首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the changes of cholesterol and non-cholesterol sterol metabolism during plant stanol ester margarine feeding in 153 hypercholesterolemic subjects. Rapeseed oil (canola oil) margarine without (n = 51) and with (n = 102) stanol (2 or 3 g/day) ester was used for 1 year. Serum sterols were analyzed with gas-liquid chromatography. The latter showed a small increase in sitostanol peak during stanol ester margarine eating. Cholestanol, campesterol, and sitosterol proportions to cholesterol were significantly reduced by 5-39% (P < 0.05 or less for all) by stanol esters; the higher their baseline proportions the higher were their reductions. The precursor sterol proportions were significantly increased by 10- 46%, and their high baseline levels predicted low reduction of serum cholesterol. The decrease of the scheduled stanol dose from 3 to 2 g/day after 6-month feeding increased serum cholesterol by 5% (P < 0. 001) and serum plant sterol proportions by 8-13% (P < 0.001), but had no consistent effect on precursor sterols. In twelve subjects, the 12-month level of LDL cholesterol exceeded that of baseline; the non-cholesterol sterol proportions suggested that stimulated synthesis with relatively weak absorption inhibition contributed to the non-responsiveness of these subjects. In conclusion, plant stanol ester feeding lowers serum cholesterol in about 88% of subjects, decreases the non-cholesterol sterols that reflect cholesterol absorption, increases the sterols that reflect cholesterol synthesis, but also slightly increases serum plant stanols. Low synthesis and high absorption efficiency of cholesterol results in the greatest benefit from stanol ester consumption.  相似文献   

2.
Wilson disease (WD) is caused by mutations of the WD gene ATP7B resulting in copper accumulation in different tissues. WD patients display hepatic and neurological disease with yet poorly understood pathomechanisms. Therefore, we studied age-dependent (3, 6, 47weeks) biochemical and bioenergetical changes in Atp7b(-/-) mice focusing on liver and brain. Mutant mice showed strongly elevated copper and iron levels. Age-dependently decreasing hepatic reduced glutathione levels along with increasing oxidized to reduced glutathione ratios in liver and brain of 47weeks old mice as well as elevated hepatic and cerebral superoxide dismutase activities in 3weeks old mutant mice highlighted oxidative stress in the investigated tissues. We could not find evidence that amino acid metabolism or beta-oxidation is impaired by deficiency of ATP7B. In contrast, sterol metabolism was severely dysregulated. In brains of 3week old mice cholesterol, 8-dehydrocholesterol, desmosterol, 7-dehydrocholesterol, and lathosterol were all highly increased. These changes reversed age-dependently resulting in reduced levels of all previously increased sterol metabolites in 47weeks old mice. A similar pattern of sterol metabolite changes was found in hepatic tissue, though less pronounced. Moreover, mitochondrial energy production was severely affected. Respiratory chain complex I activity was increased in liver and brain of mutant mice, whereas complex II, III, and IV activities were reduced. In addition, aconitase activity was diminished in brains of Atp7b(-/-) mice. Summarizing, our study reveals oxidative stress along with severe dysfunction of mitochondrial energy production and of sterol metabolism in Atp7b(-/-) mice shedding new light on the pathogenesis of WD.  相似文献   

3.
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR-/-) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR-/- mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR-/- mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second "hit" that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.  相似文献   

4.
Nonalcoholic steatohepatitis (NASH) is a disease with symptoms similar to those of alcoholic liver inflammation without alcohol intake. As an effective treatment strategy has not been established for this disease, a detailed understanding of the pathological progression mechanism is required. We focused on cholesterol metabolites, which are suspected to regulate NASH pathology, and investigated their relationship with the pathological progression in the early stages of NASH.First, the LC/MS/MS methods for bile acids and sterols were optimized and validated. Next, NASH model mice were established by feeding a choline-deficient, methionine-reduced high-fat diet, and the levels of hepatic cholesterol metabolites were measured. As a result, before the onset of NASH, desmosterol, 4β-hydroxycholesterol, campesterol, sitosterol, secondary bile acids such as taurodeoxycholic acid significantly decreased by up to 1/38 of NASH model group. Autoxidation-generated sterols significantly increased 2- to 5-fold, and various primary bile acids such as conjugated β-muricholic acids and cholic acids significantly increased 2- to 7-fold.In this study, the levels of cholesterol metabolites changed in the before the onset of NASH. These metabolic alterations involved in inflammation induction and detoxification for NASH may help the discovery of early diagnostic biomarkers in the future.  相似文献   

