首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are linked to the most common familial forms and some sporadic forms of Parkinson's disease (PD). The LRRK2 protein contains two well-known functional domains, MAPKKK-like kinase and Rab-like GTPase domains. Emerging evidence shows that LRRK2 contains kinase activity which is enhanced in several PD-associated mutants of LRRK2. However, the GTPase activity of LRRK2 has yet to be formally demonstrated. Here, we produced and purified the epitope-tagged LRRK2 protein from transgenic mouse brain, and showed that purified brain LRRK2 possesses both kinase and GTPase activity as assayed by GTP binding and hydrolysis. The brain LRRK2 is associated with elevated kinase activity in comparison to that from transgenic lung or transfected cultured cells. In transfected cell cultures, we detected GTP hydrolysis activity in full-length as well as in GTPase domain of LRRK2. This result indicates that LRRK2 GTPase can be active independent of LRRK2 kinase activity (while LRRK2 kinase activity requires the presence of LRRK2 GTPase as previously shown). We further found that PD mutation R1441C/G in the GTPase domain causes reduced GTP hydrolysis activity, consistent with the altered enzymatic activity in the mutant LRRK2 carrying PD familial mutations. Therefore, our study shows the biochemical characteristics of brain-specific LRRK2 which is associated with robust kinase and GTPase activity. The distinctive levels of kinase/GTPase activity in brain LRRK2 may help explain LRRK2-associated neuronal functions or dysfunctions in the pathogenesis of PD.  相似文献   

2.
Mutations in LRRK2 cause a dominantly inherited form of Parkinson’s disease (PD) and are the most common known genetic determinant of PD. Inhibitor-based therapies targeting LRRK2 have emerged as a key therapeutic strategy in PD; thus, understanding the consequences of inhibiting the normal cellular functions of this protein is vital. Despite much interest, the physiological functions of LRRK2 remain unclear. Several recent studies have linked the toxicity caused by overexpression of pathogenic mutant forms of LRRK2 to defects in the endolysosomal and autophagy pathways, raising the question of whether endogenous LRRK2 might play a role in these processes. Here, we report the characterization of multiple novel ethyl methanesulfonate (EMS)-induced nonsense alleles in the Drosophila LRRK2 homolog, lrrk. Using these alleles, we show that lrrk loss-of-function causes striking defects in the endolysosomal and autophagy pathways, including the accumulation of markedly enlarged lysosomes that are laden with undigested contents, consistent with a defect in lysosomal degradation. lrrk loss-of-function also results in the accumulation of autophagosomes, as well as the presence of enlarged early endosomes laden with mono-ubiquitylated cargo proteins, suggesting an additional defect in lysosomal substrate delivery. Interestingly, the lysosomal abnormalities in these lrrk mutants can be suppressed by a constitutively active form of the small GTPase rab9, which promotes retromer-dependent recycling from late endosomes to the Golgi. Collectively, our data provides compelling evidence of a vital role for lrrk in lysosomal function and endolysosomal membrane transport in vivo, and suggests a link between lrrk and retromer-mediated endosomal recycling.KEY WORDS: LRRK2, Lysosome, Parkinson’s disease, Drosophila, Autophagy, Endosomes, Rab7, Rab9  相似文献   

3.
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant Parkinson disease (PD), while polymorphic LRRK2 variants are associated with sporadic PD. PD-linked mutations increase LRRK2 kinase activity and induce neurotoxicity in vitro and in vivo. The small GTPase Rab8a is a LRRK2 kinase substrate and is involved in receptor-mediated recycling and endocytic trafficking of transferrin, but the effect of PD-linked LRRK2 mutations on the function of Rab8a is poorly understood. Here, we show that gain-of-function mutations in LRRK2 induce sequestration of endogenous Rab8a to lysosomes in overexpression cell models, while pharmacological inhibition of LRRK2 kinase activity reverses this phenotype. Furthermore, we show that LRRK2 mutations drive association of endocytosed transferrin with Rab8a-positive lysosomes. LRRK2 has been nominated as an integral part of cellular responses downstream of proinflammatory signals and is activated in microglia in postmortem PD tissue. Here, we show that iPSC-derived microglia from patients carrying the most common LRRK2 mutation, G2019S, mistraffic transferrin to lysosomes proximal to the nucleus in proinflammatory conditions. Furthermore, G2019S knock-in mice show a significant increase in iron deposition in microglia following intrastriatal LPS injection compared to wild-type mice, accompanied by striatal accumulation of ferritin. Our data support a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.

