首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine (Vitis berlandieri × Vitis rupestris) fine roots from the tip to secondary growth zones. Our characterization included the localization of suberized structures and aquaporin gene expression and the determination of hydraulic conductivity (Lpr) and aquaporin protein activity (via chemical inhibition) in different root zones under both osmotic and hydrostatic pressure gradients. Tissue-specific messenger RNA levels of the plasma membrane aquaporin isogenes (VvPIPs) were quantified using laser-capture microdissection and quantitative polymerase chain reaction. Our results highlight dramatic changes in structure and function along the length of grapevine fine roots. Although the root tip lacked suberization altogether, a suberized exodermis and endodermis developed in the maturation zone, which gave way to the secondary growth zone containing a multilayer suberized periderm. Longitudinally, VvPIP isogenes exhibited strong peaks of expression in the root tip that decreased precipitously along the root length in a pattern similar to Arabidopsis (Arabidopsis thaliana) roots. In the radial orientation, expression was always greatest in interior tissues (i.e. stele, endodermis, and/or vascular tissues) for all root zones. High Lpr and aquaporin protein activity were associated with peak VvPIP expression levels in the root tip. This suggests that aquaporins play a limited role in controlling water uptake in secondary growth zones, which contradicts existing theoretical predictions. Despite having significantly lower Lpr, woody roots can constitute the vast majority of the root system surface area in mature vines and thus provide for significant water uptake potential.In woody perennial root systems, the majority of water uptake is often attributed to unsuberized fine roots (Kramer and Boyer, 1995), even though woody portions can constitute the vast majority of root surface area for these plants at maturity (Nightingale, 1934; Kramer and Bullock, 1966). This assumption has likely been reinforced by the fact that most studies investigating root water uptake have been done with herbaceous species, whose roots function more like the tips of woody perennials. Although unsuberized fine roots typically have a greater ability to absorb water (i.e. they are more conductive per unit of surface area), it has been shown that older suberized portions of woody taproots can still contribute significantly to root system water uptake (Kramer and Bullock, 1966; Queen, 1967; Chung and Kramer, 1975; MacFall et al., 1990, 1991). Despite this knowledge and the fact that unsuberized roots of many woody perennials are scarce or absent during periods of the growing season when peak transpiration requires much water (MacFall et al., 1991), we still know little about how suberized portions of perennial rooting systems contribute to radial water absorption across species.The composite transport model (Steudle, 2001) is a conceptual framework describing water transport into plant roots. This model posits that water is able to flow into the root via multiple parallel pathways, traveling either in the cell walls (apoplastic) and/or from cell to cell (symplastic and/or transcellular). Transport across the cell-to-cell pathway can involve water crossing plasma membranes; thus, the rate of water uptake can be influenced by the abundance and activity of aquaporins (i.e. water channels). The contribution of aquaporins to root water uptake has been the focus of numerous studies, and the absolute magnitude of this contribution appears to be highly variable, ranging from 20% to 90% across species (for review, see Javot and Maurel, 2002). Steudle (2000) suggested that radial water flow would be dominated by aquaporin regulation in heavily suberized roots, as flow through the apoplast would be minimized. The localization of aquaporins should play a critical role in defining their impact on radial water uptake across suberized and unsuberized roots. For herbaceous species, peak aquaporin mRNA and/or protein levels have been found in root tips and the endodermis, pericycle, phloem, and xylem tissues (Schäffner, 1998; Otto and Kaldenhoff, 2000; Suga et al., 2003; Fraysse et al., 2005; Knipfer et al., 2011). Few aquaporin localization studies have been conducted in woody perennials (Vandeleur et al., 2009). Recent work from our laboratory revealed a precipitous drop in aquaporin expression between the grapevine (Vitis spp. rootstocks) root tips and older root portions (Gambetta et al., 2012). These observations led to this study, where we explore patterns of aquaporin localization in Vitis species fine roots and how they intersect with the structural anatomy and patterns of suberization to affect water uptake along the root length.Hydraulic conductivity (Lpr) of the apoplastic pathway can be altered through changes in cell wall chemistry, especially through the deposition of suberin. Suberized apoplastic barriers in plant roots include the Casparian band of the endodermis and the suberin lamella of the endodermis, exodermis, and periderm in woody species (Esau, 1977). Casparian bands and suberin lamella are solute impermeable (for review, see Peterson and Enstone, 1996), but across studies, the extent to which they impede the flow of water is highly variable (Peterson et al., 1993; Steudle et al., 1993; Peterson and Enstone, 1996; Schreiber et al., 2005). Regardless, studies support the idea that in roots there is always some flow across the cell-to-cell pathway due to apoplastic barriers and/or an osmotic component to the driving gradient (Steudle et al., 1993; Miyamoto et al., 2001; Knipfer and Fricke, 2011). In the cell-to-cell pathway, Lpr can be altered by intrinsic plasma membrane properties, plasmodesmata (Oparka and Prior, 1992; Roberts and Oparka, 2003), and/or the abundance and activity of aquaporins. Changes in aquaporin gene expression and protein activity remain potentially dynamic and can occur within hours, while alterations of suberized apoplastic barriers are permanent and would manifest over longer developmental time frames.The total water potential gradient across a fine root can be composed of both osmotic (ΔΨOs) and hydrostatic (ΔΨHy) pressure gradients. A purely ΔΨOs requires that some portion of the pathway be cell to cell. A purely ΔΨHy should drive flow through both pathways, and the proportion of flow through the two pathways will be determined by their Lpr. Experimentally, Lpr generated under ΔΨHy is typically greater than Lpr generated under ΔΨOs, typically ranging from 2-fold to more than 100-fold greater (Steudle et al., 1987; Hallgren et al., 1994; Miyamoto et al., 2001; Knipfer and Fricke, 2011). In some cases, Lpr is nearly equal under both types of gradients (Miyamoto et al., 2001; Knipfer and Fricke, 2011). These results suggest that if Lpr through the apoplast were to be reduced by the presence of an apoplastic barrier, this would force flow across a cell-to-cell pathway regardless of the driving gradient (Steudle, 2000).In this study, we sought to provide a more detailed understanding of the localization of aquaporin expression and its contribution to radial water uptake in different zones of grapevine fine roots, from the unsuberized actively growing root tip to portions of the fine root undergoing secondary growth and containing a developed periderm. We characterized the developmental anatomy along the length of the fine root, including the localization of suberized structures, and quantified tissue-specific mRNA levels of plasma membrane aquaporin isogenes via a combination of laser-capture microdissection (LCM) and quantitative PCR. Finally, we determined the Lpr of root tips and secondary growth root zones under both ΔΨOs and ΔΨHy while investigating the contribution of aquaporin activity to Lpr via chemical inhibition.  相似文献   

2.
3.
4.
Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.The root system is of critical importance for the survival, development, and performance of higher plants, because it is the major organ for anchorage, acquisition of water and nutrients, and carbon storage. Therefore, there is a long-standing interest in the scientific community regarding the structure, function, and development of root systems. Rising concerns about the environmental impact and increasing cost of fertilizers have initiated breeding programs for more resource-efficient cultivars and the development of methods for phenotyping root systems. The opaque nature of soils generally demands destructive methods such as root excavation for subsequent optical assessment (Lynch, 2007; Trachsel et al., 2011). Although efficient for screening large numbers of plants for a limited set of clearly discernible traits, this approach does not allow detailed monitoring of root development over time. Other approaches, such as rhizotrons or mini-rhizotron tubes, where root growth is observed along transparent windows (Nagel et al., 2009), monitor only a fraction of the roots. Methods in which the whole root system is visible are typically based on artificial media such as paper pouches (Chen et al., 2011; Le Marié et al., 2014), three-dimensional (3D) gels (Iyer-Pascuzzi et al., 2010), and hydro- or aeroponics (Herdel et al., 2001). Results may thus not be directly transferable to plants grown in natural 3D soil environments (Gregory et al., 2003). For example, roots are known to grow faster and thinner when the penetration resistance is low (Bengough et al., 2011; Chimungu et al., 2015). Computed tomography (CT; both x-ray and neutron) has been proposed to overcome the mentioned difficulties with studying roots in natural soil. CT has been successfully used to obtain high-resolution images of roots (Moradi et al., 2009; Flavel et al., 2012; Mooney et al., 2012). High resolution is necessary for segmenting roots due to a poor contrast between roots and soil (Jassogne et al., 2009; Mairhofer et al., 2012; Mairhofer et al., 2013). A first direct comparison (to our knowledge) of magnetic resonance imaging (MRI) and x-ray CT for 3D root imaging has recently been published (Metzner et al., 2015), showing that the two modalities pose different opportunities and limitations for root imaging.MRI is based on the magnetic moment of atomic nuclei like 1H (protons), which are highly abundant in living tissues, mainly in water molecules. The magnetic moment can be manipulated using strong magnetic and radio frequency fields that have no known impact on plant development to produce 3D datasets of samples. MRI offers several contrast parameters that can be manipulated for discriminating different structures such as roots from soil background (Rogers and Bottomley, 1987; Jahnke et al., 2009). The basic principles of MRI are described in detail in several textbooks (Callaghan, 1993; Haacke et al., 1999) or review articles (Köckenberger et al., 2004; Blümler et al., 2009; van As et al., 2009; Borisjuk et al., 2012). Research applications to plant roots range from phytopathology (Hillnhütter et al., 2012), across storage root internal structures (Metzner et al., 2014) and water uptake modeling (Stingaciu et al., 2013), to coregistration with positron emission tomography for investigating structure-function relations (Jahnke et al., 2009). Water mobility in roots and soil has also been shown to be detectable with MRI (MacFall and Johnson, 2012; Gruwel, 2014). In particular for imaging roots with MRI, these studies generally explored the applicability of MRI but largely lacked validation of the data against conventional techniques of root visualization after harvest. Our goal was to develop MRI protocols to image roots of plants growing in soil to obtain global root parameters such as root length, mass, or root diameters; gather root growth angles and number of root tips; get spatial information on the distribution of root system architecture (RSA) parameters such as root length densities; and, wherever possible, verify these parameters against harvest data.  相似文献   

5.