5.
6.
Statins do not always decrease coronary heart disease mortality, which was speculated based on increased serum plant sterols observed during statin treatment. To evaluate plant sterol atherogenicity, we fed low density lipoprotein-receptor deficient (LDLr(+/-)) mice for 35 weeks with Western diets (control) alone or enriched with atorvastatin or atorvastatin plus plant sterols or stanols. Atorvastatin decreased serum cholesterol by 22% and lesion area by 57%. Adding plant sterols or stanols to atorvastatin decreased serum cholesterol by 39% and 41%. Cholesterol-standardized serum plant sterol concentrations increased by 4- to 11-fold during sterol plus atorvastatin treatment versus stanol plus atorvastatin treatment. However, lesion size decreased similarly in the sterol plus atorvastatin (-99% vs. control) and the stanol plus atorvastatin (-98%) groups, with comparable serum cholesterol levels, suggesting that increased plant sterol concentrations are not atherogenic. Our second study confirms this conclusion. Compared with lesions after a 33 week atherogenic period, lesion size further increased in controls (+97%) during 12 more weeks on the diet, whereas 12 weeks with the addition of plant sterols or stanols decreased lesion size (66% and 64%). These findings indicate that in LDLr(+/-) mice 1) increased cholesterol-standardized serum plant sterol concentrations are not atherogenic, 2) adding plant sterols/stanols to atorvastatin further inhibits lesion formation, and 3) plant sterols/stanols inhibit the progression or even induce the regression of existing lesions.  相似文献   

7.
Slight differences in the molecular structures of a category of sterol/stanol species affect the solubility of cholesterol in a bile salt solution. We systematically studied the preferential solubilization of cholesterol and sterol/stanol in sodium taurodeoxycholate solutions using relatively minor plant species of sterol/stanol (brassicasterol and stigmasterol) and a non-plant sterol (cholestanol). As relatively major sterol/stanol species (β-sitosterol, β-sitostanol, and campesterol) have already been examined using nearly identical procedures to that used in our system, we were able to sufficiently discuss the cholesterol-lowering effects resulting from the molecular structures of six sterol/stanol species. The results of competitive solubilization revealed that cholestanol has the largest cholesterol-lowering effect, decreasing cholesterol solubility to 33% of that in a single solubilizate system. The molecular structure of cholestanol is also most similar to that of cholesterol. In contrast, brassicasterol and stigmasterol have little ability to decrease cholesterol solubility in a mixed binary system. Both have an unsaturated double bond at the side chain of the steroid ring. By applying thermodynamic analyses to these results, we found that the Gibbs energy changes (ΔG°) of solubilization for sterol/stanol species with cholesterol-lowering effects show larger negative values than that for cholesterol.  相似文献   

8.
Possible mechanisms for the cholesterol-lowering effects of plant stanol esters were addressed by feeding hamsters diets containing stanol esters, cholesterol, or cholestyramine/lovastatin. ABCA1, ATP binding cassette G1 (ABCG1), ABCG5, ABCG8, and Niemann-Pick C1-like 1 (NPC1L1) mRNA levels were then estimated in duodenum, jejunum, and ileum. Plasma cholesterol was decreased by 36% and 94% in animals fed stanol esters and cholestyramine/lovastatin, respectively. Cholesterol feeding increased plasma cholesterol by 2.5-fold. Plasma plant sterols were unchanged by stanol ester feeding but became undetectable by feeding cholestyramine/lovastatin. Cholesterol and stanols accumulated in enterocytes of animals fed cholesterol and stanol esters, respectively. ABCG5 and ABCG8 mRNA levels were decreased by stanol esters and cholestyramine/lovastatin. Cholesterol feeding markedly increased ABCA1 and ABCG1 expression and modestly increased ABCG5/ABCG8. NPC1L1 mRNA was not significantly altered by any of the diets. ABCG1, ABCG5, ABCG8, and NPC1L1 mRNAs were highest in cells of the upper villus, whereas ABCA1 mRNA was highest in cells of the lower villus. The results suggest that cholesterol lowering effect of stanol esters is unrelated to changes in mRNA levels of intestinal ABC sterol transporters or NPC1L1. Cholesterol flux regulates ABC expression but not NPC1L1. The different localization of ABCA1 suggests a different function for this protein than for ABCG1, ABCG5, ABCG8, and NPC1L1.  相似文献   

