首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Selection of habitat to avoid predation may affect the diet of young-of-year (YOY) lake trout (Salvelinus namaycush). YOY lake trout may use inshore habitat to avoid predation; this habitat may be sub-optimal for growth. To test this, YOY lake trout were penned in nearshore and offshore pelagic areas of two arctic lakes. Toolik Lake had a lake trout population, the other lake, S6, did not. YOY lake trout in Toolik Lake lost weight, but those offshore lost less weight. The YOY lake trout in Lake S6 gained weight and those offshore gained more weight. The primary diet item of the YOY lake trout in both lakes during this experiment was the zooplankter Diaptomis probilofensis; it was also one of the most abundant species. However, its density inshore in Lake S6 was similar to inshore and offshore densities in Toolik Lake. The increased availability of alternative zooplankton prey in Lake S6 may account for the growth differential of YOY lake trout in Lake S6 relative to Toolik Lake. Bioenergetic modeling of YOY lake trout suggests that growth similar to that in the offshore of Lake S6 would be necessary for successful recruitment. If the reduced zooplankton availability in Toolik Lake leads to the reduced growth of YOY in the inshore and offshore pelagic areas, then these fish will be more susceptable to winter predation/starvation. For YOY lake trout to survive in Toolik Lake they most likely shift to feeding on benthic prey before the end of their first summer. Dept. of Chemical Engineering  相似文献   

4.
Jonas Dahl 《Oecologia》1998,117(1-2):217-226
I assessed the impact of both vertebrate and invertebrate predators on a lotic benthic community in a 1-month-long experiment, using enclosures containing cobble/gravel bottoms, with large-mesh netting that allowed invertebrates to drift freely. Brown trout (Salmo trutta) and leeches (Erpobdella octoculata) were used as predators and four treatments were tested: a predator-free control, leeches only, trout only, and leeches and trout together. A density of 26.7 leeches/m2 (20 leeches/enclosure) and 1.3 trout/m2 (one trout per enclosure) was stocked into the enclosures. The total biomass of invertebrate prey was significantly lower in the trout and trout plus leech treatments than in the leech and control treatments, which were due to strong negative effects of trout on Gammarus. On the individual prey taxon level, both trout and leeches affected the abundance of Asellus , Baetis and Ephemerella, whereas the abundance of Gammarus was only affected by trout, and the abundance of Orthocladiinae and Limnephilidae was only affected by leeches. In the treatment with trout and leeches together, the abundance of Ephemerella and Baetis was higher than when trout or leeches were alone, which was probably due to predator interactions. Leeches and trout had no effects on prey immigration but did affect per capita emigration rates. Both trout and leeches indirectly increased periphyton biomass in enclosures, probably due to their strong effects on grazers. Both trout and leeches were size-selective predators, with trout selecting large prey, and leeches selecting small prey. Size-selective predation by trout and leeches affected the size structure of five commonly consumed prey taxa. Trout produced prey populations of small sizes owing to consumption of large prey as well as increased emigration out of enclosures by these large prey. Leech predation produced prey assemblages of larger size owing to consumption and increased emigration of small prey. These results suggest that in lotic habits, predatory invertebrates can be as strong interactors as vertebrate predators. Received: 23 June 1997 / Accepted: 4 May 1998  相似文献   

5.
Synopsis We compared survival, growth, and swimming performance of two size classes of age-0 largemouth bass, Micropterus salmoides, in the spring after being fed diets of bluegill, Lepomis macrochirus, fathead minnows, Pimephales promelas, or invertebrate prey during the winter. Regardless of prey assemblage, survival was uniformly high and independent of size. Length, wet- and dry-mass, and condition was also similar among treatments for both size classes. However, variation in individual performance differed, with the lowest variability in growth occurring among small age-0 largemouth bass in the invertebrate only treatment. Absolute and length corrected swimming speeds of largemouth bass were highest for invertebrate prey assemblages, intermediate for fathead minnow prey, and lowest for bluegill prey. The patterns in growth and spring swimming performance likely reflect the varied nutritive quality of different prey, the ability of largemouth bass to capture different prey, and competition with the piscine prey.  相似文献   

