首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this contribution we want to show that growth forms intermediate between non-clonal and clonal plants can be used to ask questions about the functional ecology of clonality. We discuss this idea on plants sprouting adventitiously from roots and accomplishing clonal growth via root spacers. Based on extensive literature dealing with growth forms of root sprouting plants, we characterise forms functionally intermediate between clonal root-sprouters and non-clonal plants. We delimit them according to their potential ability to form adventitious shoots and horizontal roots. By reviewing experimental work with root sprouters, we identify the most important triggering factors and developmental constraints influencing these intermediate forms plant age, life-history mode and life-history stage. Using this information we ask questions about the importance of root sprouting in (1) conditions of unpredictable disturbance, where root-sprouting ability may be viewed as a tool for vegetative regeneration, and in (2) temporarily and spatially heterogeneous environment, where foraging by roots may serve as a way of exploiting patchy resources.  相似文献   

2.
J. M. Sarneel 《Hydrobiologia》2013,710(1):219-225
Flowing water can disperse a high number of seeds and vegetative propagules over long distances and is therefore a very important dispersal vector in wetland habitats. Although the dispersal of seeds is relatively well studied, the dispersal of vegetative propagules has received less attention. However, in riparian and aquatic systems where many species have clonal growth forms, it can be very important. The relative importance of vegetative propagules in the dispersal of fen species was assessed first by determining their relative abundance in the field and second, by determining the buoyancy of plant fragments of ten fen species experimentally. On average, vegetative propagules made up 3.2–58.9% of the total propagule number (mainly Elodea nutallii). Buoyancy of the tested species ranged from 25 days to over 6 months. Surprisingly, the propagules of Stratiotes aloides and Hydrocharis morsus-ranae increased buoyancy when spring started (after ca. 100 days). The results demonstrate that vegetative propagules of riparian and aquatic fen species have a high capacity to disperse over long distances via water and are therefore likely to play an important role in the colonisation of new habitats. Especially because in nine out of the ten species tested, over 50% of the propagules were still viable after 6 months of floating.  相似文献   

3.
A major advantage of clonal growth forms is the intergenerational transfer of resources through vascular connections (clonal integration). Connections linking ramets can be persistent or ephemeral. For species with ephemeral connections, whether the extent of clonal integration changes over time is unclear. To address this issue, we tracked water movement using an isotopic label and assessed the demographic performance of parent and offspring ramets over time in a severing experiment. Our study system was the understory herb Calathea marantifolia, which has parent ramets that produce vegetative bulbils (clonal offspring) that pass through distinct pre- and post-rooting stages. Little water was transported between parents and offspring, and the direction of movement was primarily from parent to pre-rooting offspring. Anatomical observations of inter-ramet connections showed that vascular bundles were twice as abundant in parent stems compared to inter-ramet connections. Severing inter-ramet connections reduced the growth of offspring ramets but not parents. Survival of pre-rooting offspring was reduced by 10% due to severing, but post-rooting offspring were not affected. Our results suggest that offspring ramets of C. marantifolia are weaned from their parent as they progress from pre- to post-rooting stages.  相似文献   

4.
L. Jerling 《Plant Ecology》1988,74(2-3):171-185
The vegetative propagation ofGlaux maritima is correlated with growth habit which is inturn related to the light environment. Plant form and vegetative behaviour were recorded 1980–1984 and an attempt to correlate this to population dynamics and vegetation development was made.The type of vegetative propagation gives rise to a size hierarchy of propagules and thus a strong within clone dynamics. A range of life stages may be permanently present in a clone. Clones from different parts of a shore meadow have different patterns of vegetative propagation. The offshoot growth behaviour can be used to explain vegetation patterns and neighbour relationships.  相似文献   

5.
The aquatic and terrestrial realms differ in many physical properties that not only require specific physiological adaptations but also cause differences in dispersal options. We thus expect that life-history traits related to dispersal and colonization are under selection pressure because freshwater habitats are more isolated and thus more difficult to reach. We compared traits from European databases of three taxonomic groups along the passive–active dispersal gradient: plants (Plantes), snails (Mollusca: Gastropoda: Prosobranchia et Pulmonata) and hoverflies (Diptera: Syrphidae), all of which have both terrestrial and freshwater species (plants and snails) or early life stages (hoverflies). Aquatic taxa seem to be more successful long-distance dispersers than are terrestrial taxa. Our analysis also revealed lower numbers of seeds or eggs produced in the aquatic habitats. However, aquatic taxa often allocate resources to offspring guarding (vegetative propagules in plants, egg capsules in snails) and breeding-site selection (syrphids). Colonization of the aquatic realm is reinforced by increases in life span (plants), clonal spread (plants), shorter generation times (snails), selfing ability (marginal effect in pulmonate snails) or paedogenesis (two incidences in hoverflies, needs further studies). Probably, the variety of strategies reflects the different evolutionary backgrounds that elicit different combinations of trade-offs, but all traits also might increase invasibility of species.  相似文献   