9.
The aims of this study were to compare the cholesterol-lowering properties of corn fiber oil (CFO) to corn oil (CO), whether the addition of soy stanols or soy sterols to CO at similar levels in CFO would increase CO's cholesterol-lowering properties, and the mechanism(s) of action of these dietary ingredients. Fifty male Golden Syrian hamsters were divided into 5 groups of 10 hamsters each, based on similar plasma total cholesterol (TC) levels. The first group of hamsters was fed a chow-based hypercholesterolemic diet containing either 5% coconut oil + 0.24% cholesterol (coconut oil), 5% CO, 5% CFO, 5% CO + 0.6% soy sterols (sterol), or 5% CO + 0.6% soy stanols (stanol) in place of the coconut oil for 4 weeks. The stanol diet significantly inhibited the elevation of plasma TC compared to all other dietary treatments. Also, the CFO and sterol diets significantly inhibited the elevation of plasma TC compared to the CO and coconut oil diets. The CFO, sterol, and stanol diets significantly inhibited the elevation of plasma non-high density lipoprotein cholesterol compared to the CO and coconut oil diets. The stanol diet significantly inhibited the elevation of plasma high density lipoprotein cholesterol (HDL-C) compared to all other dietary treatments. The sterol diet significantly inhibited the elevation of plasma HDL-C compared to the CO and coconut oil diets, whereas the CFO diet significantly inhibited the elevation of plasma HDL-C compared to the coconut oil diet only. No differences were observed between the CFO and CO for plasma HDL-C. There were no differences observed between groups for plasma triglycerides. The CO and CFO diets had significantly less hepatic TC compared to the coconut oil, sterol, and stanol diets. The CO and CFO diets had significantly less hepatic free cholesterol compared to the sterol and stanol diets but not compared to the coconut oil diet; whereas the coconut oil and sterol diets had significantly less hepatic free cholesterol compared to the stanol diet. The CFO, sterol, and stanol diets excreted significantly more fecal cholesterol compared to the coconut oil and CO diets. In summary, CFO reduces plasma and hepatic cholesterol concentrations and increases fecal cholesterol excretion greater than CO through some other mechanism(s) in addition to increase dietary sterols and stanols-possibly oryzanols.  相似文献   

10.
Properties of the intestinal digestion of the dietary phytosterols, cholesterol and cholestanol, and the mechanisms by which phytosterols inhibit the intestinal absorption of cholesterol in healthy human subjects are poorly known. We have studied the hydrolysis of dietary plant sterol and stanol esters and their subsequent micellar solubilization by determining their concentrations in micellar and oil phases of the jejunal contents. Two liquid formulas with low (formula 1) and high (formula 2) plant stanol concentrations were infused via a nasogastric tube to the descending duodenum of 8 healthy human subjects, and intestinal contents were sampled for gas-liquid chromatographic sterol analysis 60 cm more distally. During the duodenal transit, phytosterol esters were hydrolyzed. This was especially profound for sitostanol, as its esterified fraction per milligram of sitosterol decreased 80% (P < 0.001) in formula 1 and 61% (P < 0.001) in formula 2. Contrary to that, esterified fraction of cholesterol per milligram of sitosterol was increased fourfold (P < 0.001) in formula 1 and almost sixfold (P < 0.001) in formula 2, whereas that of cholestanol remained unchanged. Percentages of esterified sterols and stanols in total intestinal fluid samples were higher after the administration of formula 2 than of formula 1. Esterified cholesterol and stanols accumulated in the oil phase, and free stanols replaced cholesterol in the micellar phase. At high intestinal plant stanol concentrations, cholesterol looses its micellar solubility possibly by replacement of its free fraction in the micellar phase by hydrolyzed plant stanols, which leads to a decreased intestinal absorption of cholesterol.  相似文献   

