首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

To our knowledge, little attention has been paid to evaluating ZnO nanoparticles (ZNPs) roles in plants grown under salinity stress. In this study, seeds of lupine (Lupinus termis) plants were grown in plastic pots and exposed to 0 (control) and 150 (S) mM NaCl with or without priming with different concentrations of ZnO [20 mg L?1 (ZNPs1), 40 mg L?1 (ZNPs2), and 60 mg L?1 (ZNPs3)] for 20 days. Salinized plants showed a reduction in plant growth parameters (root length, shoot length, fresh weight, and dry weight) and in the contents of photosynthetic pigments (chlorophyll a and b, and carotenoids) and Zn, as well as in the activity of catalase (CAT) against control plants. On the other side, salinity stress boosted the contents of organic solutes (soluble sugar, soluble protein, total free amino acids, and proline), total phenols, malondialdehyde (MDA), ascorbic acid and Na, as well as the activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) in stressed plants over control plants. However, seed-priming with ZNPs mostly stimulated growth of stressed plants, which was accompanied by reinforcement in the levels of photosynthetic pigments, organic solutes, total phenols, ascorbic acid and Zn, as well as in the activities of SOD, CAT, POD, and APX enzymes over stressed plants alone. On the contrary, priming with ZNPs caused a decrement in the contents of MDA and Na in stressed plants relative to salinized plants alone. It is worthy to mention that, this improvement in salt tolerance of plants primed with ZNPs was more obvious in plants primed with ZNPs3 and grown both in unstressed and stressed regimes. Thus, our findings suggest that seed-priming with ZNPs, especially 60 mg L?1 ZnO is an effective strategy that can be used to enhance salt tolerance of lupine plants.

  相似文献   

2.
A pot experiment was conducted to determine the effects of Glomus mosseae inoculation on growth and some biochemical activities in roots and shoots of pepper (Capsicum annuum L. cv. Zhongjiao 105) plants subjected to four levels of NaCl [0 (control), 25 (low), 50 (medium), and 100 (high) mM] for 30 days, after 30 days of establishment under non-saline conditions. In mycorrhizal (M) plants, root colonization varied from 48 to 16 %. M plants had higher root and shoot dry weight and leaf area compared with non-mycorrhizal (NM) plants. Under salinity stress, M plants accumulated higher amounts of leaf photosynthetic pigments as well as soluble sugar, soluble protein, and total free amino acids in roots and shoots than those of NM plants. In contrast, the accumulation of proline was less intense in M plants than NM plants. Salt stress induced oxidative stress by increasing malondialdehyde (MDA) content; however, the extent of oxidative damage in M plants was less compared with NM plants due to G. mosseae-enhanced activity of superoxide dismutase (SOD) and peroxidase (POD). We concluded that inoculation with G. mosseae improved growth performance and enhanced salt tolerance of pepper plants via improving photosynthetic pigments and the accumulation of organic solutes (except proline), reducing oxidative stress, and enhancing antioxidant activities of the SOD-POD system.  相似文献   

3.
The present study was carried out to examine the effects of seed soaking in 1 mM ascorbic acid (AA) or 1 mM proline on the growth, content of photosynthetic pigments and proline, relative water content, electrolyte leakage, antioxidant enzymes and leaf anatomy of Hordeum vulgare L. Giza 124 seedlings grown in greenhouse under 100 or 200 mM NaCl. The plants exposed to the NaCl stress exhibited a significant reduction in growth, relative water content, leaf photosynthetic pigments, soluble sugars, as well as alterations in leaf anatomy. However, the treatment with AA or proline ameliorated the stress generated by NaCl and improved the above mentioned parameters. NaCl increased electrolyte leakage, proline content, and activities of antioxidant enzymes (SOD, CAT, and POX). The antioxidant enzymes and leaf anatomy exhibited considerable changes in response to AA or proline application in the absence or presence of NaCl.  相似文献   

4.
盐胁迫对大米草幼苗某些生理指标的影响   总被引:3,自引:0,他引:3  
研究了大米草幼苗在不同培养盐度(0、20、30、50、100mmol/LNaCl)下,MDA、游离脯氨酸、可溶性糖、可溶性蛋白质含量以及保护酶(SOD、POD、CAT)活性等生理指标的变化情况。结果表明:保护酶(SOD、POD、CAT)活性在盐胁迫40d前逐渐上升且达显著差异。随着胁迫时间延长,MDA含量与CK相比逐渐降低。随着盐分胁迫浓度的增加及盐胁迫时间延长,大米草叶片中游离脯氨酸、可溶性糖、可溶性蛋白质含量呈上升趋势。在盐胁迫下,渗透调节物质的积累作用是大米草对盐胁迫的主要响应过程,其体内的抗氧化保护酶在此过程中也发挥了重要的作用。  相似文献   