6.
Clonal plants propagate by means of clonal growth and sexual reproduction. The commitment of meristems to branching and flowering govern the expression of these two mutually exclusive life-history functions. We used a modelling and an experimental approach to examine the consequences of a structural trade-off between flowering and clonal growth on future growth and fitness in stoloniferous species with a determinate module architecture. The model revealed negative effects of flowering on vegetative growth due to a structural trade-off at the meristem level. Total fecundity was maximized at intermediate flowering frequencies. In addition, optimal meristem commitment to flowering depended strongly on the time available for growth and reproduction. This indicates an interaction between optimal flowering frequency, the length of the growing period and the rate of ontogenetic development. The greenhouse study made use of 15 genotypes of two closely related, stoloniferous Trifolium species. Despite the existence of a structural trade-off at the meristem level, we found no evidence for costs of flowering on the whole-plant level. High allocation to flowering did not result in reduced plant performance (biomass and module production) and total fecundity, indicating that there were no demographic costs of meristem investment to different life-history functions. Flowering frequencies never exceeded the model prediction for optimal commitment of meristems to sexual reproduction, suggesting strong past selection to eliminate high levels of meristem allocation to flowering. Hence, clonal growth seems to have evolutionary priority over sexual reproduction in our species. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

7.
In many coastal locations, seagrass meadows are part of a greater seascape that includes both marine and terrestrial elements, each linked to the other via the foraging patterns of consumers (both predators and herbivores), and the passive drift of seagrass propagules, leaves, roots and rhizomes, and seagrass-associated macroalgal detritus. With seagrasses declining in many regions, the linkages between seagrass meadows and other habitats are being altered and diminished. Thus, it is timely to summarize what is known about the prevalence and magnitude of cross-habitat exchanges of seagrass-derived energy and materials, and to increase awareness of the importance of seagrasses to adjacent and even distant habitats. To do so we examined the literature on the extent and importance of exchanges of biomass between seagrass meadows and other habitats, both in the form of exported seagrass biomass as well as transfers of animal biomass via migration. Data were most abundant for Caribbean coral reefs and Australian beaches, and organisms for which there were quantitative estimates included Caribbean fishes and North American migratory waterfowl. Overall, data from the studies we reviewed clearly showed that seagrass ecosystems provide a large subsidy to both near and distant locations through the export of particulate organic matter and living plant and animal biomass. The consequences of continuing seagrass decline thus extend far beyond the areas where seagrasses grow.  相似文献   

8.
On the evolution of clonal plant life histories   总被引:2,自引:0,他引:2  
Clonal plant life histories are special in at least four respects: (1) Clonal plants can also reproduce vegetatively, (2) vegetative reproduction can be realised with short or long spacers, (3) and it may allow to plastically place vegetative offspring in benign patches. (4) Moreover, ramets of clonal plants may remain physically and physiologically integrated. Because of the apparent utility of such traits and because ecological patterns of distribution of clonal and non-clonal plants differ, adaptation is a tempting explanation of observed clonal life-history variation. However, adaptive evolution requires (1) heritable genetic variation and (2) a trait effect on fitness, and (3) it may be constrained if other evolutionary forces are overriding selection or by constraints, costs and trade-offs. (1) The few studies undertaken so far reported broad-sense heritability for clonal traits. Variation in selectively neutral genetic markers appears as pronounced in populations of clonal as non-clonal plants. However, neutral markers may not reflect heritable variation of life-history traits. Moreover, clonal plants may have been sampled at larger spatial scales. Empirical information on the contribution of somatic mutations to heritable variation is lacking. (2) Clonal life-history traits were found to affect fitness. However, much of this evidence stems from artificial rather than natural environments. (3) The relative importance of gene flow, inbreeding, and genetic drift, compared with selection, in the evolution of clonal life histories is hardly explored. Benefits of clonal life-history traits were frequently studied and found. However, there is also evidence for constraints, trade-offs, and costs. In conclusion, though it is very likely, that clonal life-history traits are adaptive, it is neither clear to which degree this is the case, nor which clonal life-history traits constitute adaptations to which environmental factors. Moreover, evolutionary interactions among clonal life-history traits and between clonal and non-clonal ones, such as the mating system, are not well explored. There remains much interesting work to be done in this field – which will be particularly interesting if it is done in the field.  相似文献   