11.
Plant sterols and stanols are structurally similar to cholesterol and when added to the diet they are able to reduce serum total- and LDL-cholesterol concentrations. They also lower serum triglyceride concentrations in humans, particularly under conditions of hypertriglyceridemia. The aim of this study was to unravel the mechanism by which plant sterols and stanols reduce serum triglyceride concentrations in high-fat diet (HFD) fed mice. Male C57BL/6J mice were fed HFD for 4 weeks. Subsequently, they received HFD, HFD supplemented with 3.1% plant sterol ester (PSE) or HFD supplemented with 3.1% plant stanol ester (PSA) for another three weeks. Both PSE and PSA feeding resulted in decreased plasma triglyceride concentrations compared with HFD, while plasma cholesterol levels were unchanged. Interestingly, hepatic cholesterol levels were decreased in the PSE/PSA groups compared with HFD and no differences were found in hepatic triglyceride levels between groups. To investigate the mechanism underlying the hypotriglyceridemic effects from PSE/PSA feeding, we measured chylomicron and VLDL secretion. PSE and PSA feeding resulted in reduced VLDL secretion, while no differences were found between groups in chylomicron secretion. In conclusion, our data indicate that plasma triglyceride-lowering resulting from PSE and PSA feeding is associated with decreased hepatic VLDL secretion.  相似文献   

12.
Nonalcoholic steatohepatitis (NASH) is a disorder characterized by simultaneous fat accumulation and chronic inflammation in the liver. In this study, Pin1 expression was revealed to be markedly increased in the livers of mice with methionine choline-deficient (MCD) diet-induced NASH, a rodent model of NASH. In addition, Pin1 KO mice were highly resistant to MCD-induced NASH, based on a series of data showing simultaneous fat accumulation, chronic inflammation, and fibrosis in the liver. In terms of Pin1-induced fat accumulation, it was revealed that the expression levels of peroxisome proliferator-activated receptor α and its target genes were higher in the livers of Pin1 KO mice than in controls. Thus, resistance of Pin1 KO mice to hepatic steatosis is partially attributable to the lack of Pin1-induced down-regulation of peroxisome proliferator-activated receptor α, although multiple other mechanisms are apparently involved. Another mechanism involves the enhancing effect of hematopoietic Pin1 on the expressions of inflammatory cytokines such as tumor necrosis factor and monocyte chemoattractant protein 1 through NF-κB activation, eventually leading to hepatic fibrosis. Finally, to distinguish the roles of hematopoietic or nonhematopoietic Pin1 in NASH development, mice lacking Pin1 in either nonhematopoietic or hematopoietic cells were produced by bone marrow transplantation between wild-type and Pin1 KO mice. The mice having nonhematopoietic Pin1 exhibited fat accumulation without liver fibrosis on the MCD diet. Thus, hepatic Pin1 appears to be directly involved in the fat accumulation in hepatocytes, whereas Pin1 in hematopoietic cells contributes to inflammation and fibrosis. In summary, this is the first study to demonstrate that Pin1 plays critical roles in NASH development. This report also raises the possibility that hepatic Pin1 inhibition to the appropriate level might provide a novel therapeutic strategy for NASH.  相似文献   