Brain iron deposition is a feature of Parkinson’s disease pathology, but how this contributes to neurodegeneration is unclear. This study show that Parkinson’s disease-linked mutations in LRRK2 cause aberrant brain iron accumulation in vivo and iron dyshomeostasis in vitro, supporting a role of LRRK2 in modulating iron uptake and storage in response to proinflammatory stimuli in microglia.  相似文献   

4.
Leucine-rich repeat kinase 2 (LRRK2) has been associated with Parkinson’s disease (PD) and other disorders. However, its normal physiological functions and pathogenic properties remain elusive. Here we show that LRRK2 regulates the anterograde ER–Golgi transport through anchoring Sec16A at the endoplasmic reticulum exit sites (ERES). LRRK2 interacted and co-localized with Sec16A, a key protein in the formation of ERES. Lrrk2 depletion caused a dispersion of Sec16A from ERES and impaired ER export. In neurons, LRRK2 and Sec16A showed extensive co-localization at the dendritic ERES (dERES) that locally regulate the transport of proteins to the dendritic spines. A loss of Lrrk2 affected the association of Sec16A with dERES and impaired the activity-dependent targeting of glutamate receptors onto the cell/synapse surface. Furthermore, the PD-related LRRK2 R1441C missense mutation in the GTPase domain interfered with the interaction of LRRK2 with Sec16A and also affected ER–Golgi transport, while LRRK2 kinase activity was not required for these functions. Therefore, our findings reveal a new physiological function of LRRK2 in ER–Golgi transport, suggesting ERES dysfunction may contribute to the pathogenesis of PD.  相似文献   

5.
Mutations in leucine‐rich repeat kinase 2 (LRRK2) are the most common cause of dominant‐inherited Parkinson's disease (PD), and yet we do not fully understand the physiological function(s) of LRRK2. Various components of the clathrin machinery have been recently found mutated in familial forms of PD. Here, we provide molecular insight into the association of LRRK2 with the clathrin machinery. We report that through its GTPase domain, LRRK2 binds directly to clathrin‐light chains (CLCs). Using genome‐edited HA‐LRRK2 cells, we localize LRRK2 to endosomes on the degradative pathway, where it partially co‐localizes with CLCs. Knockdown of CLCs and/or LRRK2 enhances the activation of the small GTPase Rac1, leading to alterations in cell morphology, including the disruption of neuronal dendritic spines. In Drosphila, a minimal rough eye phenotype caused by overexpression of Rac1, is dramatically enhanced by loss of function of CLC and LRRK2 homologues, confirming the importance of this pathway in vivo. Our data identify a new pathway in which CLCs function with LRRK2 to control Rac1 activation on endosomes, providing a new link between the clathrin machinery, the cytoskeleton and PD.  相似文献   

6.
Leucine-rich repeat kinase 2 (LRRK2) is a large, widely expressed protein of largely unknown function. Mutations in the gene encoding LRRK2 have been linked to multiple diseases, including a prominent association with familial and sporadic Parkinson’s disease (PD), as well as inflammatory bowel disorders such as Crohn’s disease. The LRRK2 protein possesses both kinase and GTPase signaling domains, as well as multiple protein interaction domains. Experimental studies in both cellular and in vivo models of mutant LRRK2-induced neurodegeneration have given clues to potential function(s) of LRRK2, yet much remains unknown. For example, while it is known that intact kinase and GTPase activity are required for mutant forms of the protein to trigger cell death, the specific targets of these enzymatic activities that mediate the death of neurons are not known. In this review, we discuss the evidence linking LRRK2 to various cellular/neuronal activities such as extrinsic death and inflammatory signaling, lysosomal protein degradation, the cytoskeletal system and neurite outgrowth, vesicle trafficking, mitochondrial dysfunction, as well as multiple points of interaction with several other genes linked to the pathogenesis of PD. In order for more effective therapeutic strategies to be envisioned and implemented, the mechanisms underlying LRRK2-mediated neurodegeneration need to be better characterized. Furthermore, insights into LRRK2-associated PD pathogenesis can potentially advance our understanding of the more common sporadic forms of PD.  相似文献   