6.
The question of what controls animal abundance has always been fundamental to ecology, but given rapid environmental change, understanding the drivers and mechanisms governing abundance is more important than ever. Here, we determine how multidimensional environments and niches interact to determine population abundance along a tropical habitat gradient. Focusing on the endemic lizard Anolis bicaorum on the island of Utila (Honduras), we evaluate direct and indirect effects of three interacting niche axes on abundance: thermal habitat quality, structural habitat quality, and prey availability. We measured A. bicaorum abundance across a series of thirteen plots and used N‐mixture models and path analysis to disentangle direct and indirect effects of these factors. Results showed that thermal habitat quality and prey biomass both had positive direct effects on anole abundance. However, thermal habitat quality also influenced prey biomass, leading to a strong indirect effect on abundance. Thermal habitat quality was primarily a function of canopy density, measured as leaf area index (LAI). Despite having little direct effect on abundance, LAI had a strong overall effect mediated by thermal quality and prey biomass. Our results demonstrate the role of multidimensional environments and niche interactions in determining animal abundance and highlight the need to consider interactions between thermal niches and trophic interactions to understand variation in abundance, rather than focusing solely on changes in the physical environment.  相似文献   

7.
Data from the International Biological Programme (IBP) and subsequent studies have been re-analysed to test the two hypotheses which previously have been suggested concerning the zooplankton in the mountain lake, Øvre Heimdalsvatn: (1) the average temperature in June, more than other summer months, is affecting the growth rate and population densities of zooplankton in the lake, (2) the invasion of the European minnow (Phoxinus phoxinus) has caused changes in the zooplankton community. The analyses have demonstrated that the June temperature strongly affects the growth rate of all the zooplankton species, but that there is no relationship with the population maxima. The species composition in the crustacean zooplankton has not changed between 1969 and 1999, and any direct impact of the minnows on the zooplankton community could not be detected. Indirectly, the minnows may have reduced the density of invertebrate predators, and thus caused an increase in juvenile survival and increased summer maximum density of Bosmina longispina. The variation in density of the copepod, Cyclops scutifer, was correlated with the density of Heterocope saliens, most likely the result of predator–prey interactions.  相似文献   

8.
A study of the diet of native brown trout (Salmo trutta) parr and introduced European minnow (Phoxinus phoxinus) in the subalpine lake, Øvre Heimdalsvatn, showed that the two species had considerable dietary overlap, both in the littoral zone and in the outlet of the lake. Chironomidae constituted a substantial proportion of the diet of the two species in both habitats. The results indicated that both zooplankton (Cladocera) and large macroinvertebrates (EPT-species) made up a higher proportion of the minnow diet in the early phase of the minnow establishment (1975–1977) than later, and that the significance of small macroinvertebrates (Chironomidae) as prey has increased during the same period. Dietary analysis of the sympatric brown trout and minnow population in Øvre Heimdalsvatn does not provide a definitive conclusion about the degree of competition between the two species. However, together with the findings in other studies in Øvre Heimdalsvatn that have documented reduced recruitment and individual growth of brown trout, decreased individual growth of minnows and a marked decline in the density of large crustaceans (Lepidurus arcticus and Gammarus lacustris) in the shallow littoral of the lake during the last decades indicates that competitive interactions between the two species are likely. This is probably an example of the competition between two fish species with a high degree of dietary overlap when living in sympatry, most likely caused by absence of alternative prey and alternative habitats due to the high predation risk for both brown trout parr and minnows in deeper parts and in the open waters of the lake.  相似文献   

9.
Horizontal and vertical heterogeneity as a result of size‐structured processes are important factors influencing indirect effects in food webs. In a whole‐lake experiment covering 5 years, we added the intermediate consumer roach (Rutilus rutilus) to two out of four lakes previously inhabited by the omnivorous top predator perch (Perca fluviatilis). We focused our study on the direct consumption effect of roach presence on zooplankton (and indirectly phytoplankton) versus the indirect effect of roach on zooplankton (and phytoplankton) mediated via effects on perch reproductive performance. The patterns in zooplankton and phytoplankton abundances were examined in relation to population density of roach and perch including young‐of‐the‐year (YOY) perch in the light of non‐equilibrium dynamics. The presence of roach resulted in changed seasonal dynamics of zooplankton with generally lower biomasses in May–June and higher biomasses in July–August in roach lakes compared to control lakes. Roach presence affected perch recruitment negatively and densities of YOY perch were on average higher in control lakes than in treatment lakes. In years when perch recruitment did not differ between lakes as a result of experimental addition of perch eggs, total zooplankton biomass was lower in treatment lakes than in control lakes. Phytoplankton biomass showed a tendency to increase in roach lakes compared to control lakes. Within treatment variation in response variables was related to differences in lake morphometry in treatment lakes. Analyses of the trophic dynamics of each lake separately showed strong cascading effects of both roach and YOY perch abundance on zooplankton and phytoplankton dynamics. Consideration of the long transients in the dynamics of top predators (fish) in aquatic systems that are related to their long life span involving ontogenetic niche shifts is essential for making relevant interpretations of experimental perturbations. This conclusion is further reinforced by the circumstance that the intrinsic dynamics of fish populations may in many cases involve high amplitude dynamics with long time lags.  相似文献   