13.
Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH.  相似文献   

14.
The objective of this study was to develop a well-characterized mouse model of nonalcoholic steatohepatitis (NASH) with a strong manifestation of liver fibrosis. The progression of metabolic, inflammatory and fibrotic features of this mouse model was monitored by performing in vivo time-course study. Male C57BL/6J mice were fed a high-fat/high-sucrose/high-cholesterol diet (34% fat, 34% sucrose and 2.0% cholesterol, by weight) for 2, 4, 6, 8, 10, 12, 14 or 16 weeks to induce obesity-associated metabolic dysfunctions, inflammation and fibrosis in the liver and white adipose tissue (WAT). Body and liver weights were gradually increased with significant hepatic triglyceride accumulation, i.e., liver steatosis, and marked elevation of serum alanine transaminase levels at week 10. While hepatic inflammation was displayed with the highest expression of macrophage markers and M1 markers at week 6, liver fibrosis determined by collagen accumulation was continuously increased to week 16. In epididymal WAT, weights and adipocyte size peaked at week 6–8. The increased expression of fibrogenic genes preceded inflammatory features (week 2 to 6 vs. week 6 to 16), suggesting that early fibrosis may trigger inflammatory events in the WAT. This study established a mouse model of diet-induced NASH with a strong manifestation of liver fibrosis. This mouse model will be a valuable in vivo tool in studying the pathophysiology of NASH and also in testing preventive and therapeutic potentials of dietary components and drugs against NASH with liver fibrosis.  相似文献   

15.
The individual roles of hepatic versus intestinal ABCG5 and ABCG8 in sterol transport have not yet been investigated. To determine the specific contribution of liver ABCG5/G8 to sterol transport and atherosclerosis, we generated transgenic mice that overexpress human ABCG5 and ABCG8 in the liver but not intestine (liver G5/G8-Tg) in three different genetic backgrounds: C57Bl/6, apoE-KO, and low density lipoprotein receptor (LDLr)-KO. Hepatic overexpression of ABCG5/G8 enhanced hepatobiliary secretion of cholesterol and plant sterols by 1.5-2-fold, increased the amount of intestinal cholesterol available for absorption and fecal excretion by up to 27%, and decreased the accumulation of plant sterols in plasma by approximately 25%. However, it did not alter fractional intestinal cholesterol absorption, fecal neutral sterol excretion, hepatic cholesterol concentrations, or hepatic cholesterol synthesis. Consequently, overexpression of ABCG5/G8 in only the liver had no effect on the plasma lipid profile, including cholesterol, HDL-C, and non-HDL-C, or on the development of proximal aortic atherosclerosis in C57Bl/6, apoE-KO, or LDLr-KO mice. Thus, liver ABCG5/G8 facilitate the secretion of liver sterols into bile and serve as an alternative mechanism, independent of intestinal ABCG5/G8, to protect against the accumulation of dietary plant sterols in plasma. However, in the absence of changes in fractional intestinal cholesterol absorption, increased secretion of sterols into bile induced by hepatic overexpression of ABCG5/G8 was not sufficient to alter hepatic cholesterol balance, enhance cholesterol removal from the body or to alter atherogenic risk in liver G5/G8-Tg mice. These findings demonstrate that overexpression of ABCG5/G8 in the liver profoundly alters hepatic but not intestinal sterol transport, identifying distinct roles for liver and intestinal ABCG5/G8 in modulating sterol metabolism.  相似文献   

16.
Plant sterols such as sitosterol and campesterol are frequently administered as cholesterol-lowering supplements in food. Recently, it has been shown in mice that, in contrast to the structurally related cholesterol, circulating plant sterols can enter the brain. We questioned whether the accumulation of plant sterols in murine brain is reversible. After being fed a plant sterol ester-enriched diet for 6 weeks, C57BL/6NCrl mice displayed significantly increased concentrations of plant sterols in serum, liver, and brain by 2- to 3-fold. Blocking intestinal sterol uptake for the next 6 months while feeding the mice with a plant stanol ester-enriched diet resulted in strongly decreased plant sterol levels in serum and liver, without affecting brain plant sterol levels. Relative to plasma concentrations, brain levels of campesterol were higher than sitosterol, suggesting that campesterol traverses the blood-brain barrier more efficiently. In vitro experiments with brain endothelial cell cultures showed that campesterol crossed the blood-brain barrier more efficiently than sitosterol. We conclude that, over a 6-month period, plant sterol accumulation in murine brain is virtually irreversible.  相似文献   