7.
Rab2 is a conserved Rab GTPase with a well-established role in secretory pathway function and phagocytosis. Here we demonstrate that Drosophila Rab2 is recruited to late endosomal membranes, where it controls the fusion of LAMP-containing biosynthetic carriers and lysosomes to late endosomes. In contrast, the lysosomal GTPase Gie/Arl8 is only required for late endosome-lysosome fusion, but not for the delivery of LAMP to the endocytic pathway. We also find that Rab2 is required for the fusion of autophagosomes to the endolysosomal pathway, but not for the biogenesis of lysosome-related organelles. Surprisingly, Rab2 does not rely on HOPS-mediated vesicular fusion for recruitment to late endosomal membranes. Our work suggests that Drosophila Rab2 is a central regulator of the endolysosomal and macroautophagic/autophagic pathways by controlling the major heterotypic fusion processes at the late endosome.  相似文献   

8.
Parkinson's disease predisposing LRRK2 kinase phosphorylates a group of Rab GTPase proteins including Rab29, within the effector‐binding switch II motif. Previous work indicated that Rab29, located within the PARK16 locus mutated in Parkinson's patients, operates in a common pathway with LRRK2. Here, we show that Rab29 recruits LRRK2 to the trans‐Golgi network and greatly stimulates its kinase activity. Pathogenic LRRK2 R1441G/C and Y1699C mutants that promote GTP binding are more readily recruited to the Golgi and activated by Rab29 than wild‐type LRRK2. We identify conserved residues within the LRRK2 ankyrin domain that are required for Rab29‐mediated Golgi recruitment and kinase activation. Consistent with these findings, knockout of Rab29 in A549 cells reduces endogenous LRRK2‐mediated phosphorylation of Rab10. We show that mutations that prevent LRRK2 from interacting with either Rab29 or GTP strikingly inhibit phosphorylation of a cluster of highly studied biomarker phosphorylation sites (Ser910, Ser935, Ser955 and Ser973). Our data reveal that Rab29 is a master regulator of LRRK2, controlling its activation, localization, and potentially biomarker phosphorylation.  相似文献   

9.
Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein that contains enzymatically functional GTPase and kinase domains. Several noncoding LRRK2 gene polymorphisms have been associated with susceptibility to Parkinson's disease (PD), Crohn's disease, and leprosy. Many LRRK2 coding polymorphisms have been associated with or causally linked to PD. The G2019S point mutation within the LRRK2 kinase domain is the most common cause of familial PD. The G2019S mutation appears to alter LRRK2 kinase activity. Some but not all studies have reported that LRRK2 kinase activity is dependent upon LRRK2 dimerization and membrane localization. It is important to define the oligomeric state(s) of LRRK2 in living cells, which to date have only been characterized in vitro. Here we use confocal and total internal reflection microscopy coupled with number and brightness analysis to study the oligomeric states of LRRK2 within the cytosol and on the plasma membrane of live CHO-K1 cells. Our results show, for the first time to our knowledge, that LRRK2 is predominantly monomeric throughout the cytosol of living cells, but attains predominately higher oligomeric states in the plasma membrane.  相似文献   

10.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of inherited Parkinson’s disease (PD). The protein is large and complex, but pathogenic mutations cluster in a region containing GTPase and kinase domains. LRRK2 can autophosphorylate in vitro within a dimer pair, although the significance of this reaction is unclear. Here, we mapped the sites of autophosphorylation within LRRK2 and found several potential phosphorylation sites within the GTPase domain. Using mass spectrometry, we found that Thr1343 is phosphorylated and, using kinase dead versions of LRRK2, show that this is an autophosphorylation site. However, we also find evidence for additional sites in the GTPase domain and in other regions of the protein suggesting that there may be multiple autophosphorylation sites within LRRK2. These data suggest that the kinase and GTPase activities of LRRK2 may exhibit complex autoregulatory interdependence.  相似文献   