Polyamines are involved in key developmental processes and stress responses. Copper amine oxidases oxidize the polyamine putrescine (Put), producing an aldehyde, ammonia, and hydrogen peroxide (H2O2). The Arabidopsis (Arabidopsis thaliana) amine oxidase gene At4g14940 (AtAO1) encodes an apoplastic copper amine oxidase expressed at the early stages of vascular tissue differentiation in roots. Here, its role in root development and xylem differentiation was explored by pharmacological and forward/reverse genetic approaches. Analysis of the AtAO1 expression pattern in roots by a promoter::green fluorescent protein-β-glucuronidase fusion revealed strong gene expression in the protoxylem at the transition, elongation, and maturation zones. Methyl jasmonate (MeJA) induced AtAO1 gene expression in vascular tissues, especially at the transition and elongation zones. Early protoxylem differentiation was observed upon MeJA treatment along with Put level decrease and H2O2 accumulation in wild-type roots, whereas Atao1 loss-of-function mutants were unresponsive to the hormone. The H2O2 scavenger N,N1-dimethylthiourea reversed the MeJA-induced early protoxylem differentiation in wild-type seedlings. Likewise, Put, which had no effect on Atao1 mutants, induced early protoxylem differentiation in the wild type, this event being counteracted by N,N1-dimethylthiourea treatment. Consistently, AtAO1-overexpressing plants showed lower Put levels and early protoxylem differentiation concurrent with H2O2 accumulation in the root zone where the first protoxylem cells with fully developed secondary wall thickenings are found. These results show that the H2O2 produced via AtAO1-driven Put oxidation plays a role in MeJA signaling leading to early protoxylem differentiation in root.Root development is affected by several environmental stresses that may result in the inhibition of root growth and/or the modulation of differentiation pattern. It is not surprising, then, that a complex network of hormonal signals control root architecture under either physiological or stress growth conditions, since in changing environments plants take advantage of root developmental plasticity. Thus, it is reasonable that root growth and vascular development can be either conveniently coordinated or selectively modulated in growing roots depending on specific plant needs, in order to ensure the appropriate water absorption and nutrient uptake in heterogenous soils with varying resource availability.During root vascular development, pericycle/vascular meristematic stem cells differentiate into procambial cell lineages, including protoxylem and metaxylem, intervening procambium, phloem, and pericycle (Mähönen et al., 2006; Petricka et al., 2012). Coordinated events of secondary cell wall deposition and programmed cell death (PCD) characterize the last stage of both protoxylem and metaxylem vessel maturation (Ohashi-Ito and Fukuda, 2010). It is well known that, under physiological conditions, an array of auxin, cytokinin, and brassinosteroid signaling pathways participate in root tissue differentiation (Petricka et al., 2012; Mähönen et al., 2014). Specifically, it has been proposed that vascular patterning is finely regulated by a feedback loop between auxin and cytokinin signaling pathways occurring through mutual inhibition (Bishopp et al., 2011; Perilli et al., 2012; Petricka et al., 2012). Brassinosteroids have also been shown to induce root growth and promote xylem differentiation by driving the entry of xylem precursors into the final stage of tracheary element differentiation (Yamamoto et al., 1997). Recently, reactive oxygen species (ROS) have been described to play a key role in the transition from cell proliferation to tissue differentiation in the root (Tsukagoshi et al., 2010), independently from the auxin/cytokinin feedback loop mentioned above. Indeed, while superoxide anion is required to maintain cell proliferation in the meristem, hydrogen peroxide (H2O2) is required for tissue differentiation in the elongation/differentiation zone.However, less attention has been devoted to xylem differentiation under stress growth conditions, when resource availability and/or water supply may be restrictive, creating the need for a rearrangement of root architecture and vascular differentiation. In this regard, an alteration of the temporal pattern of xylem differentiation was observed in roots of soybean (Glycine max) plants upon saline stress, with a delay in primary xylem differentiation and a precocious formation of secondary xylem (Hilal et al., 1998). Moreover, significant anatomical changes were observed to occur in roots of Agave salmiana under water stress, among them a reduction of vessel number and an increase of xylem diameter and wall thickness (Peña-Valdivia and Sánchez-Urdaneta, 2009). The rearrangement of root vascular tissues has also been reported to occur as a defense reaction against pathogen invasion, such as the regeneration of xylem vessels observed in a Fusarium spp. wilt-resistant carnation (Dianthus caryophyllus ‘Novada’) upon fungal infection to compensate for local vascular dysfunction (Baayen, 1986) as well as the vascular tissue redifferentiation revealed in Arabidopsis (Arabidopsis thaliana) plants following nematode invasion in order to counteract mechanical pressure (Møller et al., 1998). Moreover, xylem regeneration around a wound has been described in maize (Zea mays) seedling stems (Aloni and Plotkin, 1985).Of note, previous studies reported that the stress signaling hormone jasmonic acid (JA), while inducing root growth inhibition (Ren et al., 2009), behaves as a promoter of early vascular tissue differentiation (Cenzano et al., 2003) and xylogenesis (Fattorini et al., 2009). The role of JA in vascular tissue differentiation was first revealed in stolons of potato (Solanum tuberosum) during the tuberization process. In particular, exogenous JA accelerated potato tuber formation via the induction of both cell expansion and early differentiation of protoxylem vessels with ring-shaped secondary wall thickenings, leading to increased movement of nutrients toward the stolon tip (Cenzano et al., 2003). Moreover, exogenous methyl jasmonate (MeJA) was reported to enhance the formation of adventitious roots and the development of xylogenic nodules in tobacco (Nicotiana tabacum) thin layers under root-inductive hormonal conditions (Fattorini et al., 2009).The polyamines (PAs) putrescine (Put), spermidine (Spd), and spermine (Spm) are small aliphatic polycations ubiquitous in living organisms and essential for cell growth, proliferation, and differentiation (Tavladoraki et al., 2012). In plants, PAs have been involved in a multiplicity of developmental processes as well as stress responses and tolerance strategies, their intracellular and extracellular levels varying in response to different physiological and pathological conditions (Mattoo et al., 2010). A fine regulation of their metabolism and/or transport ensures the occurrence of the appropriate PA levels depending on the specific cell needs (Tavladoraki et al., 2012). Oxidative deamination of PAs is catalyzed by amine oxidases (AOs) in a multistep mechanism, with the release of the removed amine moiety and amino aldehydes in the oxidative phase and the production of H2O2 in the reoxidation step of the reduced enzyme (Tavladoraki et al., 2012). Although AOs are a heterogenous class of enzymes varying in subcellular localization, tissue expression pattern, substrate specificity, and mode of catalysis, they share roles in both the homeostasis of PAs and the production of H2O2, the latter representing a common product in the AO-driven oxidative catabolism of PAs (Cona et al., 2006; Tavladoraki et al., 2012). On the basis of the cofactor involved, AOs can be classified into two subclasses: the copper amine oxidases (CuAOs), showing high affinity for Put, and the FAD-dependent polyamine oxidases (PAOs), whose preferred substrates are Spd, Spm, and/or their acetyl derivatives (Cona et al., 2006; Tavladoraki et al., 2012). In Arabidopsis, five PAO genes (AtPAOs) and 10 CuAO genes (AtCuAOs) were identified by database search and in some cases characterized at the protein level (Fincato et al., 2011; Planas-Portell et al., 2013; Ahou et al., 2014; Kim et al., 2014). Among CuAO genes, At4g14940 (The Arabidopsis Information Resource [TAIR] accession no. 2129519), here designed as AtAO1 (formerly ATAO1; Møller and McPherson, 1998), encodes an extracellular protein found in apoplastic fluids of Arabidopsis rosettes, as demonstrated by mass spectrometry analysis (Boudart et al., 2005).H2O2 derived from the extracellular catabolism of PAs by cell wall-localized AOs has been shown to be involved in both developmental processes, such as the light-induced inhibition of mesocotyl growth (Cona et al., 2003) and the PCD occurring in differentiating tracheary elements (Tisi et al., 2011b), as well as defense responses during wound healing (Angelini et al., 2008), salt stress (Moschou et al., 2008), and pathogen attack (Moschou et al., 2009). In this regard, AOs have also been suggested to act as stress-responsive genes whose expression strongly increases in response to both pathogen infection and abiotic stresses (Moschou et al., 2008; Tavladoraki et al., 2012). During the plant response to stresses, a faster apoplastic oxidation of PAs has been supposed to occur, allowed by the concurrent increase of PA secretion and catabolism in the cell wall, and the PA-derived H2O2 has been demonstrated to trigger signal transduction pathways leading to the induction of defense gene expression, stress tolerance, or PCD (Moschou et al., 2008; Tisi et al., 2011a). Recently, the dual role of PAs as either signaling compounds or the source of the second messenger H2O2 has been highlighted, and it has been hypothesized that AOs may have a role in PA/H2O2 balance (Moschou et al., 2008; Tisi et al., 2011a, 2011b). In fact, the coordinated modulation of PA metabolism and secretion in the cell wall may represent a crucial mechanism in the control of the PA-H2O2 ratio, which has been suggested to be a significant player in fixing cell fate and behavior under stress conditions (Moschou et al., 2008; Tisi et al., 2011a).It is worth noting that the H2O2 derived from the apoplastic PA catabolism has been shown to be involved in JA-dependent wound signaling pathways, behaving as a mediator of cell wall-stiffening events during wound healing (Cona et al., 2006; Angelini et al., 2008). Moreover, it has been reported recently that PA-derived H2O2 inhibits root growth and promotes xylem differentiation, inducing both cell wall-stiffening events and developmental PCD (Tisi et al., 2011a, 2011b). Indeed, Spd treatment in maize or overexpression of maize PAO (ZmPAO) in the cell wall of tobacco plants induced early differentiation and precocious cell death of xylem precursors along with enhanced in vivo H2O2 production in xylem tissues of maize and tobacco root apex, respectively (Tisi et al., 2011a, 2011b). Owing to the high rate of apoplastic Spd catabolism supposed to occur upon Spd supply or PAO overexpression, it has been suggested that, in such unphysiological status, plants may experience stress-like conditions under which the AO-driven H2O2 production may have a role in promoting xylem differentiation (Tisi et al., 2011a).Taking into account that AtAO1 is expressed at the early stages of vascular tissue development in Arabidopsis roots (Møller et al., 1998; Møller and McPherson, 1998), we explored the possibility that the cell wall-localized AtAO1 could be involved in JA signaling, leading to the induction of root xylem differentiation by means of both pharmacological and forward/reverse genetic approaches. Our results show that Atao1 loss-of-function mutants (TAIR accession nos. 1005841762 and 4284859) are unresponsive to MeJA signaling leading to root protoxylem differentiation. Conversely, AtAO1 overexpression leads to early protoxylem differentiation along with enhanced H2O2 production in the root zone where the first protoxylem cells with fully developed secondary wall thickenings can be observed. Overall, our data show that H2O2 produced via AtAO1-driven Put oxidation behaves as a mediator in JA-induced root xylem differentiation.Moreover, the data presented here suggest that Put-derived H2O2 may play a role in xylem differentiation under stress growth conditions such as those signaled by MeJA or simulated by either Put treatment or AtAO1 overexpression.  相似文献   

6.
7.
Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing nations, while in rich nations, intensive N fertilization carries substantial environmental and economic costs. Therefore, understanding root phenes that enhance N acquisition is of considerable importance. Structural-functional modeling predicts that root cortical aerenchyma (RCA) could improve N acquisition in maize (Zea mays). We evaluated the utility of RCA for N acquisition by physiological comparison of maize recombinant inbred lines contrasting in RCA grown under suboptimal and adequate N availability in greenhouse mesocosms and in the field in the United States and South Africa. N stress increased RCA formation by 200% in mesocosms and by 90% to 100% in the field. RCA formation substantially reduced root respiration and root N content. Under low-N conditions, RCA formation increased rooting depth by 15% to 31%, increased leaf N content by 28% to 81%, increased leaf chlorophyll content by 22%, increased leaf CO2 assimilation by 22%, increased vegetative biomass by 31% to 66%, and increased grain yield by 58%. Our results are consistent with the hypothesis that RCA improves plant growth under N-limiting conditions by decreasing root metabolic costs, thereby enhancing soil exploration and N acquisition in deep soil strata. Although potential fitness tradeoffs of RCA formation are poorly understood, increased RCA formation appears be a promising breeding target for enhancing crop N acquisition.Nitrogen (N) deficiency is one of the most limiting factors in maize (Zea mays) production worldwide (Ladha et al., 2005). In developing countries such as those in sub-Saharan Africa, less than 20 kg N ha−1 is applied to fields of smallholder farmers due to high fertilizer cost (Azeez et al., 2006; Worku et al., 2007). In developed countries, intensive N fertilization is used to maintain satisfactory yield (Tilman et al., 2002). In the United States, N fertilizers are the greatest economic and energy cost for maize production (Ribaudo et al., 2011). However, less than half of the N applied to crops is actually acquired, and most of the remaining N becomes a source of environmental pollution (Raun and Johnson, 1999; Smil, 1999; Tilman et al., 2002). For example, N and phosphorus (P) effluents into marine systems from agriculture cause eutrophication and hypoxic zones (Diaz and Rosenberg, 2008; Robertson and Vitousek, 2009). Nitrate contamination in surface water and groundwater systems poses serious health risks, such as methemoglobinemia and N-nitroso-induced cancers (UNEP and WHRC, 2007). Emission of nitrous oxides from agricultural activities contributes to ozone damage and global warming (Kulkarni et al., 2008; Sutton et al., 2011). Furthermore, the production of N fertilizers requires considerable energy from fossil fuels, and since energy costs have risen in recent years, farmers face economic pressure from increasing N fertilizer costs, which are linked to higher food prices. It is estimated that a 1% increase in crop N efficiency could save more than $1 billion (U.S.) annually worldwide (Kant et al., 2011). Therefore, even a small improvement in N efficiency would have significant positive impacts on the environment and the economy.Soil N is heterogenous and dynamic. The bioavailability of soil N depends on the balance between the rates of mineralization, nitrification, and denitrification. These processes are determined by several factors, including soil composition, microbial activity, soil temperature, and soil water status (Miller and Cramer, 2004). The predominant form of soil N available to plants in most agricultural systems is nitrate, which is highly soluble in water and thus mobile in the soil (Barber, 1995; Marschner, 1995). Mineralization of organic matter and/or the application of N fertilizer at the beginning of the growing season followed by precipitation and irrigation create a pulse of nitrate that may exceed the N acquisition capacity of seedlings and leach below the root zone. Therefore, it has been proposed that increasing the speed of root exploration of deep soil strata could benefit N acquisition (Lynch, 2013). However, the structural investments and metabolic expenditures of root systems are substantial and can exceed half of daily photosynthesis (Lambers et al., 2002). Therefore, full consideration of the costs and benefits of root systems is crucial for identifying root traits to improve crop production, especially in water- and nutrient-deficient environments (Lynch, 2007). Taking rhizoeconomics and the spatiotemporal availability of soil N into account, Lynch (2013) proposed a root ideotype for enhanced N acquisition in maize called Steep, Cheap, and Deep, in which Steep refers to architectural phenes and Cheap refers to phenes that reduce the metabolic cost of soil exploration. One element of this ideotype is abundant root cortical aerenchyma (RCA).RCA consists of enlarged air spaces in the root cortex (Esau, 1977). RCA is known to form in response to hypoxia, and the role of RCA in improving oxygen transport to roots of many plant species under hypoxic conditions has been well researched (Vartapetian and Jackson, 1997; Jackson and Armstrong, 1999; Mano and Omori, 2007, 2013). Interestingly, RCA can also form in response to drought and edaphic stresses such as N, P, and sulfur deficiencies (Drew et al., 1989; Bouranis et al., 2003; Fan et al., 2003; Zhu et al., 2010a), which suggests that the benefit of RCA extends beyond facilitating oxygen transport. Several lines of evidence suggest that RCA enhances root metabolic efficiency under stress. Fan et al. (2003) found that RCA formation significantly reduced root segment respiration and P content of root tissue, which allowed greater shoot growth in soils with low P availability. Under drought, maize genotypes with high RCA formation had greater root length, deeper rooting, better leaf water status, and 8 times greater yield than closely related genotypes with low RCA (Zhu et al., 2010a). Effects of RCA on root respiration were more pronounced for large-diameter roots compared with small-diameter roots (Jaramillo et al., 2013). Results from the functional-structural plant model SimRoot showed that RCA formation could be an adaptive response to deficiency of N, P, and potassium by decreasing the metabolic cost of soil exploration. By reducing root respiration, RCA decreases the carbon cost of soil exploration, and by decreasing the N and P content of root tissue, RCA permits internal reallocation of nutrients to growing root tissue, which is particularly beneficial under conditions of low N and P availability (Postma and Lynch, 2011a). Under suboptimal P availability, RCA increased the growth of a simulated 40-d-old maize plant by 70% (Postma and Lynch, 2011b). In the case of N, RCA increased the growth of simulated maize plants up to 55% in low-N conditions, and plants benefit from RCA more in high-N-leaching environments than in low-N-leaching environments (Postma and Lynch, 2011a). In addition, the formation of RCA decreases critical soil nutrient levels, defined as the soil fertility below which growth is reduced, suggesting that cultivars with high RCA may require less fertilizer under nonstressed conditions. These in silico results suggest that RCA has potential utility for improving crop nutrient acquisition in both high- and low-input agroecosystems.The overall objective of this research was to assess the utility of RCA for N acquisition in maize under N-limiting conditions. Maize near-isophenic recombinant inbred lines (RILs) sharing a common genetic background (i.e. descending from the same parents) with common root phenotypes but contrasting in RCA formation were grown under N stress to test the hypothesis that RCA formation is associated with reduced root respiration, reduced tissue nutrient content, greater rooting depth, enhanced N acquisition, and therefore greater plant growth and yield under N limitation.  相似文献   

8.
9.
Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.Increasing food production is one of the major global challenges in dealing with continuously growing population and food consumption (Godfray et al., 2010). One of the major obstacles to improve crop production in tropical regions is phosphorus (P) deficiency caused by P fixation in the soil clays. P is one of the most important plant nutrients, contributing approximately 0.2% of a plant’s dry weight, and is a component of key organic molecules such as nucleic acids, phospholipids, and ATP (Schachtman et al., 1998). On tropical soils, even when the total amount of soil P is high, its bioavailability is low due to P fixation by aluminum and iron oxides in clay minerals (Marschner, 1995) and immobilization into organic forms (Schachtman et al., 1998). Approximately half of the world’s agricultural lands occurs on low-P soils (Lynch, 2011); hence, crop adaptation to P insufficiency should be a major breeding target to enable sustainable agricultural production worldwide. In addition, because phosphate rock fertilizer is a nonrenewable resource that is being depleted by agricultural demands, increasing fertilizer prices negatively impact agriculture, particularly for small-holder farmers in developing countries in the tropics and subtropics (Cordell et al., 2009; Sattari et al., 2012). In sorghum (Sorghum bicolor), breeding strategies for low-P adaptation have been developed based on multienvironment trials in West Africa, indicating the importance of undertaking selection in low-P soil conditions (Leiser et al., 2012a, 2012b). Therefore, developing crops with greater ability to grow and maintain satisfactory yields on soils with reduced P availability is expected to substantially improve food security worldwide.Tolerance to P deficiency in plants can be achieved by mechanisms underlying both P acquisition and P internal utilization efficiency (Parentoni and Souza Junior, 2008). One of the major mechanisms that plants have evolved to overcome low-P availability is to maximize the ability of the roots to acquire and absorb P from the soil. Plants can mobilize P through the exudation of organic acids, acid phosphatases, and ribonucleases, resulting in enhanced P availability and uptake (Hinsinger, 2001; Ryan et al., 2001; Dakora and Phillips, 2002; Hammond and White, 2008; Ma et al., 2009; Pang et al., 2009). Another strategy to cope with low-P availability is to increase the soil volume accessed by root systems by forming mycorrhizal symbioses (Li et al., 2012; Smith and Smith, 2012; Rai et al., 2013). Due to low-P mobility on tropical soils, changes in root architecture and morphology enhance P uptake by facilitating soil exploration (Williamson et al., 2001; Ho et al., 2005; Walk et al., 2006; Svistoonoff et al., 2007; Lynch, 2011; Ingram et al., 2012; Niu et al., 2013). Root structural changes leading to higher P uptake include increased root hair growth (Yan et al., 2004; Haling et al., 2013; Lan et al., 2013) and length and enhancing lateral root over primary root growth (Williamson et al., 2001; Wang et al., 2013). In addition, increased root surface area is achieved by a combination of reduced root diameter and enhanced elongation of relatively thinner roots (Fitter et al., 2002). There is both intraspecific and interspecific genetic variation for P deficiency tolerance in crop species (Lynch and Brown, 2001, 2012; Mudge et al., 2002; Paszkowski et al., 2002; Rausch and Bucher, 2002; Huang et al., 2011; Zhang et al., 2011; Leiser et al., 2014a) that can be explored to develop P-efficient cultivars.In rice (Oryza sativa), Phosphorus uptake1 (Pup1), a major quantitative trait locus (QTL) for P deficiency tolerance donated by an aus-type Indian variety, Kasalath, was mapped to the long arm of chromosome 12 (Ni et al., 1998; Wissuwa et al., 1998, 2002; Heuer et al., 2009). Near-isogenic lines bearing the Kasalath allele at Pup1 showed 3-fold higher P uptake and grain yield in low-P trials compared with the recurrent parent, cv Nipponbare, which is intolerant to P starvation (Wissuwa and Ae, 2001). Following high-resolution mapping of Pup1, comparative sequence analyses of homologous bacterial artificial chromosomes showed that a Kasalath genomic fragment contained several genes not present in cv Nipponbare, highlighting an approximately 90-kb deletion in the cv Nipponbare reference genome that encompassed the Pup1 locus (Heuer et al., 2009). Within this insertion/deletion, OsPupK46-2, a gene encoding a Ser/Thr kinase of the Receptor-like Protein Kinase LRK10L-2 subfamily, was found to enhance grain yield and P uptake in rice lines overexpressing this gene, indicating that this protein kinase underlies the Pup1 locus (Gamuyao et al., 2012). OsPupK46-2, which is now designated PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was found to be up-regulated in the root tissues of tolerant near-isogenic lines under P-deficient conditions and was shown to increase P uptake by a physiological mechanism based on the enhancement of early root growth and development. Furthermore, lines overexpressing OsPupK46-2 showed an approximately 30% grain yield increase in comparison with the null lines, suggesting that PSTOL1 has potential for molecular breeding applications to improve crop performance under low-P conditions. Consistent with the proposed physiological mechanism underlying OsPSTOL1, the superior performance of the transgenic lines was related to enhanced root dry weight, root length, and root surface area (Gamuyao et al., 2012).Sorghum is the world’s fifth most important cereal crop and is a staple food for more than half a billion people. It is widely adapted to harsh environmental conditions, and more specifically, to arid and semiarid regions of the world (Doumbia et al., 1993, 1998). It has been estimated that rice diverged from its most recent common ancestor with sorghum and maize (Zea mays) approximately 50 million years ago (Kellogg, 1998; Paterson et al., 2000, 2004; Paterson, 2008). About 60% of the genes in the sorghum genome are located in syntenic regions to rice (Paterson et al., 2009), emphasizing the potential for using comparative genomics for cross-species identification of genes underlying abiotic stress tolerance in the grass family. Here, we applied association analysis to specifically study the role of sorghum homologs of rice OsPSTOL1 in tolerance to P starvation in sorghum. Single-nucleotide polymorphisms (SNPs) within PSTOL1 homologs in sorghum, collectively designated SbPSTOL1, were significantly associated with grain yield under low-P conditions and also root morphology and root system architecture (RSA) traits phenotyped from hydroponically grown plants. Under low P, SbPSTOL1 genes increased biomass accumulation and P content in the African landrace panel and grain yield in the sorghum association panel phenotyped in a low-P Brazilian soil. This suggests a stable effect across environments and sorghum genotypes that potentially can be used for molecular breeding applications. QTL mapping with a large sorghum recombinant inbred line population was used to validate the association results, indicating that SbPSTOL1 homologs colocalize with QTLs related to root morphology and performance under low P. Our results indicate that SbPSTOL1 homologs have the ability to enhance P uptake and sorghum performance in low-P soils by a mechanism related not only to early root growth enhancement, as was the case for rice OsPSTOL1, but also by modulating RSA.  相似文献   

10.