17.
Regulation of cholesterol metabolism by dietary plant sterols   总被引:1,自引:0,他引:1  
Renewal has occurred in the use of plant sterols for the treatment of hypercholesterolemias. A novel development was to convert plant sterols to corresponding stanols and esterify them to fat soluble form. In contrast to the crystalline plant sterols or stanols, plant stanol esters can be easily consumed during normal food intake in soluble form in different fat-containing food constituents when they have a potent cholesterol-lowering effect, shown in normo- and hypercholesterolemic men and women without or with coronary heart disease, children and diabetes. Cholesterol lowering is approximately 10% for total and 15% for LDL cholesterol, with the respective values for stanol ester margarine (2-3 g/day stanols) being 15% and 20%. Stanol esters reduce cholesterol absorption efficiency by up to 65%, increase cholesterol elimination in feces as cholesterol itself, usually not as bile acids, and stimulate cholesterol synthesis. Serum beta-carotene level is lowered, but no fat malabsorption or lowering of serum fat soluble vitamins have been observed. In contrast to plant sterols, stanols and their esters are minimally absorbed and they reduce serum plant sterol concentrations, also preventing statin-induced increase of plant sterols. Stanol ester margarine has been included in dietary treatment of hypercholesterolemia followed by the addition of drug treatment in resistant cases.  相似文献   

18.
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.  相似文献   

19.
Although macrophages are thought to be crucial for the pathogenesis of chronic inflammatory diseases, how they are involved in disease progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is poorly understood. Here we report the unique histological structure termed “hepatic crown-like structures (hCLS)” in the mouse model of human NASH; melanocortin-4 receptor deficient mice fed a Western diet. In hCLS, CD11c-positive macrophages aggregate to surround hepatocytes with large lipid droplets, which is similar to those described in obese adipose tissue. Histological analysis revealed that hCLS is closely associated with activated fibroblasts and collagen deposition. When treatment with clodronate liposomes effectively depletes macrophages scattered in the liver, with those in hCLS intact, hepatic expression of inflammatory and fibrogenic genes is unaffected, suggesting that hCLS is an important source of inflammation and fibrosis during the progression of NASH. Notably, the number of hCLS is positively correlated with the extent of liver fibrosis. We also observed increased number of hCLS in the liver of non-alcoholic fatty liver disease/NASH patients. Collectively, our data provide evidence that hCLS is involved in the development of hepatic inflammation and fibrosis, thereby suggesting its pathophysiologic role in disease progression from simple steatosis to NASH.  相似文献   

20.
The pathogenesis of nonalcoholic steatohepatitis (NASH), like that of atherosclerosis, involves lipid accumulation, inflammation and fibrosis. Recent studies suggest that oxidized LDL (oxLDL) may be a risk factor for NASH, but oxLDL levels were not directly measured in these studies. The aim of this study was to examine whether there was an association between electronegative LDL [LDL(−)], a mildly oxLDL found in the blood, and the development of NASH using two animal models. Golden Syrian hamsters and C57BL/6 mice were fed a high-fat, high-cholesterol (HFC) diet for 6 or 12 weeks, then liver lipid and histopathology, plasma lipoprotein profile and LDL(−) levels were examined. The HFC-diet-fed hamsters and mice had similar levels of hepatic lipid but different histopathological changes, with microvesicular steatosis, hepatocellular hypertrophy, inflammation and bridging fibrosis in the hamsters, but only in mild steatohepatitis with low inflammatory cell infiltration in the mice. It also resulted in a significant increase in plasma levels of LDL cholesterol and LDL(−) in hamsters, but only a slight increase in mice. Moreover, enlarged Kupffer cells, LDL(−) and accumulation of unesterified cholesterol were detected in the portal area of HFC-diet-fed hamsters, but not HFC-diet-fed mice. An in vitro study showed that LDL(−) from HFC-diet-fed hamsters induced TNF-α secretion in rat Kupffer cell through a LOX-1-dependent pathway. Our results strongly suggest that LDL(−) is one of the underlying causes of hepatic inflammation and plays a critical role in the development of NASH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号