共查询到20条相似文献,搜索用时 15 毫秒
1.
《Saudi Journal of Biological Sciences》2021,28(12):7006-7011
Complex diseases caused by Meloidogyne incognita and Fusarium fungus in cucumber is the most destructive disease under polyhouses. The experiment was conducted in the polyhouse of the Department of Horticulture, CCS HAU, Hisar, Haryana, India during summer season (2015–16) to evaluate the potential of bacterial and fungal biocontrol agents against Meloidogyne incognita and Fusarium oxysporum f. sp. cucumerinum in cucumber. Bioagents - Trichoderma viride (Tv), Pseudomonas fluorescence (Pf), Purpureocillium lilacinum (Pl) were taken 10 and 20 g kg−1 seed and bioagents liquid formulation, 10- and 15-ml kg−1 seed, were mixed with the potted soil. Chemical as well as untreated check were also maintained. All the treatments significantly improved the plant growth parameter, viz., shoot length (SL), root length (RL), fresh shoot weight (FSW), fresh root weight (FRW), dry shoot weight (DSW) and dry root weight (DRW) as compared to untreated check. However, significant reduction in nematode population and maximum improvement in plant growth parameter was recorded with carbofuran followed by higher dose of bioagents liquid formulation. Among the bioagents, bioagents liquid formulation was most effective in suppressing root knot nematode galling (43 / root system) and final population in soil (131 J2s / 200 cc soil) and fungus wilt incidence (25 %) at 30th day of after germination and significantly improved the plant growth parameters - shoot length (147.3 cm), fresh shoot weight (55.6 g), dry shoot weight (22.51 g) and dry root weight (4.50 g) from other bioagents. Bioagents liquid formulation was effective in suppression of root-knot nematode and fungus complex disease than the powder formulations of bioagents. More studies should be needed in future to evaluate the efficacy of bioagents as seed treatments and soil applications under field conditions. 相似文献
2.
Talc based formulations of two antagonistic fungi, Acremonium strictum W. Gams and Aspergillus terreus Thom were tested separately and together for their ability to suppress the development of root-knot disease of tomato caused by the root-knot nematode, Meloidogyne incognita Kofoid & White in two consecutive trials (2007–08). Tomato seedlings were each inoculated with M. incognita at 2 infective second stage juveniles /g of soil. M. incognita caused up to 48% reduction in plant growth parameters compared to un-inoculated control. Control efficacy achieved by combined soil application of both fungi, in terms of galls/root system and soil population/50 ml of soil, was 66 and 69% respectively at 60 days of inoculation compared to control. Soil application by individual fungus did not achieve as much effectiveness as the biocontrol agents applied together. The combined treatment was found to have antagonistic effect on M. incognita development and increased plant vigor. Incorporation of fine powder of chickpea pod waste with talc powder was beneficial in providing additional nutrients to both plant and biocontrol agents and increased the activity of the nematophagous fungi in soil. A. strictum and A. terreus were successfully established in the rhizosphere of tomato plants up to the termination of the experiment. 相似文献
3.
4.
The present study was carried out in vitro to determine the efficacy of indigenous fungi isolated from egg masses of root-knot nematode, Meloidogyne incognita on egg parasitism, egg hatching, mobility and mortality against root-knot nematode, M. incognita. The tested fungi were Acremonium strictum, Aspergillus terreus, A. nidulans, A. niger, Chetomium aubense, Chladosporium oxysporum, Fusarium chlamydosporium, F. dimarum, F. oxysporum, F. solani, Paecilomyces lilacinus, Pochonia chlamydosporia, Trichoderma viride and T. harzianum. All tested fungi showed varied effects against the nematodes. Culture filtrates of A. strictum was very effective against the nematode in regards to egg parasitism (53%), egg hatching inhibition (86%) and mortality (68%) compared to controls. A. strictum was found to have an advantage over P. lilacinus, P. chlamydosporia, T. viride and T. harzianum in that it caused greater mortality of the second stage juveniles (J2). A. terreus did not show egg parasitism but was found to be highly toxic against second stage juveniles (J2) causing high mortality (around 68%). Thus, A. strictum and A. terreus showed good biocontrol potential against root-knot nematode, M. incognita under in vitro conditions. 相似文献
5.