In rice (Oryza sativa) roots, lysigenous aerenchyma, which is created by programmed cell death and lysis of cortical cells, is constitutively formed under aerobic conditions, and its formation is further induced under oxygen-deficient conditions. Ethylene is involved in the induction of aerenchyma formation. reduced culm number1 (rcn1) is a rice mutant in which the gene encoding the ATP-binding cassette transporter RCN1/OsABCG5 is defective. Here, we report that the induction of aerenchyma formation was reduced in roots of rcn1 grown in stagnant deoxygenated nutrient solution (i.e. under stagnant conditions, which mimic oxygen-deficient conditions in waterlogged soils). 1-Aminocyclopropane-1-carboxylic acid synthase (ACS) is a key enzyme in ethylene biosynthesis. Stagnant conditions hardly induced the expression of ACS1 in rcn1 roots, resulting in low ethylene production in the roots. Accumulation of saturated very-long-chain fatty acids (VLCFAs) of 24, 26, and 28 carbons was reduced in rcn1 roots. Exogenously supplied VLCFA (26 carbons) increased the expression level of ACS1 and induced aerenchyma formation in rcn1 roots. Moreover, in rice lines in which the gene encoding a fatty acid elongase, CUT1-LIKE (CUT1L; a homolog of the gene encoding Arabidopsis CUT1, which is required for cuticular wax production), was silenced, both ACS1 expression and aerenchyma formation were reduced. Interestingly, the expression of ACS1, CUT1L, and RCN1/OsABCG5 was induced predominantly in the outer part of roots under stagnant conditions. These results suggest that, in rice under oxygen-deficient conditions, VLCFAs increase ethylene production by promoting 1-aminocyclopropane-1-carboxylic acid biosynthesis in the outer part of roots, which, in turn, induces aerenchyma formation in the root cortex.Aerenchyma formation is a morphological adaptation of plants to complete submergence and waterlogging of the soil, and facilitates internal gas diffusion (Armstrong, 1979; Jackson and Armstrong, 1999; Colmer, 2003; Voesenek et al., 2006; Bailey-Serres and Voesenek, 2008; Licausi and Perata, 2009; Sauter, 2013; Voesenek and Bailey-Serres, 2015). To adapt to waterlogging in soil, rice (Oryza sativa) develops lysigenous aerenchyma in shoots (Matsukura et al., 2000; Colmer and Pedersen, 2008; Steffens et al., 2011) and roots (Jackson et al., 1985b; Justin and Armstrong, 1991; Kawai et al., 1998), which is formed by programmed cell death and subsequent lysis of some cortical cells (Jackson and Armstrong, 1999; Evans, 2004; Yamauchi et al., 2013). In rice roots, lysigenous aerenchyma is constitutively formed under aerobic conditions (Jackson et al., 1985b), and its formation is further induced under oxygen-deficient conditions (Colmer et al., 2006; Shiono et al., 2011). The former and latter are designated constitutive and inducible lysigenous aerenchyma formation, respectively (Colmer and Voesenek, 2009). The gaseous plant hormone ethylene regulates adaptive growth responses of plants to submergence (Voesenek and Blom, 1989; Voesenek et al., 1993; Visser et al., 1996a,b; Lorbiecke and Sauter, 1999; Hattori et al., 2009; Steffens and Sauter, 2009; van Veen et al., 2013). Ethylene also induces lysigenous aerenchyma formation in roots of some gramineous plants (Drew et al., 2000; Shiono et al., 2008). The treatment of roots with ethylene or its precursor (1-aminocyclopropane-1-carboxylic acid [ACC]) stimulates aerenchyma formation in rice (Justin and Armstrong, 1991; Colmer et al., 2006; Yukiyoshi and Karahara, 2014), maize (Zea mays; Drew et al., 1981; Jackson et al., 1985a; Takahashi et al., 2015), and wheat (Triticum aestivum; Yamauchi et al., 2014a,b). Moreover, treatment of roots with inhibitors of ethylene action or ethylene biosynthesis effectively blocks aerenchyma formation under hypoxic conditions in maize (Drew et al., 1981; Konings, 1982; Jackson et al., 1985a; Rajhi et al., 2011).Ethylene biosynthesis is accomplished by two main successive enzymatic reactions: conversion of S-adenosyl-Met to ACC by 1-aminocyclopropane-1-carboxylic acid synthase (ACS), and conversion of ACC to ethylene by 1-aminocyclopropane-1-carboxylic acid oxidase (ACO; Yang and Hoffman, 1984). The activities of both enzymes are enhanced during aerenchyma formation under hypoxic conditions in maize root (He et al., 1996). Since the ACC content in roots of maize is increased by oxygen deficiency and is strongly correlated with ethylene production (Atwell et al., 1988), ACC biosynthesis is essential for ethylene production during aerenchyma formation in roots. In fact, exogenously supplied ACC induced ethylene production in roots of maize (Drew et al., 1979; Konings, 1982; Atwell et al., 1988) and wheat (Yamauchi et al., 2014b), even under aerobic conditions. Ethylene production in plants is inversely related to oxygen concentration (Yang and Hoffman, 1984). Under anoxic conditions, the oxidation of ACC to ethylene by ACO, which requires oxygen, is almost completely repressed (Yip et al., 1988; Tonutti and Ramina, 1991). Indeed, anoxic conditions stimulate neither ethylene production nor aerenchyma formation in maize adventitious roots (Drew et al., 1979). Therefore, it is unlikely that the root tissues forming inducible aerenchyma are anoxic, and that the ACO-mediated step is repressed. Moreover, aerenchyma is constitutively formed in rice roots even under aerobic conditions (Jackson et al., 1985b), and thus, after the onset of waterlogging, oxygen can be immediately supplied to the apical regions of roots through the constitutively formed aerenchyma.Very-long-chain fatty acids (VLCFAs; ≥20 carbons) are major constituents of sphingolipids, cuticular waxes, and suberin in plants (Franke and Schreiber, 2007; Kunst and Samuels, 2009). In addition to their structural functions, VLCFAs directly or indirectly participate in several physiological processes (Zheng et al., 2005; Reina-Pinto et al., 2009; Roudier et al., 2010; Ito et al., 2011; Nobusawa et al., 2013; Tsuda et al., 2013), including the regulation of ethylene biosynthesis (Qin et al., 2007). During fiber cell elongation in cotton ovules, ethylene biosynthesis is enhanced by treatment with saturated VLCFAs, especially 24-carbon fatty acids, and is suppressed by an inhibitor of VLCFA biosynthesis (Qin et al., 2007). The first rate-limiting step in VLCFA biosynthesis is condensation of acyl-CoA with malonyl-CoA by β-ketoacyl-CoA synthase (KCS; Joubès et al., 2008). KCS enzymes are thought to determine the substrate and tissue specificities of fatty acid elongation (Joubès et al., 2008). The Arabidopsis (Arabidopsis thaliana) genome has 21 KCS genes (Joubès et al., 2008). In the Arabidopsis cut1 mutant, which has a defect in the gene encoding CUT1 that is required for cuticular wax production (i.e. one of the KCS genes), the expression of AtACO genes and growth of root cells were reduced when compared with the wild type (Qin et al., 2007). Furthermore, expression of the AtACO genes was rescued by exogenously supplied saturated VLCFAs (Qin et al., 2007). These observations imply that VLCFAs or their derivatives work as regulatory factors for gene expression during some physiological processes in plants.reduced culm number1 (rcn1) was first identified as a rice mutant with a low tillering rate in a paddy field (Takamure and Kinoshita, 1985; Yasuno et al., 2007). The rcn1 (rcn1-2) mutant has a single nucleotide substitution in the gene encoding a member of the ATP-binding cassette (ABC) transporter subfamily G, RCN1/OsABCG5, causing an Ala-684Pro substitution (Yasuno et al., 2009). The mutation results in several mutant phenotypes, although the substrates of RCN1/OsABCG5 have not been determined (Ureshi et al., 2012; Funabiki et al., 2013; Matsuda et al., 2014). We previously found that the rcn1 mutant has abnormal root morphology, such as shorter root length and brownish appearance of roots, under stagnant (deoxygenated) conditions (which mimics oxygen-deficient conditions in waterlogged soils). We also found that the rcn1 mutant accumulates less of the major suberin monomers originating from VLCFAs in the outer part of adventitious roots, and this results in a reduction of a functional apoplastic barrier in the root hypodermis (Shiono et al., 2014a).The objective of this study was to elucidate the molecular basis of inducible aerenchyma formation. To this end, we examined lysigenous aerenchyma formation and ACC, ethylene, and VLCFA accumulation and their biosyntheses in rcn1 roots. Based on the results of these studies, we propose that VLCFAs are involved in inducible aerenchyma formation through the enhancement of ethylene biosynthesis in rice roots.  相似文献   

11.