11.
The Parkinson disease gene LRRK2: evolutionary and structural insights   总被引:8,自引:0,他引:8  
Mutations in the human leucine-rich repeat kinase 2 (LRRK2) gene are associated with both familial and sporadic Parkinson disease (PD). LRRK2 belongs to a gene family known as Roco. Roco genes encode for large proteins with several protein domains. Particularly, all Roco proteins have a characteristic GTPase domain, named Roc, plus a domain of unknown function called COR. In addition, LRRK2 and several other Roco proteins also contain a protein kinase domain. In this study, I use a combination of phylogenetic and structural analyses of the COR, Roc, and kinase domains present in Roco proteins to describe the origin and evolutionary history of LRRK2. Phylogenetic analyses using these domains demonstrate that LRRK2 emerged from a duplication that occurred after the protostome-deuterostome split. The duplication was followed by the acquisition by LRRK2 proteins of a specific type of N-terminal repeat, described here for the first time. This repeat is absent in the proteins encoded by the paralogs of LRRK2, called LRRK1 or in protostome LRRK proteins. These results suggest that Drosophila or Caenorhabditis LRRK genes may not be good models to understand human LRRK2 function. Genes in the slime mold Dictyostelium discoideum with structures very similar to those found in animal LRRK genes, including the protein kinase domain, have been described. However, phylogenetic analyses suggest that this structural similarity is due to independent acquisitions of distantly related protein kinase domains. Finally, I confirm in an extensive sequence analysis that the Roc GTPase domain is related but still substantially different from small GTPases, such as Rab, Ras, or Rho. Modeling based on known kinase structures suggests that mutations in LRRK2 that cause familiar PD may alter the local 3-dimensional folding of the LRRK2 protein without affecting its overall structure.  相似文献   

12.
Rab5 regulates motility of early endosomes on microtubules   总被引:1,自引:0,他引:1  
The small GTPase Rab5 regulates membrane docking and fusion in the early endocytic pathway. Here we reveal a new role for Rab5 in the regulation of endosome interactions with the microtubule network. Using Rab5 fused to green fluorescent protein we show that Rab5-positive endosomes move on microtubules in vivo. In vitro, Rab5 stimulates both association of early endosomes with microtubules and early-endosome motility towards the minus ends of microtubules. Moreover, similarly to endosome membrane docking and fusion, Rab5-dependent endosome movement depends on the phosphatidylinositol-3-OH kinase hVPS34. Thus, Rab5 functionally links regulation of membrane transport, motility and intracellular distribution of early endosomes.  相似文献   

13.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of autosomal dominant familial Parkinson's disease (PD) and also contribute to idiopathic PD. LRRK2 encodes a large multi-domain protein with GTPase and kinase activity. Initial data indicates that an intact functional GTPase domain is critically required for LRRK2 kinase activity. PD-associated mutations in LRRK2, including the most common G2019S variant, have variable effects on enzymatic activity but commonly alter neuronal process morphology. The mechanisms underlying the intrinsic and extrinsic regulation of LRRK2 GTPase and kinase activity, and the pathogenic effects of familial mutations, are incompletely understood. Here, we identify a novel functional interaction between LRRK2 and ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1). LRRK2 and ArfGAP1 interact in vitro in mammalian cells and in vivo in brain, and co-localize in the cytoplasm and at Golgi membranes. PD-associated and functional mutations that alter the GTPase activity of LRRK2 modulate the interaction with ArfGAP1. The GTP hydrolysis activity of LRRK2 is markedly enhanced by ArfGAP1 supporting a role for ArfGAP1 as a GTPase-activating protein for LRRK2. Unexpectedly, ArfGAP1 promotes the kinase activity of LRRK2 suggesting a potential role for GTP hydrolysis in kinase activation. Furthermore, LRRK2 robustly and directly phosphorylates ArfGAP1 in vitro. Silencing of ArfGAP1 expression in primary cortical neurons rescues the neurite shortening phenotype induced by G2019S LRRK2 overexpression, whereas the co-expression of ArfGAP1 and LRRK2 synergistically promotes neurite shortening in a manner dependent upon LRRK2 GTPase activity. Neurite shortening induced by ArfGAP1 overexpression is also attenuated by silencing of LRRK2. Our data reveal a novel role for ArfGAP1 in regulating the GTPase activity and neuronal toxicity of LRRK2; reciprocally, LRRK2 phosphorylates ArfGAP1 and is required for ArfGAP1 neuronal toxicity. ArfGAP1 may represent a promising target for interfering with LRRK2-dependent neurodegeneration in familial and sporadic PD.  相似文献   