F. J. Sorribas C. Ornat M. Galeano S. Verdejo-lucas 《Biocontrol Science and Technology》2003,13(8):707-714
Growth chamber and plastic tunnel experiments were conducted to compare the ability of a native and introduced isolate of Pochonia chlamydosporia to colonize the rhizosphere of selected plant species and survive in soil. Effects of the isolates on population density of Meloidogyne javanica and yield of tomato after single or multiple fungal applications were also determined. In growth chamber experiments, both isolates showed a similar ability to colonise the rhizosphere of selected vegetables, except for the introduced isolate, which produced more colony forming units cm-2 of root surface on tomato and cabbage than the native one. In the tunnel house, both isolates parasitized eggs of M. javanica, and the native but not the introduced isolate increased parasitism after multiple applications. The native isolate was recovered more frequently from soil, and was a better colonizer of tomato roots than the introduced one irrespective of the number of fungal applications. Multiple fungal applications of either isolate reduced the nematode gall rating, and the native isolate also reduced the final egg population in roots. Neither isolates reduced final nematode densities in soil or affected tomato yield when compared to untreated plots. 相似文献
6.
Moustafa A. Abbassy Mona A. Abdel-Rasoul Belal S. M. Soliman 《Archives Of Phytopathology And Plant Protection》2017,50(17-18):909-926
Current study investigated the nematicidal activity of leaf extracts of Conyza dioscoridis, Melia azedarach, and Moringa oleifera that were prepared as silver nanoparticles (Ag-NP). The characterisation and size confirmation of the Ag-NP were done by UV–vis spectrophotometry and the scanning electron microscopy (SEM). The phytochemical contents of crude extracts and the nano formulations were analysed using gas chromatography-mass spectroscopy (GC-MS). Results revealed that silver nanoparticles of C. dioscoridis extractives had great nematicidal activity against the 2nd stage juvenile (J2) and eggs of Meloidogyne incognita. Also, the Ag-NP showed similar nematicidal effect to the reference nematicide; rugby. The GC-MS analysis revealed the increase of certain metabolites due to the formulation of the Ag-NPs. Aromadendrene, 1-hydroxy-1,7-dimethyl-4-isopropyl-2,7-cyclodecdiene, 6-epi-shyobunol, 4-hexylacetophenone, β-isocomene, caryophyllene, β- and α-selinene, α-cadinol, berkheyaradulen, and bis-(2-ethylhexyl)phthalate were increased more than 2.5-folds in the Ag-NP compared the extract. Therefore, the green synthesis of metal nanoparticles might be a safe, effective and affordable nematicide alternatives. 相似文献
7.
8.
Pedroche NB Villanueva LM De Dirk W 《Communications in agricultural and applied biological sciences》2007,72(3):659-666
The root-knot nematode, Meloidogyne incognito (Kofoid et White) Chitwood is an important pathogen of vegetables. Five commercial cultivars of lettuce (Lactuca sativa L.) were evaluated under greenhouse conditions for resistance to Meloidogyne incognita, Benguet population. Plants were inoculated with 1000 eggs collected from 'Apollo' tomato (Lycopersicon esculentum) roots. The degree of galling and number of egg masses were assessed 4 and 8 weeks after inoculation. Host plant response was classified as immune, highly resistant, resistant, moderately resistant, intermediate, moderately susceptible, and highly susceptible based on the resistance index of Kouamè et at., 1998 [RI = (gall2 + egg2)]. Inoculation of 1000 eggs/plant significantly affected the growth and yield of the five lettuce cultivars 4 and 8 weeks after inoculation. A significant interaction was observed between treatment and cultivar during the two evaluation periods in terms of marketable and non-marketable yield, plant height, root weight, number of galls and number of egg masses. A reduction in growth and yield was observed in the cultivars Ballon, Lollo Rosa and Red Wave. Significant differences were noted in the number of galls and egg masses among the different cultivars tested. The highest average number of galls was obtained from the cultivars Red Wave, Ballon and Lollo Rosa. Cultivar Ballon had the highest average number of recovered nematode while Gilaben had the lowest with 15 and 4 per roots, respectively after 4 weeks inoculation. After 8 weeks, nematode was highest in cultivar Red Wave (615) and lowest in Great Lakes (70). Based on the host response, cultivars Great Lakes and Gilaben were rated highly resistant and resistant, respectively, while Red Wave, Ballon and Lollo Rosa were rated intermediate. 相似文献
9.
