (99.98% identity) in a patient who had travelled to China. The other 29 mitogenomes could be differentiated into 13 haplotypes, showing higher haplotype and nucleotide diversity than when using the cob, cox1, and nad2 gene sequences alone. The mitochondrial genotyping data and EmsB profiles did not overlap, probably because one method uses the mitochondrial genome and the other the nuclear genome. The pairwise fixation index (Fst) value between individuals living inside and those living outside the endemic area was high (Fst = 0.222, P = 0.002). This is consistent with the hypothesis of an expansion from historical endemic areas to peripheral regions.  相似文献   

19.
A DNA barcode is a short piece of DNA sequence used for species determination and discovery. The internal transcribed spacer (ITS/ITS2) region has been proposed as the standard DNA barcode for fungi and seed plants and has been widely used in DNA barcoding analyses for other biological groups, for example algae, protists and animals. The ITS region consists of both ITS1 and ITS2 regions. Here, a large‐scale meta‐analysis was carried out to compare ITS1 and ITS2 from three aspects: PCR amplification, DNA sequencing and species discrimination, in terms of the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality. In total, 85 345 sequence pairs in 10 major groups of eukaryotes, including ascomycetes, basidiomycetes, liverworts, mosses, ferns, gymnosperms, monocotyledons, eudicotyledons, insects and fishes, covering 611 families, 3694 genera, and 19 060 species, were analysed. Using similarity‐based methods, we calculated species discrimination efficiencies for ITS1 and ITS2 in all major groups, families and genera. Using Fisher's exact test, we found that ITS1 has significantly higher efficiencies than ITS2 in 17 of the 47 families and 20 of the 49 genera, which are sample‐rich. By in silico PCR amplification evaluation, primer universality of the extensively applied ITS1 primers was found superior to that of ITS2 primers. Additionally, shorter length of amplification product and lower GC content was discovered to be two other advantages of ITS1 for sequencing. In summary, ITS1 represents a better DNA barcode than ITS2 for eukaryotic species.  相似文献   

20.
《Genomics》2021,113(2):646-654
Kelp species (Laminariales, Phaeophyceae) are globally widespread along temperate to Polar rocky coastal lines. Here we analyse the mitochondrial and chloroplast genomes of Laminaria rodriguezii, in comparison to the organellar genomes of other kelp species. We also provide the complete mitochondrial genome sequence of another endemic kelp species from a Polar habitat, the Arctic Laminaria solidungula. We compare phylogenetic trees derived from twenty complete mitochondrial and seven complete chloroplast kelp genomes. Interestingly, we found a stretch of more than 700 bp in the mitochondrial genome of L.rodriguezii, which is not present in any other yet sequenced member of the Phaeophyceae. This stretch matches a protein coding region in the mitochondrial genome from Desmarestia viridis, another brown seaweed. Their high similarity suggests that these sequences originated through independent introduction into the two species. Their origin could have been by infection by yet unknown similar mitoviruses, currently only known from fungi and plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号