14.
The R1441C mutation of LRRK2 disrupts GTP hydrolysis   总被引:5,自引:0,他引:5  
Mutations in Leucine Rich Repeat Kinase 2 (LRRK2) are the leading genetic cause of Parkinson's disease (PD). LRRK2 is predicted to contain kinase and GTPase enzymatic domains, with recent evidence suggesting that the kinase activity of LRRK2 is central to the pathogenic process associated with this protein. The GTPase domain of LRRK2 plays an important role in the regulation of kinase activity. To investigate how the GTPase domain might be related to disease, we examined the GTP binding and hydrolysis properties of wild type and a mutant form of LRRK2. We show that LRRK2 immunoprecipitated from cells has a detectable GTPase activity that is disrupted by a familial mutation associated with PD located within the GTPase domain, R1441C.  相似文献   

15.
Background information. Within the group of lysosomal storage diseases, NPC1 [NPC (Niemann‐Pick type C) 1] disease is a lipidosis characterized by excessive accumulation of free cholesterol as well as gangliosides, glycosphingolipids and fatty acids in the late E/L (endosomal/lysosomal) system (Chen et al., 2005 ) due to a defect in late endosome lipid egress. We have previously demonstrated that expression of the small GTPase Rab9 in NPC1 cells can rescue the lipid transport block phenotype (Walter et al., 2003 ), albeit by an undefined mechanism. Results. To investigate further the mechanism by which Rab9 facilitates lipid movement from late endosomes we sought to identify novel Rab9 binding/interacting proteins. In the present study, we report that Rab9 interacts with the intermediate filament phosphoprotein vimentin and this interaction is altered by lipid accumulation in late endosomes, which results in inhibition of PKC (protein kinase C) and hypophosphorylation of vimentin, leading to late endosome dysfunction. Intermediate filament hypophosphorylation, aggregation and entrapment of Rab9 ultimately leads to transport defects and inhibition of lipid egress from late endosomes. Conclusions. These results reveal a previously unappreciated interaction between Rab proteins and intermediate filaments in regulating intracellular lipid transport.  相似文献   

16.
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the leading cause of autosomal dominant Parkinson's disease (PD). LRRK2, a member of the ROCO protein family, contains both Ras GTPase-like (Roc) and kinase (MAPKKK) domains, as well as other functional motifs. Here, we have identified LRRK2 as the first mammalian ROCO protein that is an authentic and functional GTPase, defined by the ability to bind GTP and undergo intrinsic GTP hydrolysis. Furthermore, the Roc domain is sufficient for this native GTPase activity and binds and hydrolyzes GTP indistinguishably from the Ras-related small GTPase, Rac1. The PD-associated mutation, R1441C, located within the Roc domain, leads to an increase in LRRK2 kinase activity and a decrease in the rate of GTP hydrolysis, compared to the wild-type protein, in an in vitro assay. This finding suggests that the R1441C mutation may help stabilize an activated state of LRRK2. Additionally, LRRK2-mediated phosphorylation is stimulated upon binding of non-hydrolyzable GTP analogs, suggesting that LRRK2 is an MAPKKK-activated intramolecularly by its own GTPase. Since GTPases and MAPKKKs are upstream regulators of multiple signal transduction cascades, LRRK2 may play a central role in integrating pathways involved in neuronal cell signaling and the pathogenesis of PD.  相似文献   