Pochonia chlamydosporia (Pc123) is a fungal parasite of nematode eggs which can colonize endophytically barley and tomato roots. In this paper we use culturing as well as quantitative PCR (qPCR) methods and a stable GFP transformant (Pc123gfp) to analyze the endophytic behavior of the fungus in tomato roots. We found no differences between virulence/root colonization of Pc123 and Pc123gfp on root-knot nematode Meloidogyne javanica eggs and tomato seedlings respectively. Confocal microscopy of Pc123gfp infecting M. javanica eggs revealed details of the process such as penetration hyphae in the egg shell or appressoria and associated post infection hyphae previously unseen. Pc123gfp colonization of tomato roots was low close to the root cap, but increased with the distance to form a patchy hyphal network. Pc123gfp colonized epidermal and cortex tomato root cells and induced plant defenses (papillae). qPCR unlike culturing revealed reduction in fungus root colonization (total and endophytic) with plant development. Pc123gfp was found by qPCR less rhizosphere competent than Pc123. Endophytic colonization by Pc123gfp promoted growth of both roots and shoots of tomato plants vs. uninoculated (control) plants. Tomato roots endophytically colonized by Pc123gfp and inoculated with M. javanica juveniles developed galls and egg masses which were colonized by the fungus. Our results suggest that endophytic colonization of tomato roots by P. chlamydosporia may be relevant for promoting plant growth and perhaps affect managing of root-knot nematode infestations. 相似文献
10.
Kumari NS Sivakumar CV 《Communications in agricultural and applied biological sciences》2005,70(4):909-914
An integrated approach with the obligate bacterial parasite, Pasteuria penetrans and nematicides was assessed for the management of the root-knot nematode, Meloidogyne incognita infestation in tomato and grapevine. Seedlings of tomato cv. Co3 were transplanted into pots filled with sterilized soil and inoculated with nematodes (5000 juveniles/pot). The root powder of P. penetrans at 10 mg/pot was applied alone and in combination with carbofuran at 6 mg/pot. Application of P. penetrans along with carbofuran recorded lowest nematode infestation (107 nematodes/200 g soil) compared to control (325 nematodes/200 g soil). The rate of parasitization was 83.1% in the carbofuran and P. penetrans combination treatment as against 61.0% in the P. penetrans treatment only. The plant growth was also higher in the combination treatment compared to all other treatments. A field trial was carried out to assess the efficacy of P. penetrans and nematicides viz., carbofuran and phorate in the management of root-knot nematode, M. incognita infestation of grapevine cv. Muscat Hamburg. A nematode and P. penetrans infested grapevine field was selected and treatments either with carbofuran or phorate at 1 g a.i/vine was given. The observations were recorded at monthly interval. The results showed that the soil nematode population was reduced in nematicide treated plots. Suppression of nematodes was higher under phorate (117 nematodes/200 g soil) than under carbofuran (126.7 nematodes/200 g soil) treatment. The number of juveniles parasitized was also influenced by nematicides and spore load carried/juvenile with phorate being superior and the increase being 17.0 and 29.0% respectively over the control. The results of these experiment confirmed the compatibility of P. penetrans with nematicides and its biological control potential against the root-knot nematode. 相似文献
11.
The potential of isolates of Pochonia chlamydosporia var. chlamydosporia as biocontrol agents for root-knot nematodes was investigated in vitro and on pistachio plants. On potato dextrose agar, growth of all isolates started at temperatures above 10°C, reached maximum between 25 and 28°C and slowed down at 33°C. On water agar, all isolates parasitized more than 85% of the eggs of Meloidogyne javanica at 18°C after 3 weeks. Filtrates of isolates grown on malt extract broth did not cause more than 5% mortality on second-stage juveniles of M. javanica after 48 h of incubation. A single application of 10×103 chlamydospores (produced on sand–barley medium) g–1 soil, was applied to unsterilised soil planted with pistachio cv. Kalehghochi, and plants were inoculated with 3000 nematode eggs. After 120 days in the glasshouse, nematode multiplication and damage were measured. Ability of fungus isolates to survive in the soil and to grow on roots were estimated by counting colony forming units (cfu) on semi-selective medium. Fungal abundance in soil increased nearly 3-fold and 10×103 and 20×103 cfu g–1 root of pistachio were estimated in pots treated with isolates 40 and 50, respectively. Strain 50 was more abundant in soil and on the roots, infected more eggs (40%) on the roots and controlled 56% of total population of M. javanica on pistachio roots, whereas isolate 40 parasitized 15% of the eggs on the roots and controlled ca. 36% of the final nematode population. 相似文献
12.