Accumulating evidence indicates important functions for phosphoenolpyruvate (PEP) carboxylase (PEPC) in inorganic phosphate (Pi)-starved plants. This includes controlling the production of organic acid anions (malate, citrate) that are excreted in copious amounts by proteoid roots of nonmycorrhizal species such as harsh hakea (Hakea prostrata). This, in turn, enhances the bioavailability of mineral-bound Pi by solubilizing Al3+, Fe3+, and Ca2+ phosphates in the rhizosphere. Harsh hakea thrives in the nutrient-impoverished, ancient soils of southwestern Australia. Proteoid roots from Pi-starved harsh hakea were analyzed over 20 d of development to correlate changes in malate and citrate exudation with PEPC activity, posttranslational modifications (inhibitory monoubiquitination versus activatory phosphorylation), and kinetic/allosteric properties. Immature proteoid roots contained an equivalent ratio of monoubiquitinated 110-kD and phosphorylated 107-kD PEPC polypeptides (p110 and p107, respectively). PEPC purification, immunoblotting, and mass spectrometry indicated that p110 and p107 are subunits of a 430-kD heterotetramer and that they both originate from the same plant-type PEPC gene. Incubation with a deubiquitinating enzyme converted the p110:p107 PEPC heterotetramer of immature proteoid roots into a p107 homotetramer while significantly increasing the enzyme’s activity under suboptimal but physiologically relevant assay conditions. Proteoid root maturation was paralleled by PEPC activation (e.g. reduced Km [PEP] coupled with elevated I50 [malate and Asp] values) via in vivo deubiquitination of p110 to p107, and subsequent phosphorylation of the deubiquitinated subunits. This novel mechanism of posttranslational control is hypothesized to contribute to the massive synthesis and excretion of organic acid anions that dominates the carbon metabolism of the mature proteoid roots.Phosphoenolpyruvate (PEP) carboxylase (PEPC; EC 4.1.1.31) is a ubiquitous and tightly regulated cytosolic enzyme of vascular plants that is also widely distributed in green algae and bacteria. PEPC catalyzes the irreversible β-carboxylation of PEP to form oxaloacetate (OAA) and inorganic phosphate (Pi). Vascular plant PEPCs belong to a small multigene family encoding several closely related plant-type PEPCs (PTPCs), along with a distantly related bacterial-type PEPC (BTPC; O’Leary et al., 2011a). PTPC genes encode 105- to 110-kD polypeptides that typically assemble as approximate 400-kD Class-1 PEPC homotetramers. In contrast, BTPC genes encode larger 116- to 118-kD polypeptides owing to a unique intrinsically disordered region that mediates BTPC’s tight interaction with coexpressed PTPC subunits. This association results in the formation of unusual Class-2 PEPC heterooctameric complexes that are largely desensitized to allosteric effectors and that dynamically associate with the surface of mitochondria in vivo (O’Leary et al., 2009, 2011a; Igawa et al., 2010; Park et al., 2012).The critical role of Class-1 PEPC in assimilating atmospheric CO2 during C4 and Crassulacean acid metabolism photosynthesis has been studied extensively. Class-1 PEPCs also fulfill a wide range of crucial nonphotosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis (O’Leary et al., 2011a). Class-1 PEPCs are subject to a complex set of posttranslational controls including allosteric effectors, covalent modification via phosphorylation or monoubiquitination, and protein-protein interactions (Uhrig et al., 2008; O’Leary et al., 2009, 2011a, 2011b). Allosteric activation by Glc-6-P and inhibition by l-malate are routinely observed, whereas phosphorylation and dephosphorylation are catalyzed by a Ca2+-independent PEPC protein kinase (PPCK) and a protein phosphatase type-2A (PP2A), respectively (O’Leary et al., 2011a). Phosphorylation at a conserved N-terminal seryl residue activates Class-1 PEPCs by decreasing inhibition by malate while increasing activation by Glc-6-P. By contrast, Class-1 PEPC is subject to inhibitory monoubiquitination during castor oil (Ricinus communis) seed (COS) germination, or following depodding of developing COS (Uhrig et al., 2008; O’Leary et al., 2011b). Immunoblots of germinating COS extracts revealed a 1:1 ratio of immunoreactive 110- and 107-kD PTPC polypeptides (p110 and p107, respectively). PEPC purification and mass spectrometry (MS) demonstrated that (1) p110 and p107 are subunits of a 440-kD Class-1 PEPC heterotetramer, (2) both subunits arise from the same PTPC gene (RcPpc3) that also encodes the phosphorylated 410-kD Class-1 PEPC homotetramer of intact developing COS, and (3) p110 is a monoubiquitinated form of p107 (Uhrig et al., 2008). The monoubiquitination site (Lys-628) of COS p110 is conserved in vascular plant PEPCs and is proximal to a PEP-binding/catalytic domain. Incubation with a deubiquitinating enzyme converted the Class-1 PEPC p110:p107 heterotetramer into a p107 homotetramer while exerting significant effects on the enzyme’s kinetic properties (Uhrig et al., 2008). PTPC monoubiquitination rather than phosphorylation is widespread throughout the astor plant and appears to be the predominant posttranslational modification (PTM) of Class-1 PEPC that occurs in unstressed plants (O’Leary et al., 2011b). The distinctive developmental patterns of Class-1 PEPC phosphoactivation versus monoubiquitination-inhibition indicated that these PTMs might be mutually exclusive in the castor plant (O’Leary et al., 2011a, 2011b).Substantial evidence indicates that PEPC plays a pivotal role in plant acclimation to nutritional Pi deficiency (Duff et al., 1989; Vance et al., 2003; O’Leary et al., 2011a; Plaxton and Tran, 2011; Supplemental Fig. S1), a common abiotic stress that frequently limits plant growth in natural ecosystems. The marked induction of Class-1 PEPCs during Pi stress has been linked to the synthesis and excretion of large amounts of organic acid anions by roots of Pi-starved (–Pi) plants (O’Leary et al., 2011a; Uhde-Stone et al., 2003; Vance et al., 2003; Shane et al., 2004a). The excreted organic acids chelate metal cations such as Al3+ and Ca2+ that immobilize Pi in the soil, thus increasing soluble Pi concentrations by up to 1,000-fold (Vance et al., 2003). Harsh hakea (Hakea prostrata) is a perennial nonmycotroph that has evolved a host of traits that allow it to thrive in the nutrient-impoverished, ancient soils of western Australia. A crucial adaptation of harsh hakea is its proteoid roots, which excrete copious quantities of citrate and malate to mediate Pi solubilization and acquisition from the soil’s mineral-bound Pi (Supplemental Figs. S1 and S2; Shane et al., 2003, 2004a, 2004b; Shane and Lambers, 2005). Shane and coworkers (2004a) correlated proteoid root development in –Pi harsh hakea with marked increases in respiration, internal carboxylate concentrations, and rates of carboxylate exudation. Immunoblotting indicated that PEPC abundance remained relatively constant during proteoid root development, except in senescing 3-week-old roots, where it showed a marked decline. The PEPC immunoblots also revealed approximately 110- and 100-kD immunoreactive polypeptides that were of equal intensity in young proteoid roots, whereas mature proteoid roots showed a marked reduction in the p110 (Shane et al., 2004a). The possible contribution of PTMs such as phosphorylation to the in vivo activation of proteoid root PEPCs is currently unclear (e.g. see Uhde-Stone et al., 2003). However, this is feasible since the pronounced induction of PPCK genes coupled with the reversible phosphorylation-activation of a Class-1 PEPC isozyme (AtPPC1) has been conclusively demonstrated in –Pi Arabidopsis (Arabidopsis thaliana) suspension cells and seedlings (Gregory et al., 2009).The goal of the current study was to test the hypothesis that PEPC PTMs contribute to the metabolic adaptations of harsh hakea proteoid roots. We report a novel metabolic control paradigm that involves the in vivo deubiquitination and consequent kinetic activation of a phosphorylated form of a C3 plant Class-1 PEPC.  相似文献   

12.
In plants, K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) is the largest potassium (K) transporter family; however, few of the members have had their physiological functions characterized in planta. Here, we studied OsHAK5 of the KT/HAK/KUP family in rice (Oryza sativa). We determined its cellular and tissue localization and analyzed its functions in rice using both OsHAK5 knockout mutants and overexpression lines in three genetic backgrounds. A β-glucuronidase reporter driven by the OsHAK5 native promoter indicated OsHAK5 expression in various tissue organs from root to seed, abundantly in root epidermis and stele, the vascular tissues, and mesophyll cells. Net K influx rate in roots and K transport from roots to aerial parts were severely impaired by OsHAK5 knockout but increased by OsHAK5 overexpression in 0.1 and 0.3 mm K external solution. The contribution of OsHAK5 to K mobilization within the rice plant was confirmed further by the change of K concentration in the xylem sap and K distribution in the transgenic lines when K was removed completely from the external solution. Overexpression of OsHAK5 increased the K-sodium concentration ratio in the shoots and salt stress tolerance (shoot growth), while knockout of OsHAK5 decreased the K-sodium concentration ratio in the shoots, resulting in sensitivity to salt stress. Taken together, these results demonstrate that OsHAK5 plays a major role in K acquisition by roots faced with low external K and in K upward transport from roots to shoots in K-deficient rice plants.Potassium (K) is one of the three most important macronutrients and the most abundant cation in plants. As a major osmoticum in the vacuole, K drives the generation of turgor pressure, enabling cell expansion. In the vascular tissue, K is an important participant in the generation of root pressure (for review, see Wegner, 2014 [including his new hypothesis]). In the phloem, K is critical for the transport of photoassimilates from source to sink (Marschner, 1996; Deeken et al., 2002; Gajdanowicz et al., 2011). In addition, enhancing K absorption and decreasing sodium (Na) accumulation is a major strategy of glycophytes in salt stress tolerance (Maathuis and Amtmann, 1999; Munns and Tester, 2008; Shabala and Cuin, 2008).Plants acquire K through K-permeable proteins at the root surface. Since available K concentration in the soil may vary by 100-fold, plants have developed multiple K uptake systems for adapting to this variability (Epstein et al., 1963; Grabov, 2007; Maathuis, 2009). In a classic K uptake experiment in barley (Hordeum vulgare), root K absorption has been described as a high-affinity and low-affinity biphasic transport process (Epstein et al., 1963). It is generally assumed that the low-affinity transport system (LATS) in the roots mediates K uptake in the millimolar range and that the activity of this system is insensitive to external K concentration (Maathuis and Sanders, 1997; Chérel et al., 2014). In contrast, the high-affinity transport system (HATS) was rapidly up-regulated when the supply of exogenous K was halted (Glass, 1976; Glass and Dunlop, 1978).The membrane transporters for K flux identified in plants are generally classified into three channels and three transporter families based on phylogenetic analysis (Mäser et al., 2001; Véry and Sentenac, 2003; Lebaudy et al., 2007; Alemán et al., 2011). For K uptake, it was predicted that, under most circumstances, K transporters function as HATS, while K-permeable channels mediate LATS (Maathuis and Sanders, 1997). However, a root-expressed K channel in Arabidopsis (Arabidopsis thaliana), Arabidopsis K Transporter1 (AKT1), mediates K absorption over a wide range of external K concentrations (Sentenac et al., 1992; Lagarde et al., 1996; Hirsch et al., 1998; Spalding et al., 1999), while evidence is accumulating that many K transporters, including members of the K transporter (KT)/high affinity K transporter (HAK)/K uptake permease (KUP) family, are low-affinity K transporters (Quintero and Blatt, 1997; Senn et al., 2001), implying that functions of plant K channels and transporters overlap at different K concentration ranges.Out of the three families of K transporters, cation proton antiporter (CPA), high affinity K/Na transporter (HKT), and KT/HAK/KUP, CPA was characterized as a K+(Na+)/H+ antiporter, HKT may cotransport Na and K or transport Na only (Rubio et al., 1995; Uozumi et al., 2000), while KT/HAK/KUP were predicted to be H+-coupled K+ symporters (Mäser et al., 2001; Lebaudy et al., 2007). KT/HAK/KUP were named by different researchers who first identified and cloned them (Quintero and Blatt, 1997; Santa-María et al., 1997). In plants, the KT/HAK/KUP family is the largest K transporter family, including 13 members in Arabidopsis and 27 members in the rice (Oryza sativa) genome (Rubio et al., 2000; Mäser et al., 2001; Bañuelos et al., 2002; Gupta et al., 2008). Sequence alignments show that genes of this family share relatively low homology to each other. The KT/HAK/KUP family was divided into four major clusters (Rubio et al., 2000; Gupta et al., 2008), and in cluster I and II, they were further separated into A and B groups. Genes of cluster I or II likely exist in all plants, cluster III is composed of genes from both Arabidopsis and rice, while cluster IV includes only four rice genes (Grabov, 2007; Gupta et al., 2008).The functions of KT/HAK/KUP were studied mostly in heterologous expression systems. Transporters of cluster I, such as AtHAK5, HvHAK1, OsHAK1, and OsHAK5, are localized in the plasma membrane (Kim et al., 1998; Bañuelos et al., 2002; Gierth et al., 2005) and exhibit high-affinity K uptake in the yeast Saccharomyces cerevisiae (Santa-María et al., 1997; Fu and Luan, 1998; Rubio et al., 2000) and in Escherichia coli (Horie et al., 2011). Transporters of cluster II, like AtKUP4 (TINY ROOT HAIRS1, TRH1), HvHAK2, OsHAK2, OsHAK7, and OsHAK10, could not complement the K uptake-deficient yeast (Saccharomyces cerevisiae) but were able to mediate K fluxes in a bacterial mutant; they might be tonoplast transporters (Senn et al., 2001; Bañuelos et al., 2002; Rodríguez-Navarro and Rubio, 2006). The function of transporters in clusters III and IV is even less known (Grabov, 2007).Existing data suggest that some KT/HAK/KUP transporters also may respond to salinity stress (Maathuis, 2009). The cluster I transporters of HvHAK1 mediate Na influx (Santa-María et al., 1997), while AtHAK5 expression is inhibited by Na (Rubio et al., 2000; Nieves-Cordones et al., 2010). Expression of OsHAK5 in tobacco (Nicotiana tabacum) BY2 cells enhanced the salt tolerance of these cells by accumulating more K without affecting their Na content (Horie et al., 2011).There are only scarce reports on the physiological function of KT/HAK/KUP in planta. In Arabidopsis, mutation of AtKUP2 (SHORT HYPOCOTYL3) resulted in a short hypocotyl, small leaves, and a short flowering stem (Elumalai et al., 2002), while a loss-of-function mutation of AtKUP4 (TRH1) resulted in short root hairs and a loss of gravity response in the root (Rigas et al., 2001; Desbrosses et al., 2003; Ahn et al., 2004). AtHAK5 is the only system currently known to mediate K uptake at concentrations below 0.01 mm (Rubio et al., 2010) and provides a cesium uptake pathway (Qi et al., 2008). AtHAK5 and AtAKT1 are the two major physiologically relevant molecular entities mediating K uptake into roots in the range between 0.01 and 0.05 mm (Pyo et al., 2010; Rubio et al., 2010). AtAKT1 may contribute to K uptake within the K concentrations that belong to the high-affinity system described by Epstein et al. (1963).Among all 27 members of the KT/HAK/KUP family in rice, OsHAK1, OsHAK5, OsHAK19, and OsHAK20 were grouped in cluster IB (Gupta et al., 2008). These four rice HAK members share 50.9% to 53.4% amino acid identity with AtHAK5. OsHAK1 was expressed in the whole plant, with maximum expression in roots, and was up-regulated by K deficiency; it mediated high-affinity K uptake in yeast (Bañuelos et al., 2002). In this study, we examined the tissue-specific localization and the physiological functions of OsHAK5 in response to variation in K supply and to salt stress in rice. By comparing K uptake and translocation in OsHAK5 knockout (KO) mutants and in OsHAK5-overexpressing lines with those in their respective wild-type lines supplied with different K concentrations, we found that OsHAK5 not only mediates high-affinity K acquisition but also participates in root-to-shoot K transport as well as in K-regulated salt tolerance.  相似文献   

13.