9.
石松类及蕨类植物在高等植物中处于比较特殊的进化与系统发育地位, 同时具有孢子植物(孢子)与种子植物(维管束)的双重特征。附生蕨类植物是蕨类植物中占据独特生境的一个大类群, 其生活史策略及进化历史与其附生生长的森林生态系统紧密相关。大部分附生蕨类植物的克隆生长习性及克隆生活史性状在其生态适应中具有重要作用, 但这方面未引起广泛关注。本文主要综述了中国山地森林中附生蕨类植物的根状茎克隆生长、克隆性与生态适应性、不同克隆生长方式与进化等方面, 并展望了蕨类植物克隆性在森林生态系统过程与功能中的作用, 以及今后如何将蕨类植物生态学研究与气候变化、植被恢复、土地利用变化等全球变化的主流方向进行结合。  相似文献   

10.
We investigated the importance of clonal growth to the recovery of a common eastern North American sub-shrub, Gaultheria procumbens L. (Ericacea), after clearcut logging. Changes in vegetative growth and development of G. procumbens clones and clonal populations were examined in a chronosequence of logged stands representing different stages of successional development after clearcutting (open habitat, young regenerating forest, closed regenerating forest) and in neighboring undisturbed late-successional forests representative of presettlement conditions. We specifically quantified seedling presence and above-ground ramet production, demographic condition (e.g., sexual vs. vegetative stems), belowground rhizome growth and spread, and assessed the degree of intraspecific variation in clonal morphology and biomass allocation in stands differing in their disturbance history and degree of successional development. Recovery in G. procumbens was largely driven by the “release growth” of pre-existing clonal bud-banks in response to canopy removal. Release growth was expressed as greater ramet initiation, rhizome branching and clonal spread. Conversely, we found no evidence of sexual establishment in the species, although production of reproductive biomass (e.g., inflorescence mass, number of flowering shoots) was significant. These findings support a deterministic model of vascular resistance and resilience to catastrophic disturbance, in which recovery of forest plant communities derives from the life-history characteristics of constituent species.  相似文献   

11.
The field of habitat ecology has been muddled by imprecise terminology regarding what constitutes habitat, and how importance is measured through use, selection, avoidance and other bio-statistical terminology. Added to the confusion is the idea that habitat is scale-specific. Despite these conceptual difficulties, ecologists have made advances in understanding ‘how habitats are important to animals’, and data from animal-borne global positioning system (GPS) units have the potential to help this clarification. Here, we propose a new conceptual framework to connect habitats with measures of animal performance itself—towards assessing habitat–performance relationship (HPR). Long-term studies will be needed to estimate consequences of habitat selection for animal performance. GPS data from wildlife can provide new approaches for studying useful correlates of performance that we review. Recent examples include merging traditional resource selection studies with information about resources used at different critical life-history events (e.g. nesting, calving, migration), uncovering habitats that facilitate movement or foraging and, ultimately, comparing resources used through different life-history strategies with those resulting in death. By integrating data from GPS receivers with other animal-borne technologies and combining those data with additional life-history information, we believe understanding the drivers of HPRs will inform animal ecology and improve conservation.  相似文献   

12.
? Many plants combine sexual reproduction with vegetative propagation, but how trade-offs between these reproductive modes affect fitness is poorly understood. Although such trade-offs have been demonstrated at the level of individual shoots (ramets), there is little evidence that they scale up to affect genet fitness. For hermaphrodites, reproductive investment is further divided between female and male sexual functions. Female function should generally incur greater carbon costs than male function, which might involve greater nitrogen (N) costs. ? Using a common garden experiment with diclinous, clonal Sagittaria latifolia we manipulated investment in reproduction through female and male sex functions of 412 plants from monoecious and dioecious populations. ? We detected a 1?:?1 trade-off between biomass investment in female function and clonal reproduction. For male function, there was no apparent trade-off between clonal and sexual reproduction in terms of biomass investment. Instead, male function incurred a substantially higher N cost. ? Our results indicate that: trade-offs between investment in clonal propagation and sexual reproduction occur at the genet level in S.?latifolia; and sexual reproduction interferes with clonal expansion, with investment in female function limiting the quantity of clonal propagules produced, and investment in male function limiting the nutrient content of clonal propagules.  相似文献   