Rushda Sharf Hisamuddin Shiekh Abbasi Syed Ambreen Akhtar M.I. Robab 《Archives Of Phytopathology And Plant Protection》2013,46(5):622-630
An experiment was conducted to test the effect of different doses of 2, 4 and 8?g/2?kg of soil of Pochonia chlamydosporia against the root-knot nematode (Meloidogyne incognita) on Phaseolus vulgaris. It was observed that inoculation of plant with the nematode alone, and 15?days prior to fungal inoculation, reduced the plant growth when compared with the plant with fungal application followed by the nematode. Plant length, fresh and dry weight, chlorophyll, carotenoid, protein contents and nitrate reductase activity decreased in nematode-infested plants. Application of higher dose of 8?g/2?kg of soil of P. chlamydosporia increased all the plant growth parameters as well as biochemical parameters. Highest number of galls per root system was recorded on the plants infested with nematode but not treated with the fungus. However, application of fungus prior to nematode inoculation improved the plant growth and reduced the number of galls and the number of egg masses per root system. 相似文献
13.
Swarn Singh Hisamuddin Tanweer Azam 《Archives Of Phytopathology And Plant Protection》2013,46(15):1504-1511
Effects of the root-knot nematode (Meloidogyne incognita) on lentil (Lens culinaris) were studied under greenhouse conditions. The plants were inoculated with 250, 500, 1000, 2000 and 4000 J2 per plant. Plant growth, yield, nodulation, seed weight, chlorophyll, nitrogen, phosphorus and potassium, (NPK) contents, as compared to control, were found decreased in all the nematode infected plants. The extent of reduction increased with an increase in inoculum levels. The reductions were significant at 500 J2 and at higher inoculum levels, i.e. 1000, 2000 and 4000 J2 per pot over the control. An increase in inoculum level caused enhancement in galling, egg mass production and nematode population. At higher inoculum levels, the population of the nematode in the root as well as in the soil increased to a greater magnitude than at lower inoculum levels. On the contrary, reproduction factor (RF) and rate of population increase (RPI) decreased with increasing inoculum levels. 相似文献
14.
The effects of the interaction between the arbuscular mycorrhizal fungus Glomus mosseae and the root-knot nematode Meloidogyne incognita on growth and nutrition of micropropagated ;Grand Naine banana (Musa AAA) cultivar was studied under greenhouse conditions. Inoculation with two G. mosseae isolates significantly increased growth of plants in relation to non-mycorrhizal plants. Response to mycorrhizae was as effective as with an optimum P fertilization in promoting plant development for most growth parameters. Meloidogyne incognita had no apparent effect on the percentage of root colonization in mycorrhizal plants. In contrast, G. mosseae suppressed root galling and nematode buildup in the roots. The percentage of mycorrhizal colonization was high (over 80%) in low P fertilized plants, but optimum P rates for bananas (four times higher than low P) significantly reduced mycorrhizal colonization. Most elements were within sufficiency levels for banana with exception of N which was low for all treatments. Mycorrhizal plants fertilized with a low P rate showed higher N, P, K, Ca, and Mg contents as compared to non-mycorrhizal plants low in P with or without the nematode. Inoculation with G. mosseae favours growth of banana plants by enhancing plant nutrition and by suppressing nematode reproduction and galling during the early stages of plant development. 相似文献
15.
16.
《Journal of Asia》2022,25(1):101846
Meloidogyne incognita is one of the most important plant parasitic nematodes. This study was conducted to determine the nematicidal potential of Beauveria bassiana and Metarhizium anisopliae against M. incognita. B. bassiana and M. anisopliae spore suspensions and bio -nematicide, Purpureocillium lilacinum were applied. B. bassiana and M. anisopliae revealed considerable nematicidal activity against M. incognita in tomato and cucumber. The gall index decreased gradually from 8.0 for control to 3.2, 2.0 and 2.2 for B. bassiana, M. anisopliae and P. lilacinum in tomato, respectively. The highest reduction (%) in gall formation (control index) was calculated as 75.2 % in M. anisopliae treated group for tomato. The gall index was 7.6 for control, but decreased to 3.6, 2.0 and 2.2 for B. bassiana, M. anisopliae and P. lilacinum in cucumber, respectively. The highest control index was 71.7 % for M. anisopliae in cucumber. The number of the second instar juveniles of M. incognita was recorded as 2240 for control. However, this value reduced to 508, 332 and 328 by B. bassiana, M. anisopliae and P. lilacinum in tomato, respectively. The highest control indexes for the second instar juveniles were 85.2 % and 85.3 % for M. anisopliae and P. lilacinum in tomato, respectively. Alike, the highest control indexes were 84.9 % and 85.7 % for the same applications in cucumber, respectively. B. bassiana and M. anisopliae displayed also positive effect on the number of leaves, dry and fresh root weights of tomato. The results showed that B. bassiana and M. anisopliae can be considered as an alternative. 相似文献
17.