17.
Leucine‐rich repeat kinase 2 (LRRK2) is a large multidomain protein that is expressed in many tissues and participates in numerous biological pathways. Mutations in LRRK2 are recognized as genetic risk factors for familial Parkinson's disease (PD) and may also represent causal factors in the more common sporadic form of PD. The structure of LRRK2 comprises a combination of GTPase, kinase, and scaffolding domains. This functional diversity, combined with a potentially central role in genetic and idiopathic PD motivates significant effort to further credential LRRK2 as a therapeutic target. Here, we review the current understanding for LRRK2 function in normal physiology and PD, with emphasis on insight gained from proteomic approaches.  相似文献   

18.
Burguete AS  Fenn TD  Brunger AT  Pfeffer SR 《Cell》2008,132(2):286-298
GCC185 is a large coiled-coil protein at the trans Golgi network that is required for receipt of transport vesicles inbound from late endosomes and for anchoring noncentrosomal microtubules that emanate from the Golgi. Here, we demonstrate that recruitment of GCC185 to the Golgi is mediated by two Golgi-localized small GTPases of the Rab and Arl families. GCC185 binds Rab6, and mutation of residues needed for Rab binding abolishes Golgi localization. The crystal structure of Rab6 bound to the GCC185 Rab-binding domain reveals that Rab6 recognizes a two-fold symmetric surface on a coiled coil immediately adjacent to a C-terminal GRIP domain. Unexpectedly, Rab6 binding promotes association of Arl1 with the GRIP domain. We present a structure-derived model for dual GTPase membrane attachment that highlights the potential ability of Rab GTPases to reach binding partners at a significant distance from the membrane via their unstructured and membrane-anchored, hypervariable domains.  相似文献   

19.
Leucine rich-repeat kinase 2 (LRRK2) is involved in the pathogenesis of Parkinson’s disease (PD). LRRK2 has kinase and GTPase activities, and mediates several cell functions, including vesicle trafficking, apoptosis, autophagy, mitochondrial dynamics, and neuroinflammation. G2019S (GS) is the most prevalent mutation of LRRK2. The mutation increases kinase activity, suggesting that this activity is crucial for PD pathogenesis. The activation and inhibition of LRRK2 kinase increases and reduces the levels of proinflammatory cytokines, respectively suggesting that the role of LRRK2 in neuroinflammation is critical for the pathology of PD. Previously, we demonstrated that microglial activation by lipopolysaccharide (LPS) increases mitochondrial fission via the activation of LRRK2 kinase, while LRRK2 kinase inhibition diminishes the fission morphology and release of tumor necrosis factor-alpha (TNFα) in BV2 or rat primary microglia and the brains of GS transgenic mice. In this study, the ectopic expression of GS LRRK2 in BV2 cells significantly elevated the expression of Drp1 along the fragmented mitochondria and decreased mitochondria size compared with controls. GS LRRK2-transfected BV2 cells displayed significantly increased TNFα release and neuronal death. Inhibition of LRRK2 kinase alleviated these features. TNFα levels in brains of GS mice were significantly increased compared to those in their littermates. These data further support our previous findings concerning LPS-induced neuroinflammation and mitochondrial fission in microglia via LRRK2 kinase activation.  相似文献   

20.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the major genetic cause of autosomal-dominantly inherited Parkinson's disease. LRRK2 is implicated in the regulation of intracellular trafficking, neurite outgrowth and PD risk in connection with Rab7L1, a putative interactor of LRRK2. Recently, a subset of Rab GTPases have been reported as substrates of LRRK2. Here we examine the kinase activity of LRRK2 on Rab7L1 in situ in cells. Phos-tag analyses and metabolic labeling assays revealed that LRRK2 readily phosphorylates Golgi-localized wild-type Rab7L1 but not mutant forms that are distributed in the cytoplasm. In vitro assays demonstrated direct phosphorylation of Rab7L1 by LRRK2. Subsequent screening using Rab7L1 mutants harboring alanine-substitution for every single Ser/Thr residue revealed that Ser72 is a major phosphorylation site, which was confirmed by using a phospho-Ser72-specific antibody. Moreover, LRRK2 pathogenic Parkinson mutants altogether markedly enhanced the phosphorylation at Ser72. The modulation of Ser72 phosphorylation in Rab7L1 resulted in an alteration of the morphology and distribution of the trans-Golgi network. These data collectively support the involvement of Rab7L1 phosphorylation in the LRRK2-mediated cellular and pathogenetic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号