14.
In developing nations, low soil nitrogen (N) availability is a primary limitation to crop production and food security, while in rich nations, intensive N fertilization is a primary economic, energy, and environmental cost to crop production. It has been proposed that genetic variation for root architectural and anatomical traits enhancing the exploitation of deep soil strata could be deployed to develop crops with greater N acquisition. Here, we provide evidence that maize (Zea mays) genotypes with few crown roots (crown root number [CN]) have greater N acquisition from low-N soils. Maize genotypes differed in their CN response to N limitation in greenhouse mesocosms and in the field. Low-CN genotypes had 45% greater rooting depth in low-N soils than high-CN genotypes. Deep injection of 15N-labeled nitrate showed that low-CN genotypes under low-N conditions acquired more N from deep soil strata than high-CN genotypes, resulting in greater photosynthesis and plant N content. Under low N, low-CN genotypes had greater biomass than high-CN genotypes at flowering (85% in the field study in the United States and 25% in South Africa). In the field in the United States, 1.8× variation in CN was associated with 1.8× variation in yield reduction by N limitation. Our results indicate that CN deserves consideration as a potential trait for genetic improvement of N acquisition from low-N soils.Maize (Zea mays) is one of the world’s most important crops and is a staple food in Latin America and Africa. Maize production requires a large amount of fertilizer, especially nitrogen (N). In the United States, N fertilizers represent the greatest economic and energy costs for maize production (Ribaudo et al., 2011). However, on-farm studies across the northcentral United States revealed that more than half of applied N is not taken up by maize plants and is vulnerable to losses from volatilization, denitrification, and leaching, which pollute air and water resources (Cassman et al., 2002). Conversely, in developing countries, suboptimal N availability is a primary limitation to crop yields and, therefore, food security (Azeez et al., 2006). Increasing yield in these areas is an urgent concern, since chemical fertilizers are not affordable (Worku et al., 2007). Cultivars with greater N acquisition from low-N soils could help alleviate food insecurity in poor nations as well as reduce environmental degradation from excessive fertilizer use in developed countries.The two major soil N forms available to plants are ammonium and nitrate. Nitrate is the main N form in most maize production environments (Miller and Cramer, 2004). Nitrate is highly mobile in soil, and the spatiotemporal availability of soil N is rather complex. In the simplest case, N fertilizers applied to the soil and/or N released from the mineralization of soil organic matter are rapidly converted to nitrate by soil microbes. After irrigation and precipitation events, nitrate moves with water to deeper soil strata. Leaching of nitrate from the root zone has been shown to be a significant cause of low recovery of N fertilizer in commercial agricultural systems (Raun and Johnson, 1999; Cassman et al., 2002). Differences in root depth influence the ability of plants to acquire N. Studies using 15N-labeled nitrate placed at different soil depths showed that only plants with deep rooting can acquire N sources from deep soil strata, which would otherwise have been lost through leaching (Kristensen and Thorup-Kristensen, 2004a, 2004b). Therefore, selection for root traits enhancing rapid deep soil exploration could be used as a strategy to improve crop N efficiency.The maize root system consists of embryonic and postembryonic components. The embryonic root system consists of two distinct root classes: a primary root and a variable number of seminal roots formed at the scutellar node. The postembryonic root system consists of roots that are formed at consecutive shoot nodes and lateral roots, which are initiated in the pericycle of all root classes. Shoot-borne or nodal roots that are formed belowground are called crown roots, whereas those that are formed aboveground are designated brace roots (Hochholdinger, 2009). While the primary root and seminal roots are essential for the establishment of seedlings after germination, nodal roots and particularly crown roots make up most of the maize root system and are primarily responsible for soil resource acquisition later in development (Hoppe et al., 1986).Lynch (2013) proposed an ideotype for superior N and water acquisition in maize called Steep, Cheap, and Deep (SCD), which integrates root architectural, anatomical, and physiological traits to increase rooting depth and, therefore, the capture of N in leaching environments. One such trait is crown root number (CN). CN is an aggregate trait consisting of the number of belowground nodal whorls and the number of roots per whorl. The crown root system dominates resource acquisition during vegetative growth after the first few weeks and remains important during reproductive development (Hochholdinger et al., 2004). CN in maize ranges from five to 50 under fertile conditions (Trachsel et al., 2011). At the low end of this range, crown roots may be too spatially dispersed to sufficiently explore the soil. There is also a risk of root loss to herbivores and pathogens. If roots are lost in low-N plants, there may be too few crown roots left to support the nutrient, water, and anchorage needs of the plant. At the high end, a large number of crown roots may compete with each other for water and nutrients as well as incur considerable metabolic costs for the plant (Fig. 1). The SCD ideotype proposes that there is an optimal CN for N capture in maize (Lynch, 2013). Under low-N conditions, resources for root growth and maintenance are limiting, and nitrate is a mobile resource that can be captured by a dispersed root system. The optimal CN should tend toward the low end of the phenotypic variation to make resources available for the development of longer, deeper roots rather than more crown roots. According to the SCD ideotype, in low-N soils, maize genotypes with fewer crown roots could explore soils at greater depth, resulting in greater N acquisition, growth, and yield than genotypes with many crown roots.Open in a separate windowFigure 1.Visualization of the maize root system of low- and high-CN genotypes at 40 d after germination. Crown roots are colored in blue, and seminal roots are in red. The CN is eight in the low-CN genotype and 46 in the high-CN genotype. (Image courtesy of Larry M. York.)The objective of this study was to test the hypotheses that (1) low-CN genotypes have greater rooting depth than high-CN genotypes in low-N soils; (2) low-CN genotypes are better at acquiring deep soil N than high-CN genotypes; and (3) low-CN genotypes have greater biomass and yield than high-CN genotypes in low-N conditions.  相似文献   

15.
Shallow basal root growth angle (BRGA) increases phosphorus acquisition efficiency by enhancing topsoil foraging because in most soils, phosphorus is concentrated in the topsoil. Root hair length and density (RHL/D) increase phosphorus acquisition by expanding the soil volume subject to phosphorus depletion through diffusion. We hypothesized that shallow BRGA and large RHL/D are synergetic for phosphorus acquisition, meaning that their combined effect is greater than the sum of their individual effects. To evaluate this hypothesis, phosphorus acquisition in the field in Mozambique was compared among recombinant inbred lines of common bean (Phaseolus vulgaris) having four distinct root phenotypes: long root hairs and shallow basal roots, long root hairs and deep basal roots, short root hairs and shallow basal roots, and short root hairs and deep basal roots. The results revealed substantial synergism between BRGA and RHL/D. Compared with short-haired, deep-rooted phenotypes, long root hairs increased shoot biomass under phosphorus stress by 89%, while shallow roots increased shoot biomass by 58%. Genotypes with both long root hairs and shallow roots had 298% greater biomass accumulation than short-haired, deep-rooted phenotypes. Therefore, the utility of shallow basal roots and long root hairs for phosphorus acquisition in combination is twice as large as their additive effects. We conclude that the anatomical phene of long, dense root hairs and the architectural phene of shallower basal root growth are synergetic for phosphorus acquisition. Phene synergism may be common in plant biology and can have substantial importance for plant fitness, as shown here.Suboptimal phosphorus availability is a primary limitation to plant growth in terrestrial ecosystems (Vance et al., 2003). Large areas of tropical and subtropical soils in Africa, Latin America, and Asia have phosphorus availability limited by low total phosphorus content as well as high phosphorus fixation (Sanchez and Uehara, 1980). The use of phosphorus fertilizer to correct phosphorus deficiency is only a partial solution, since phosphorus fertilizers are costly, nonrenewable, potentially harmful to the environment, and often marginally effective in tropical soils because of immobilization by the soil (Cathcart, 1980). Therefore, the development of crop cultivars with enhanced ability to acquire phosphorus is an important strategy to increase agricultural productivity in low-input agroecosystems and to reduce input requirements in intensive agriculture (Vance et al., 2003; Gahoonia and Nielsen, 2004; Lambers et al., 2006; Lynch, 2007, 2011).Several root phenes (i.e. basic units of the phenotype; Serebrovsky, 1925; Lynch, 2011; for discussion, see York et al., 2013) enhance phosphorus acquisition, including root architectural phenes for topsoil foraging (Lynch and Brown, 2001), such as shallow root growth angles (Liao et al., 2004; Ho et al., 2005), increased basal root whorl number (Lynch and Brown, 2012; Miguel et al., 2013), and adventitious rooting (Miller et al., 2003); phenes to enhance soil exploitation, including root hair length and density (RHL/D; Bates and Lynch, 2000a, 2000b, 2001; Ma et al., 2001a; Gahoonia and Nielsen, 2004; Yan et al., 2004) and phosphorus-solubilizing root exudates (Ryan et al., 2001); mycorrhizal symbioses (Smith and Read, 2008); and phenes that reduce the metabolic cost of soil exploration (Lynch and Ho, 2005), such as root etiolation and root cortical aerenchyma (Fan et al., 2003; Postma and Lynch, 2010, 2011). It is probable that interactions among these phenes are important in determining the phosphorus acquisition of integrated phenotypes. Results from the structural-functional model SimRoot indicate that RHL/D, the distance from the root tip to the first appearance of root hairs, and the pattern of root hair-bearing epidermal cells (trichoblasts) among non-hair-bearing cells (atrichoblasts) are synergetic for phosphorus acquisition in Arabidopsis (Arabidopsis thaliana; Ma et al., 2001b). Another SimRoot study showed that on low-phosphorus soils, the utility of root cortical aerenchyma in maize (Zea mays) may be 2.9 times greater in plants with increased lateral branching density than in plants with normal branching (Postma and Lynch, 2011). Morphological, anatomical, symbiotic, and biochemical phenes expressed by root axes should have significant synergies with architectural phenes, since architectural phenes determine the position of root axes in time and space and, therefore, the soil domain in which spatially localized phenes are expressed (Lynch, 2011).Phosphorus availability is greater in the topsoil, with a steep decline with depth. Therefore, root architectural phenes that increase topsoil foraging can improve phosphorus acquisition (Lynch and Brown, 2001). Root shallowness regulated by basal root growth angle (BRGA) has been demonstrated to be of particular importance for topsoil foraging (Bonser et al., 1996; Liao et al., 2001; Rubio et al., 2001; Ho et al., 2005). These studies show that common bean (Phaseolus vulgaris) genotypes with smaller BRGA (i.e. shallower roots) have better performance in low-phosphorus soils. Shallow root distribution is also important for phosphorus acquisition in maize (Zhu et al., 2005).RHL/D are also important for phosphorus acquisition (Bates and Lynch, 2000a, 2000b, 2001; Gahoonia and Nielsen, 2004). Since phosphorus mobility in soil is governed by diffusion rather than mass flow, phosphorus uptake by roots is limited by localized phosphorus depletion in the rhizosphere (Barber, 1995). Long root hairs extend the phosphorus depletion zone surrounding the root, thereby increasing the total amount of phosphorus accessible by the roots and phosphorus acquisition. In many plant species, the length and density of root hairs increase in response to low phosphorus availability (Bates and Lynch, 1996; Ma et al., 2001a). Increased RHL/D increases phosphorus accumulation in Arabidopsis growing in low-phosphorus conditions (Bates and Lynch, 2000a, 2000b), and mutants lacking root hairs have reduced phosphorus acquisition (Bates and Lynch, 2000b; Gahoonia et al., 2001). Species that develop more and/or longer root hairs (e.g. Lolium perenne) are more efficient in accessing inorganic phosphorus from soils and thus show greater growth response to phosphorus fertilization than species that lack these traits (e.g. Podocarpus totara). Genotypic variation for root hairs is associated with increased phosphorus acquisition in several species, including barley (Hordeum vulgare; Gahoonia and Nielsen, 2004), common bean (Miguel, 2004; Yan et al., 2004), and maize (Zhu et al., 2010).We hypothesize that the utilities of BRGA and RHL/D for phosphorus acquisition are synergetic. Root hairs will be more valuable for phosphorus acquisition if located in surface soil horizons by arising from roots with a shallow growth angle; shallow roots will have greater benefit for phosphorus acquisition if they have long and dense hairs. Therefore, genotypes possessing long, dense root hairs on shallow roots should have greater phosphorus acquisition than genotypes with either long root hairs on deep roots or short root hairs on shallow roots. We expect the combined benefit of long root hairs and shallow root growth angles to exceed the sum of their individual effects, since they permit greater exploitation of soil strata with the greatest phosphorus availability.In this study, we evaluated the potential synergism between the architectural phene of BRGA and the morphological phene of RHL/D for phosphorus acquisition by comparison of contrasting phenotypes of common bean growing in a weathered tropical soil.  相似文献   

16.