Suhail Anver 《Archives Of Phytopathology And Plant Protection》2013,46(3):159-168
Abstract Pigeonpea (Cajanus cajan) and linseed (Linum usitatissimum) are susceptible to Meloidogyne incognita and Rotylenchulus reniformis nematodes. Reduction in different growth parameters (length and weight of plant, number of pods), bulk density of pigeonpea stem, oil content of linseed, chlorophyll content of leaf and water absorption of roots caused by M. incognita and R. reniformis were statistically significant. Similar effects were also observed in plants raised from seeds soaked in different concentrations of water soluble fractions (WSF) of rice polish and pyridoxine solutions, however, the reductions were of a comparatively lesser extent. Higher concentrations of the solutions were more effective when compared to lower ones and pyridoxine was more beneficial than WSF for improving plant growth and reducing disease incidence. 相似文献
18.
Regaieg Hajer Ciancio Aurelio Raouani Najet Horrigue Grasso Gaetano Rosso Laura 《World journal of microbiology & biotechnology》2010,26(12):2285-2289
Filtrates of three isolates of the nematophagous fungus Verticillium leptobactrum were evaluated for their nematicidal activity against the root-knot nematode Meloidogyne incognita. The filtrates inhibited egg hatching, with maximum toxicity observed for isolate HR21 at 50% (v:v) dilution, after 7 days
exposure. Filtrates also inactivated second-stage juveniles (J2) at 10-50% dilutions. A scanning electron microscopy study
of treated eggs showed severe alterations caused by the filtrate of isolate HR43 on M. incognita eggs, which appeared collapsed and not viable, suggesting the production of chitin-degrading enzymes or other active compounds. 相似文献
19.
M. M.A. Youssef 《Archives Of Phytopathology And Plant Protection》2013,46(7):660-665
Efficacy of certain plant wastes as onion bulb envelope, dry leaves of sugar beet, fleabane and jojoba, filter cake or mud as sugar cane industrial residue and nile fertile mineral bio-fertilisers were studied under field conditions for managing Meloidogyne incognita on banana Cv. Williams. All the tested treatments significantly (P ≤ 0.05 and 0.01) proved to be effective in reducing the studied nematode criteria during the growing season of banana. The highest percentage reductions of 87.5 and 85.5% were recorded in the number of second-stage juveniles caused by fleabane at vegetative and harvest stages, respectively. As for galls, the highest percentage reductions of 80.4 and 79.6% were achieved at harvest stage by sugar beet waste and filter cake residue, respectively. Also, sugar beet waste was the best at increasing banana fruit yield per feddan (77.0%), followed by jojoba (53.1%) and fleabane (50.4%). The number of fingers and hands per bunch increased by the different materials at various degrees. 相似文献
20.
The individual, concomitant and sequential inoculation of second stage juveniles (at 2000 J2/kg soil) of Meloidogyne incognita and Rhizoctonia solani (at 2 g mycelial mat/kg soil) showed significant reduction in plant growth parameters viz. plant length, fresh weight and dry weight as compared to control. The greatest reduction in plant growth parameters was recorded in the plants simultaneously inoculated with M. incognita and R. solani followed by sequential and individual inoculation. In sequential inoculation, plant inoculated with M. incognita 15 days prior to R. solani shows more reduction in comparison to plant inoculated with R. solani 15 days prior to M. incognita. Moreover, the multiplication of nematode and number of galls/root system were significantly reduced in concomitant and sequential inoculation as compared to individual inoculation, whereas the intensity of root-rot/root system caused by R. solani was increased in the presence of root-knot nematode M. incognita as compared to when R. solani was inoculated individually. 相似文献