13.
Adventitious growth was observed on fertile shoots of Juncus militaris Bigel. (bayonet rush) growing in Rhode Island freshwater lake during a summer of high water levels. Adventitious roots appeared at involucral bract nodes, and adventitious vegetative propagules appeared on inflorescence axes. The adventititious vegetative propagules became detached from the inflorescence axes and were transported to shore by wind and wave action.  相似文献   

14.
Clonal plants grow in diameter rather than height, and therefore competition among genets is likely to be symmetric and to result in smaller variation in size of genets than in non-clonal plants. Moreover, clonal plants can reproduce both sexually and vegetatively. We studied the effects of density on the size of rosettes and of clones, variation in the size of rosettes and of clones, and allocation to sexual and vegetative reproduction in the clonal herb Ranunculus reptans . We grew plants from an artificial population of R. reptans in 32 trays at two densities. After four months, differences in density were still apparent, although clones in the low-density treatment had on average 155% more rosettes and 227% more rooted rosettes than clones in the high-density treatment. The coefficient of variation of these measures of clone size was 15% and 83% higher, respectively, in the low-density treatment. This indicates that intraspecific competition among clones of R. reptans is symmetric and increases the effective population size. Rooted rosettes were larger and varied more in size in the low-density treatment. The relative allocation of the populations to sexual and to vegetative reproduction was 19% and 13% higher, respectively, in the high-density treatment. Moreover, seeds produced in the high-density treatment had a 24% higher mass and a 7% higher germination percentage. This suggests that with increasing density, allocation to sexual reproduction increases more than allocation to vegetative reproduction in R. reptans , which corresponds to the response of some other species with a spreading growth form but not of species with a compact growth form. We conclude that intraspecific competition is an important factor in the life-history evolution of R. reptans because intraspecific competition affects its clonal life-history traits and may affect evolutionary processes such as genetic drift and selection through its effect on the effective population size.  相似文献   

15.
Long-distance dispersal is a key process in biological invasions. Previous research has emphasized the role of nonstandard dispersal vectors, but consequences of a change in dispersal vector for the establishment of invasive plant species have received less attention. We analyzed how water-mediated dispersal rather than the more expected wind-mediated dispersal can affect the establishment of the invasive tree Ailanthus altissima in riparian corridors by changing the germination rate and velocity and by providing the option of a new pathway of vegetative propagation. We analyzed the potential of different types of propagules (fruits that have floated or been submerged, current- and second-year stem fragments) to establish new individuals after contact with water for 0, 3, 10, and 20 days. Length and type of seed contact with water led to divergent germination responses. Seeds that had floated for 3 days had an increased level of seed germination (87%), while a 20-day stay in water water-curbed germination to 32% compared to 53% in control. After floatation, the maximum number of emerged seedlings was achieved more than 3 weeks earlier than in all other treatments. In general, the germination was enhanced in floating compared to submerged fruits. Experiments with stem fragments revealed the option of a novel pathway for long-distance dispersal in river corridors: Except for stem fragments that floated for 20 days, 33–75% of buried stem fragments produced adventitious shoots, 10% also set roots. The results suggest that both generative and vegetative propagules of A. altissima can be dispersed at regional scales in river corridors. Hence, water as an additional dispersal vector is expected to enhance invasions by species with wind-dispersed seeds. Our findings suggest the importance of control of initial colonizations in riparian habitats and emphasize the need to include consequences of secondary dispersal when modeling the spread of invasive species.  相似文献   

16.
The early life-history stages of reptiles are extremely important to an individual's fitness, but in an ecological sense, among the most difficult to observe. Here, we used radio-tracking techniques to describe the differences in movement patterns, habitat use and home range between hatchling and juvenile Komodo dragons Varanus komodoensis on Komodo Island, Indonesia. The movement of hatchlings from their nests was largely linear and suggested a natal dispersal event. The movement patterns of juvenile Komodo dragons exhibited a greater spatial overlap than hatchlings, indicating greater site fidelity and thus use of a more defined activity area. The rates of daily movement were significantly less for hatchlings compared with juvenile dragons. The activity areas of hatchlings were significantly smaller than juvenile dragons. Both age classes preferred utilizing dry monsoon forest compared with other habitat types. Hatchlings were predominantly arboreal compared with juveniles and the degree of arboreal activity was strongly correlated with an individual's size. These distinct differences in spatial ecology between immature life-history stages suggest that different selection pressures may affect different size classes of Komodo dragons.  相似文献   