The speciation and spatial distribution of selenium (Se) in hydrated plant tissues is not well understood. Using synchrotron-based x-ray absorption spectroscopy and x-ray fluorescence microscopy (two-dimensional scanning [and associated mathematical model] and computed tomography), the speciation and distribution of toxic Se were examined within hydrated roots of cowpea (Vigna unguiculata) exposed to either 20 µm selenite or selenate. Based upon bulk solution concentrations, selenate was 9-fold more toxic to the roots than selenite, most likely due to increased accumulation of organoselenium (e.g. selenomethionine) in selenate-treated roots. Specifically, uptake of selenate (probably by sulfate transporters) occurred at a much higher rate than for selenite (apparently by both passive diffusion and phosphate transporters), with bulk root tissue Se concentrations approximately 18-fold higher in the selenate treatment. Although the proportion of Se converted to organic forms was higher for selenite (100%) than for selenate (26%), the absolute concentration of organoselenium was actually approximately 5-fold higher for selenate-treated roots. In addition, the longitudinal and radial distribution of Se in roots differed markedly: the highest tissue concentrations were in the endodermis and cortex approximately 4 mm or more behind the apex when exposed to selenate but in the meristem (approximately 1 mm from the apex) when exposed to selenite. The examination of the distribution and speciation of Se in hydrated roots provides valuable data in understanding Se uptake, transport, and toxicity.Selenium (Se) is an essential micronutrient for humans and other animals (Rayman, 2008). At elevated concentrations, however, it is toxic, and the concentration range from deficiency to lethality is unusually narrow (Terry et al., 2000). Plants represent a direct entrance to the wider food chain as the main sources of dietary Se (Rayman, 2008). The uptake and accumulation of Se by plants is an important process in controlling the health risks resulting from Se deficiency or toxicity. Se toxicity to plants has been observed in arid and semiarid soils derived from seleniferous rocks and shales, although anthropogenic contamination is also of concern (Terry et al., 2000). Therefore, it is important that the mechanisms of Se uptake, transformation, and toxicity in plants are understood in order to reduce health risks.Selenite (Se[IV]) and selenate (Se[VI]) are the two dominant inorganic species in soils depending upon the redox potential and pH (Elrashidi et al., 1987). The mechanism of Se[VI] uptake is well known: it is taken up by plant roots via the high-affinity sulfate transporters (Terry et al., 2000) due to the similarity between Se[VI] and sulfate. By contrast, little is known about the uptake mechanism involved in Se[IV] in plant roots. Some studies suggested that Se[IV] is taken up via passive diffusion (Shrift and Ulrich, 1969; Arvy, 1993). Recently, Zhao et al. (2010) reported that the uptake of Se[IV] is mediated by the silicon (Si) influx transporter Lsi1 (OsNIP2;1) in rice (Oryza sativa). Furthermore, Se[IV] uptake was found to occur via both passive diffusion and phosphate transporters in the marine coccolithophore Emiliania huxleyi (Araie et al., 2011). Apart from the difference in their mechanisms of uptake, they also differ in their mobility within plants (Li et al., 2008). Se[VI] is relatively easily translocated from roots to shoots, whereas Se[IV] tends to accumulate within the roots (Arvy, 1993). Despite this important progress, much less is known about the sites of uptake of Se[IV]/Se[VI] and their possible chemical transformations in hydrated plant roots. This information regarding the in situ distribution and chemical forms of Se would be helpful in elucidating the mechanism(s) responsible for Se uptake, transformation, and toxicity in plants.Recent advances in synchrotron-based techniques allow in situ measurement of the distribution of metal(loid)s in hydrated fresh plant tissues (Kopittke et al., 2011, 2012; Lombi et al., 2011a). In particular, the prototype Maia detector system, jointly developed by the Australian Synchrotron, the Commonwealth Scientific and Industrial Research Organization, and the Brookhaven National Laboratory, represents a new-generation x-ray fluorescence detector and real-time processing approach that provides unprecedented capabilities in in situ element imaging and measurement (Lombi et al., 2011b). The Maia uses an annular array of 384 silicon-diode detectors positioned in a backscatter geometry to subtend a large solid angle (approximately 1.3 steradian) and to achieve high count-rate capacity (Kirkham et al., 2010). Data acquisition times are approximately 10 to 100 times faster in the Maia than for other detectors, thereby allowing analysis of highly hydrated biological specimens (e.g. roots) without observable damage (Lombi et al., 2011a). This has allowed us to overcome the analytical challenges of examining the two-dimensional and virtual three-dimensional distribution of low-concentration metal(loid)s in hydrated and fresh plant tissues (Kopittke et al., 2011, 2012; Lombi et al., 2011a, 2011c).In this study, we investigated the speciation and quantified the longitudinal and radial distribution of Se in hydrated roots of cowpea (Vigna unguiculata) exposed to either Se[IV] or Se[VI]. Cowpea is a model species of rhizotoxicity and is also one of the most important food legume crops in the semiarid tropics, where Se toxicity is often a concern. The chemical forms of Se in cowpea roots were first examined using x-ray absorption spectroscopy (XAS). Second, with x-ray fluorescence microscopy (µ-XRF), we used two-dimensional imaging (coupled with an associated mathematical model to calculate concentrations of Se within various tissues of the root cylinder) to determine the spatially resolved distribution of Se within root tissues. Additionally, sequential tomography was used to provide virtual three-dimensional reconstructions of Se distribution in roots, enabling comparison of computed tomography with the mathematical model.  相似文献   

17.
Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.As leaves open their stomata to capture CO2 for photosynthesis, water is lost to transpiration, which needs to be replaced by flow through the hydraulic system. The leaf hydraulic system has two components, which act essentially in series: the pathways for water movement through the xylem from the petiole to leaf minor veins, and those through the living bundle sheath and mesophyll cells to the sites of evaporation (Tyree and Zimmermann, 2002; Sack et al., 2004; Sack and Holbrook, 2006). The decline in leaf hydraulic conductance (Kleaf) with dehydration may thus depend on both components. The importance of the xylem component is well established. Vein xylem embolism and cell collapse have been observed in dehydrating leaves (Salleo et al., 2001; Cochard et al., 2004a; Johnson et al., 2009), and computer modeling and experimental work showed that species with high major vein length per leaf area (VLA; i.e. for the first three vein-branching orders) were more resistant to hydraulic decline, providing more pathways around embolisms (Scoffoni et al., 2011). However, the physical impacts of dehydration on the extraxylem pathways have not been studied, even though in turgid leaves these pathways account for 26% to 88% of leaf hydraulic resistance (i.e. of 1/Kleaf), depending on species (Sack et al., 2003a; Cochard et al., 2004b). The aim of this study was to determine whether leaf shrinkage during dehydration relates to the decline of Kleaf as well as the structural determinants of leaf shrinkage.The shrinkage of leaves with dehydration has drawn attention for over 100 years. Leaves shrink in their area (Bogue, 1892; Gardner and Ehlig, 1965; Jones, 1973; Tang and Boyer, 2007; Blonder et al., 2012) and, considered in relative terms, even more strongly in their thickness (Fig. 1; Meidner, 1952; Gardner and Ehlig, 1965; Downey and Miller, 1971; Syvertsen and Levy, 1982; Saini and Rathore, 1983; Burquez, 1987; McBurney, 1992; Sancho-Knapik et al., 2010, 2011). Leaves fluctuate in thickness daily and seasonally according to transpiration (Kadoya et al., 1975; Tyree and Cameron, 1977; Fensom and Donald, 1982; Rozema et al., 1987; Ogaya and Peñuelas, 2006; Seelig et al., 2012). Indeed, the relation of leaf thickness to water status is so tight that using leaf thickness to guide irrigation has led to water savings of up to 45% (Seelig et al., 2012).Open in a separate windowFigure 1.Sketches of a fully turgid leaf (A) versus a strongly dehydrated leaf (B; drawings based on leaf cross sections of sunflower in Fellows and Boyer, 1978). Note the strong reduction in leaf thickness, cell thickness, and intercellular airspaces in the dehydrated leaf. Epidermal cells are shrunk in the dehydrated leaf, inducing whole-leaf area shrinkage. Note that this sketch represents shrinkage for a typical drought-sensitive species. Many species such as oaks (Quercus spp.) will experience less thickness shrinkage and an increase in intercellular airspace (see “Discussion”). [See online article for color version of this figure.]Previous studies of leaf shrinkage with progressive dehydration have tended to focus on single or few species. These studies showed that thickness declines with water status in two phases. Before the bulk leaf turgor loss point (TLP; leaf water potential [Ψleaf] at TLP) is reached, the slope of leaf thickness versus Ψleaf or relative water content (RWC) is shallower than past TLP for most species (Meidner, 1955, Kennedy and Booth, 1958, Burquez, 1987, McBurney, 1992, Sancho-Knapik et al., 2010, 2011). This is because before TLP, declining Ψleaf is strongly driven by declines in turgor pressure, which have a relatively low impact on cell and airspace volume, whereas past the TLP, declining Ψleaf depends only on solute concentration, which increases in inverse proportion as cell water volume declines while airspaces may shrink or expand (Tyree and Hammel, 1972, Sancho-Knapik et al., 2011). However, the steepness of the slope of leaf thickness versus Ψleaf before TLP seems to vary strongly across species (Meidner, 1955; Kennedy and Booth, 1958; Fellows and Boyer, 1978; Burquez, 1987; Colpitts and Coleman, 1997; Sancho-Knapik et al., 2010).A high leaf cell volume and turgor is crucial to physiological processes (Boyer, 1968; Lawlor and Cornic, 2002). Shrinkage may affect cell connectivity and water transport (Sancho-Knapik et al., 2011). However, no studies have tested for a possible relationship of leaf shrinkage with the decline of Kleaf during dehydration. Such an association would arise if, across species, shrinkage occurred simultaneously with vein xylem embolism or if tissue shrinkage led to declines in the extraxylem hydraulic conductance.To refine our hypotheses, we modified a computer model of the leaf hydraulic system (Cochard et al., 2004b; McKown et al., 2010; Scoffoni et al., 2011) to predict the impact of losses of xylem and extraxylem conductance on the response of Kleaf to dehydration. We characterized the degree of leaf shrinkage in thickness, in the thickness of cells and airspaces within the leaf, and in leaf area for 14 species diverse in phylogeny, leaf traits, and drought tolerance. We hypothesized that loss of extraxylem hydraulic conductance should have a greater impact on Kleaf at less negative water potentials when xylem tensions are too weak to trigger embolism and induce dramatic declines in Kleaf. We hypothesized that species with greater degrees of shrinkage before TLP would experience greater loss of Kleaf. Furthermore, we hypothesized that species from moist habitats would have greater degrees of shrinkage.For insight into the mechanisms and consequences of leaf shrinkage, we also investigated the relationships of 18 indices of leaf shrinkage with a wide range of aspects of leaf structure and composition, including gross morphology, leaf venation architecture, parameters of pressure-volume curves, and leaf water storage. We hypothesized that, across species, shrinkage in whole leaf, cell, and intercellular airspace thickness would be lower for species with greater allocation to structural rigidity and osmotic concentration, and thus shrinkage would be positively correlated with a lower modulus of elasticity (ε), less negative osmotic pressure at full turgor (πo), lower leaf mass per area (LMA), and lower leaf density. Additionally, we tested the longstanding hypothesis that species with higher major VLA and/or minor VLA (i.e. the fourth and higher vein-branching orders) would shrink less in area and/or thickness with dehydration (Gardner and Ehlig, 1965). Finally, we tested the ability of dehydrated leaves to recover in size with rehydration. We hypothesized that recovery would be greater for mildly than for strongly dehydrated leaves and that species with greater leaf shrinkage would be better able to recover from shrinkage.  相似文献   

18.
The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.Numerous studies have illustrated the relevant role of dissolved organic matter (DOM) present in soil solution and aquatic reservoirs (lakes, rivers, etc.) in the biological and chemical evolution of both natural and anthropogenic ecosystems (Stevenson, 1994; Tipping, 2002; Chen et al., 2004; Trevisan et al., 2011; Berbara and García, 2014; Canellas and Olivares, 2014; Mora et al., 2014a, 2014b). In many studies, DOM fractionation is made by using the methodology proposed by the International Humic Substances Society. Fractions obtained are operationally named humic acid (HA), fulvic acid, humin, and nonhumic fraction, which includes more hydrophilic compounds (polycarboxylic acids, aminoacids, sugars, etc.; Swift, 1996). Many studies have reported that HAs obtained from either organic materials (soils, soil sediments, composted wastes, etc.) or water reservoirs (rivers, lakes, etc.), extracted with alkaline water solutions, or isolated by resin fixation, reverse osmosis, or ultrafiltration (Alberts and Takács, 2004) affected the development of diverse plant species (for instance, cucumber [Cucumis sativus], tomato [Solanum lycopersicum], maize [Zea mays], wheat [Triticum aestivum], Arabidopsis [Arabidopsis thaliana], and rapeseed [Brassica Napus]) through common signaling pathways, which involved key phytoregulators, such as indole acetic acid (IAA)-nitric oxide (NO; Zandonadi et al., 2010; Canellas et al., 2011; Trevisan et al., 2011; Mora et al., 2012, 2014a), ethylene, and abscisic acid (ABA) in roots (Mora et al., 2012, 2014a) as well as cytokinins in shoots (Mora et al., 2010, 2014b). Recently, Mora et al., 2014a showed that the HA ability to enhance both shoot growth and ABA root concentration in cucumber was regulated by IAA and NO root signaling pathways. However, despite all of this information, the nature of a possible primary, common action on plant roots of HAs with diverse origin and structure remains elusive.Recently, Asli and Neumann (2010) described a new mechanism by which high concentrations of HAs extracted from diverse organic sources decreased shoot plant growth. This mechanism involved the reduction of root hydraulic conductivity (Lpr) resulting from the fouling of root cell wall pores because of the accumulation and aggregation of HA molecules at root surface. Although the concentration of HAs used by Asli and Neumann (2010) (1 g L−1) is much higher than that related to HA plant growth promotion ability (50–250 mg L−1; Rose et al., 2014), the results do raise the hypothesis that the primary, still unknown event emerging from the interaction of humic substances with root surface cells might involve an unspecific, physical action on root permeability and water uptake. This event might trigger a chain of secondary events in the root that, in turn, would affect specific hormone signaling pathways, which may regulate shoot and root growth. This HA action on plant development would be positive (increasing) or negative (decreasing) depending on HAs concentration in the rhizosphere.To explore the suitability of this hypothesis, we have tested the potential role of Lpr in the main mechanism by which HAs promote shoot growth in cucumber. To this end, we used a well-characterized and modeled sedimentary humic acid (SHA) at a concentration (100 mg of SHA organic carbon [C] L−1) that was associated with plant shoot growth promotion in previous studies (Mora, 2009; Mora et al., 2014a, 2014b). We also investigated the functional relationships between these effects of SHA on Lpr and shoot growth as well as in some shoot water-related parameters (leaf stomatal conductance [Gs] and ABA) and those caused by SHA on IAA-NO and ABA root signaling pathways. Finally, taking into account that root plasma membrane aquaporins (plasma membrane intrinsic proteins [PIPs]) are involved in the ABA regulation of Lpr in other plant systems, we also studied the role of PIPs in SHA effects on plant shoot growth.The results obtained here show that SHA enhances shoot growth in cucumber through ABA-dependent increases in both Lpr and root PIPs (CsPIPs) gene up-regulation.  相似文献   

19.
The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS. Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism.Plants evolved the ability to sense and respond to various environmental stimuli in an integrated fashion. Due to their sessile nature, they respond to directional stimuli such as light, gravity, touch, and moisture by directional organ growth (curvature), a phenomenon termed tropism. Experiments on coleoptiles conducted by Darwin in the 1880s revealed that in phototropism, the light stimulus is perceived by the tip, from which a signal is transmitted to the growing part (Darwin and Darwin, 1880). Darwin postulated that in a similar manner, the root tip perceives stimuli from the environment, including gravity and moisture, processes them, and directs the growth movement, acting like “the brain of one of the lower animals” (Darwin and Darwin, 1880). The transmitted signal in phototropism and gravitropism was later found to be a phytohormone, and its redistribution on opposite sides of the root or shoot was hypothesized to promote differential growth and bending of the organ (Went, 1926; Cholodny, 1927). Over the years, the phytohormone was characterized as indole-3-acetic acid (IAA, auxin; Kögl et al., 1934; Thimann, 1935), and the ‘Cholodny-Went’ theory was demonstrated for gravitropism and phototropism (Rashotte et al., 2000; Friml et al., 2002). In addition to auxin, second messengers such as Ca2+, pH oscillations, reactive oxygen species (ROS) and abscisic acid (ABA) were shown to play an essential role in gravitropism (Young and Evans, 1994; Fasano et al., 2001; Joo et al., 2001; Ponce et al., 2008). Auxin was shown to induce ROS accumulation during root gravitropism, where the gravitropic bending is ROS dependent (Joo et al., 2001; Peer et al., 2013).ROS such as superoxide and hydrogen peroxide were initially considered toxic byproducts of aerobic respiration but currently are known also for their essential role in myriad cellular and physiological processes in animals and plants (Mittler et al., 2011). ROS and antioxidants are essential components of plant cell growth (Foreman et al., 2003), cell cycle control, and shoot apical meristem maintenance (Schippers et al., 2016) and play a crucial role in protein modification and cellular redox homeostasis (Foyer and Noctor, 2005). ROS function as signal molecules by mediating both biotic- (Sagi and Fluhr, 2006; Miller et al., 2009) and abiotic- (Kwak et al., 2003; Sharma and Dietz, 2009) stress responses. Joo et al. (2001) reported a transient increase in intracellular ROS concentrations early in the gravitropic response, at the concave side of maize roots, where auxin concentrations are higher. Indeed, this asymmetric ROS distribution is required for gravitropic bending, since maize roots treated with antioxidants, which act as ROS scavengers, showed reduced gravitropic root bending (Joo et al., 2001). The link between auxin and ROS production was later shown to involve the activation of NADPH oxidase, a major membrane-bound ROS generator, via a PI3K-dependent pathway (Brightman et al., 1988; Joo et al., 2005; Peer et al., 2013). Peer et al. (2013) suggested that in gravitropism, ROS buffer auxin signaling by oxidizing the active auxin IAA to the nonactive and nontransported form, oxIAA.Gravitropic-oriented growth is the default growth program of the plant, with shoots growing upwards and roots downward. However, upon exposure to specific external stimuli, the plant overcomes its gravitropic growth program and bends toward or away from the source of the stimulus. For example, as roots respond to physical obstacles or water deficiency. The ability of roots to direct their growth toward environments of higher water potential was described by Darwin and even earlier and was later defined as hydrotropism (Von Sachs, 1887; Jaffe et al., 1985; Eapen et al., 2005).In Arabidopsis (Arabidopsis thaliana), wild-type seedlings respond to moisture gradients (hydrostimulation) by bending their primary roots toward higher water potential. Upon hydrostimulation, amyloplasts, the starch-containing plastids in root-cap columella cells, which function as part of the gravity sensing system, are degraded within hours and recover upon water replenishment (Takahashi et al., 2003; Ponce et al., 2008; Nakayama et al., 2012). Moreover, mutants with a reduced response to gravity (pgm1) and to auxin (axr1 and axr2) exhibit higher responsiveness to hydrostimulation, manifested as accelerated bending compared to wild-type roots (Takahashi et al., 2002, 2003). Recently, we have shown that hydrotropic root bending does not require auxin redistribution and is accelerated in the presence of auxin polar transport inhibitors and auxin-signaling antagonists (Shkolnik et al., 2016). These results reflect the competition, or interference, between root gravitropism and hydrotropism (Takahashi et al., 2009). However, which cellular signals participate in the integration of the different environmental stimuli that direct root tropic curvature is still poorly understood. Here we sought to assess the potential role of ROS in regulating hydrotropism and gravitropism in Arabidopsis roots.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号