10.
Vandenbos RE  Tonn WM  Boss SM 《Oecologia》2006,148(4):573-582
Although density-dependent mechanisms in early life-history are important regulators of recruitment in many taxa, consequences of such mechanisms on other life-history stages are poorly understood. To examine interacting and cascading effects of mechanisms acting on different life-history stages, we stocked experimental ponds with fathead minnow (Pimephales promelas) at two different densities. We quantified growth and survival of the stocked fish, the eggs they produced, and the resulting offspring during their first season of life. Per-capita production and survival of eggs were inversely related to density of stocked fish; significant egg cannibalism by stocked minnows resulted in initial young-of-the-year (YOY) densities that were inversely related to adult densities. Subsequent growth and survival of YOY were then inversely related to these initial YOY densities, and survival of YOY was selective for larger fish. Because of these compensatory processes in the egg and YOY stages, treatments did not differ in YOY abundance and mean size at the end of the growing season. Because of differences in the intensity of size-selective mortality, however, variation in end-of season sizes of YOY was strongly (and inversely) related to densities of stocked fish. When mortality was severe in the egg stage (high densities of stocked fish), final YOY size distributions were more variable than when the dominant mortality was size-selective in the YOY stage (low stocked fish densities). These differences in size variation could have subsequent recruitment consequences, as overwinter survival is typically selective for YOY fish larger than a critical threshold size. Density-dependent effects on a given life stage are not independent, but will be influenced by earlier stages; alternative recruitment pathways can result when processes at earlier stages differ in magnitude or selectivity. Appreciation of these cascading effects should enhance our overall understanding of the dynamics of stage-structured populations.  相似文献   

11.
Brown trout and food web interactions in a Minnesota stream   总被引:1,自引:0,他引:1  
1. We examined indirect, community‐level interactions in a stream that contained non‐native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined‐species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non‐native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek.  相似文献   

12.
13.
Competition between large-bodied fish and waterbirds for aquatic invertebrates is well documented in oligotrophic lakes. Recent evidence suggests that small-bodied fish that colonize eutrophic, hypoxia-prone wetlands such as prairie potholes can also reduce aquatic invertebrates, but the effects of these reductions on breeding waterbirds have so far not been directly documented. We added brook stickleback (Culaea inconstans) and fathead minnow (Pimephales promelas) to a fishless wetland in Aspen Parkland potholes in central Alberta, Canada. We monitored invertebrate biomasses and the foraging effort of blue-winged teal (Anas discors) and red-necked grebe (Podiceps grisegena) before and after the addition, relative to reference wetlands with and without fish. Fish reduced the biomass of gastropod prey of blue-winged teal, and teals increased foraging effort when fish were added. When the fish failed to overwinter due to hypoxic conditions, gastropod biomass increased, but teal foraging effort did not return to pre-treatment levels. Amphipods and chironomids increased following fish addition, possibly due to indirect positive effects of fish. Red-necked grebes did not exhibit any changes in foraging effort as a result of the fish addition or the subsequent fish extirpation. Grebes in Aspen Parkland appear to treat fish and invertebrates as equivalent prey. This study suggests that small-bodied fish in eutrophic systems can reduce some important invertebrate prey and change foraging behaviour of blue-winged teal and other waterbirds that rely on those invertebrates. Land-use practices that encourage survival of colonizing fish through drought years in Aspen Parkland wetlands, such as wetland consolidation, should not be encouraged.  相似文献   