17.
水淹对狗牙根营养繁殖植株的生理生态学效应   总被引:2,自引:0,他引:2  
通过控制实验,测定了经过水淹处理的狗牙根营养繁殖体在恢复阶段的光合作用及其相关的生理生化指标的变化。结果显示,水淹时间对恢复阶段营养繁殖体的蒸腾作用和叶片温度的影响达到显著水平,水淹深度对该时期营养繁殖体的光合作用、气孔导度、胞间二氧化碳浓度和叶片温度有显著影响。水淹还导致了恢复期间植株叶片光合色素含量的显著变化。经过水淹的植株的各类光合色素含量以及色素总含量都显著高于对照植株,其中全淹处理的植株显著高于半淹处理的植株,叶绿素a与叶绿素b的比例也是全淹处理的植株显著高于半淹处理的植株。结果表明狗牙根营养繁殖体具有较强的恢复生长和生理活动的能力,是一种适宜于水电工程库区消落带生态恢复的物种。  相似文献   

18.
We measured rhizome branching, clonal mobility, and ramet longevity of 98 meadow plant species. A cluster analysis applied to this dataset revealed nine clonal growth types that differ mainly by the ramet lifespan and vegetative mobility. Then we compared the abundance of these groups of clonal species between the three following plant communities: (1) open, (2) restored and (3) overgrown wooded meadows in the Laelatu-Nehatu-Puhtu Nature Reserve, Estonia. This is the first study where the quantitative values of belowground clonal traits have been measured for all species of a species-rich community. We show that species with annual ramets and with a low vegetative mobility were most abundant in open grasslands. The relative abundance of perennial species with annual ramets was positively correlated with shoot density and species diversity, indicating that high ramet turnover rates combined with a high genet longevity can positively affect species coexistence in meadow communities. Hence, this study provides evidence for the fact that the average values of clonal life-history parameters differ between these communities. Herb communities under forest canopy consist, in average, of species with ramets that live longer and are clonally more mobile than in the communities of open sites.  相似文献   

19.
田昊  廖万金 《生物多样性》2018,26(5):468-185
克隆植物与其传粉者的相互作用是植物繁殖生态学的重要研究领域之一。植物克隆生长与有性繁殖通常相伴进行, 往往产生较大的花展示与复杂的克隆空间结构, 通过传粉过程对有性繁殖过程产生影响, 共同决定植物的适合度。本文回顾了克隆生长对被子植物传粉过程影响的国内外研究进展, 从植物克隆大小、花资源空间配置、克隆构型与种群遗传结构四个方面讨论了克隆生长对传粉过程的影响及其生态学与进化生物学意义。早期研究预期, 随着克隆增大, 同株异花授粉水平增加, 因而通过增大自交率或花粉阻塞效应降低植物的适合度。但是, 后来的一些模拟与野外实验研究发现, 传粉者在同一克隆内访问的花数量并不会随克隆增大而一直增加, 访花行为也主要发生在分株内; 而且分子标记的自交率组分分析也表明自交主要发生在分株内。另一方面, 人工模型模拟以及传粉者访问行为研究表明, 当花朵数量相同时, 与所有花集中生长在同一分株上相比, 将花朵分散在多个分株上的克隆生长方式不会增加, 反而降低了同株异花授粉的发生水平。如果花序内花雌雄同熟, 花朵同时提供与接收花粉, 克隆生长会使植物接收到更高比例的异交花粉, 在提高后代质量的同时不增加同株异花授粉概率。这是从传粉生物学角度对植物克隆生长习性进化的一个全新的解释。今后, 克隆植物传粉生物学研究需要针对传粉者与克隆生长之间的相互作用建立理论模型, 探究克隆大小、克隆构型、花资源空间配置模式对传粉者访问频率和行为、花粉散布、交配格局的影响。同时, 需要在自然种群中, 尤其是克隆与非克隆的近缘类群、同一物种克隆与非克隆种群开展比较研究, 利用更高效的分子标记来研究克隆生长的生态与进化意义。  相似文献   

20.
湿地克隆植物的繁殖对策与生态适应性   总被引:27,自引:0,他引:27  
湿地是地球上独特的生态系统,它是水陆交替的过渡带,而湿地植物为了适应这种特殊的环境,必须有其相应的生长格局(growthpattern)和繁殖对策(reproductivestrategy)。有些湿地植物具有密丛型的生态特点,这是对过湿的土壤和氧气供给不足环境的一种适应方式。随着有机质的不断积累,每年从分蘖节向上长出新枝,向下生长不定根,其分蘖节不断上移,以便从地表面上获得氧气,并使植物体免遭埋没,这样年复一年的生长,在地表面上形成了草丘。生殖是生物繁衍后代延续种族最基本的行为和过程,它不仅是…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号