14.
Synopsis Thermal and depth distributions, diets and time of feeding of young-of-year (YOY) alewives and YOY rainbow smelt were compared for evidence of resource partitioning in southeastern Lake Ontario. YOY alewives were largely epilimnial during August and September, but moved toward the bottom during fall turnover. Alewives were most abundant in the warmest available water. YOY rainbow smelt were concentrated at depths between 10 and 30 m in August and September, but moved into deeper water at fall turnover. Depth distribution of YOY smelt was correlated with temperatures of 8–12°C Both species fed predominantly during day on zooplankton during August and September. Cyclopoid copepods were the most common prey, but bosminids, eubosminids, and occasionally calanoid copepods were frequently eaten. As YOY rainbow smelt grew (> 60 mm), they consumed more Mysis relicta and amphipods, which became the major prey of rainbow smelt by November. YOY alewives consumed mostly zooplankton in all months. Diet overlap of the two species was greatest in warm water (> 12.0° during October (94.3% similarity) and August (80.0% similarity) and lowest in November (16.9% similarity). Positive size-selection on zooplankton was found in all months for YOY rainbow smelt, but only in late September through November for YOY alewives. Thus, during thermal stratification, the species were spatially segregated by water temperature but had a high degree of overlap in time of feeding and types of prey eaten. In contrast, after fall turnover there was a greater separation in diet but a higher overlap in habitat use.  相似文献   

15.
Various synthetic chemicals released to the environment can interfere with the endocrine system of vertebrates. Many of these endocrine disrupting compounds (EDCs) exhibit estrogenic activity and can interfere with sexual development and reproductive physiology. More recently, also chemicals with different modes of action (MOAs), such as antiestrogenic, androgenic and antiandrogenic EDCs, have been shown to be present in the environment. However, to date EDC-research primarily focuses on exposure to EDCs with just one MOA, while studies examining the effects of simultaneous exposure to EDCs with different MOAs are rare, although they would reflect more real, natural exposure situations. In the present study the combined effects of estrogenic and antiestrogenic EDCs were assessed by analyzing the calling behavior of short-term exposed male Xenopus laevis. The estrogenic 17α-ethinylestradiol (EE2), and the antiestrogenic EDCs tamoxifen (TAM) and fulvestrant (ICI) were used as model substances. As previously demonstrated, sole EE2 exposure (10−10 M) resulted in significant alterations of the male calling behavior, including altered temporal and spectral parameters of the advertisement calls. Sole TAM (10−7 M, 10−8 M, 10−10 M) or ICI (10−7 M) exposure, on the other hand, did not affect any of the measured parameters. If frogs were co-exposed to EE2 (10−10 M) and TAM (10−7 M) the effects of EE2 on some parameters were abolished, but co-exposure to EE2 and ICI (10−7 M) neutralized all estrogenic effects. Thus, although EDCs with antiestrogenic MOA might not exhibit any effects per se, they can alter the estrogenic effects of EE2. Our observations demonstrate that there is need to further investigate the combined effects of EDCs with various, not only opposing, MOAs as this would reflect realistic wildlife situations.  相似文献   

16.
This study evaluates the applicability and sensitivity of fish population dynamics modeling in assessing the potential effects of individual chemicals on population sustainability and recovery. Fish reproductive health is an increasingly important issue for ecological risk assessment following international concern over endocrine disruption. Life-history data from natural brook trout and fathead minnow populations were combined with effects data from laboratory-based studies, mainly concerning species other than brook trout and fathead minnows, to assess the likely impact of nonylphenol (NP) and methoxychlor (MXC) on brook trout (Salvelinus fontinalis) and fathead minnow (Pimephales promelas) population size. A delay differential equation (DDE) model with a 1-day timestep was used to predict the population dynamics of the brook trout and fathead minnows. The model predicts that NP, could enhance populations by up to 17% at a concentration of 30?µg l?1 based on the results of reduction in survival and increased fecundity from life-cycle toxicity tests, however attempting to allow for growth reduction and its effect on fecundity results in a prediction of a 28% reduction in population numbers. For fathead minnows the DDE model predicts that the same concentration of NP could cause a population reduction of 21%. The differences in these predictions are related to these two species having different life history strategies, which are considered in the parameterization of the model. Post-application concentrations of MXC may peak around 300?µg l?1 and then decline rapidly with time. Predictions show that such applications could cause a reduction of up to 30% in brook trout populations if the application occurs at the peak of the spawning season on successive years but that the effect would be less than 1% if the spawning season is avoided. Effects on the fathead minnow population size are predicted to be smaller (<4%) even if application occurs during the spawning period. Risk based statistics generated by the population dynamics models, such as interval decline risk or quasiextinction risk and predicted time to recovery complement traditional effects parameters such as LC50 and LOEC and may ultimately prove to be more useful in risk assessment.  相似文献   

17.
SUMMARY.
  • 1 The direct and indirect effects of predation by larval fish (Rhamdia sapo) on zooplankton in rearing tanks are analysed. Rhamdia sapo larvae showed an unusual species-selectivity for Acanthocyclops robustus, the main invertebrate predator present.
  • 2 Acanthocyclops robustus populations were markedly reduced, presumably as a direct consequence of species-selective removal. Other zooplanktonic prey were not significantly affected by R. sapo predation.
  • 3 Rotifers increased in tanks with fish, but this was not related to herbivorous crustacean variables (biomass, mean weight, abundance and species composition). On the contrary, rotifer biomass was negatively correlated with some A. robustus variables (biomass and mean weight of adults + copepodites and nauplii biomass). Thus, the rotifer increase appears to be an indirect effect of predation on A. robustus by R. sapo larvae.
  相似文献   

18.
A protective limestone treatment was applied to an acid-sensitive lake in northeastern Minnesota as part of the Acid Precipitation Mitigation Program. This 6–year study evaluated the impact of that treatment on lakes in the upper Midwest that experience episodes of acid stress but have not lost basic species integrity and community structure. Several changes in the fish community can be directly or indirectly attributed to the addition of 4.6 tonnes of calcium carbonate early in the third year of the study. An almost 30–fold increase in the population of Pimephales promelas(fathead minnow) a year after liming, based on mark-recapture estimates from trap netting and snorkeling, was attributed to a pH increase and a three-fold increase in the calcium concentration of the epilimnion. After the initial increase, the abundance of fathead minnows declined in subsequent years, as did the elevated pH and calcium concentrations. The Salvelimis fontinalis(brook trout) population also increased in the lake following application of limestone, but this was due in part to closing the lake to fishing. An increase in survival of stocked brook trout to age 1+ and an increase in growth of older brook trout after liming were attributed to the increased forage that the fathead minnows provided. Fathead minnows may have also reduced predation pressure on young brook trout by older brook trout. This study demonstrated that liming of a slightly acidic lake did not adversely affect the integrity of the fish community, and in fact may have increased the abundance and biomass of the forage fish community and indirectly increased the survival, abundance, and growth of brook trout.  相似文献   

19.
Metabolic rate is a trait that may evolve in response to the direct and indirect effects of predator‐induced mortality. Predators may indirectly alter selection by lowering prey densities and increasing resource availability or by intensifying resource limitation through changes in prey behavior (e.g., use of less productive areas). In the current study, we quantify the evolution of metabolic rate in the zooplankton Daphnia pulicaria following an invasive event by the predator Bythotrephes longimanus in Lake Mendota, Wisconsin, US. This invasion has been shown to dramatically impact D. pulicaria, causing a ~60% decline in their biomass. Using a resurrection ecology approach, we compared the metabolic rate of D. pulicaria clones originating prior to the Bythotrephes invasion with that of clones having evolved in the presence of Bythotrephes. We observed a 7.4% reduction in metabolic rate among post‐invasive clones compared to pre‐invasive clones and discuss the potential roles of direct and indirect selection in driving this change.  相似文献   

20.
Measurement of vitellogenin (VTG) concentrations in the fathead minnow (Pimephales promelas) is currently being considered and evaluated for screening of endocrine active substances. One of the proposed methods, an enzyme-linked immunosorbent assay (ELISA) based on VTG from carp (Cyprinus carpio), was recently evaluated in an inter-laboratory ring test using whole body homogenates from juvenile fathead minnows. The objective of the current study was to compare the performance of three different ELISAs for measuring fathead minnow VTG: (1) a heterologous carp VTG (cVTG) ELISA used in the ring test, (2) a homologous fathead minnow VTG (fVTG) ELISA, and (3) a hybrid ELISA with the antibody developed for cVTG, but using fVTG for coating the plates and preparing standard curves. VTG was measured in whole body homogenates from juvenile fathead minnows exposed to 17alpha-ethynylestradiol (EE(2); 10 ng/l) and whole body homogenates and plasma from adult fathead minnows exposed to 17beta-estradiol (E(2); 5 mg/kg; i.p.). The cVTG assay showed lower specificity for fathead minnow VTG in whole body homogenates and plasma from treated fish, compared to the fVTG assay. VTG concentrations in juvenile fathead minnow homogenates from the EE(2)-exposed group were approximately 50-fold higher when measured using the fVTG method compared to the cVTG method. Use of the homologous fVTG in the hybrid cVTG assay yielded VTG concentrations in the range of the fVTG assay but the low specificity persisted. The homologous fVTG assay is recommended to achieve accurate quantification of VTG levels in fathead minnows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号