5.
Seedling stage is a critical period for survival and growth under drought stress. In the current study, we determined effects of drought stress on physiological and biochemical parameters of leaves and roots of Lycium ruthenicum Murr. seedling. The variables measured were lipid peroxidation (in terms of malondialdehyde (MDA) content), osmotic substances (free proline, soluble protein, and soluble sugar), and antioxidative enzymes (peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT)). Free proline, soluble sugar, and MDA of leaves and roots increased with increasing stress level. Leaves displayed higher accumulations of free proline and MDA than roots. However, roots showed higher total soluble sugar than leaves. Under drought stress, soluble proteins in leaves and roots decreased initially and then increased. Meanwhile, measured proteins were higher in leaves. Under drought stress, SOD, POD, and CAT activities in leaves increased initially and then decreased but increased with increasing drought stress level in roots. Under drought the level of accumulation of osmotics was higher in the leaves than in the roots, while increased activity of antioxidant enzymes persisted in the stressed roots longer that in the leaves.  相似文献   

6.
Shi F C  Bao F 《农业工程》2007,27(7):2733-2741
Salintiy and temperature are two important ecological factors which affect the distribution and abundance of Spartina alerniflora Loisel. To find out how cordgrass adapts to the environmental conditions in the introduced range, we studied the dynamics of a series of important physiological components including superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), malondialdehyde (MDA), soluble sugar and free proline under different salinity and temperature stresses. The results showed that low NaCl concentration (lower than 100 mmol·L−1) enhanced the growth of S. alterniflora. On the contrary, high NaCl concentration (higher than 100 mmol·L−1) inhibited the growth of S. alterniflora. To a certain extent, S. alterniflora was able to be acclimated to the osmotic pressure created by external solution concentration by adjusting the activities of POD, SOD and CAT, and the contents of free proline and soluble sugar. S. alterniflora varied in its responses to environment in different parts of the plant under 5°C and 38°C temperature stress. Compared with roots, leaves accumulated more soluble sugar, and CAT activities in leaves were higher, whereas SOD and POD activities in leaves were much lower than those in roots.  相似文献   

7.
Fuchen Shi  Fang Bao 《生态学报》2007,(7):2733-2741
Salintiy and temperature are two important ecological factors which affect the distribution and abundance of Spartina alerniflora Loisel. To find out how cordgrass adapts to the environmental conditions in the introduced range, we studied the dynamics of a series of important physiological components including superoxide dismutase (SOD), guaiacol peroxidase (POD), catalase (CAT), malondialdehyde (MDA), soluble sugar and free proline under different salinity and temperature stresses. The results showed that low NaCl concentration (lower than 100 mmol·L?1) enhanced the growth of S. alterniflora. On the contrary, high NaCl concentration (higher than 100 mmol·L?1) inhibited the growth of S. alterniflora. To a certain extent, S. alterniflora was able to be acclimated to the osmotic pressure created by external solution concentration by adjusting the activities of POD, SOD and CAT, and the contents of free proline and soluble sugar. S. alterniflora varied in its responses to environment in different parts of the plant under 5°C and 38°C temperature stress. Compared with roots, leaves accumulated more soluble sugar, and CAT activities in leaves were higher, whereas SOD and POD activities in leaves were much lower than those in roots.  相似文献   

8.
Soil salinity is one of the important environmental factors that produce serious agricultural problems. The objective of the present study was to determine the interactive effect of salicylic acid (SA) and calcium (Ca) on plant growth, photosynthetic pigments, proline (Pro) concentration, carbonic anhydrase (CA) activity and activities of antioxidant enzymes of Triticum aestivum L. (cv. Samma) under salt stress. Application of 90 mM of NaCl reduced plant growth (plant height, fresh weight (FW) and dry weight (DW), chlorophyll (Chl) a, Chl b, CA activity) and enhanced malondialdehyde (MDA) and Pro concentration. However, the application of SA or Ca alone as well as in combination markedly improved plant growth, photosynthetic pigments, Pro concentration, CA activity and activities of antioxidant enzymes peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR) and ascorbate peroxidase (APX) under salt stress. It was, therefore, concluded that application of SA and Ca alone as well as in combination ameliorated the adverse effect of salinity, while combined application proved more effective to reduce the oxidative stress generated by NaCl through reduced MDA accumulation, Chl a/b ratio and Chls degradation and enhanced activities of antioxidant enzymes.  相似文献   

9.
Drought is a key abiotic stress that negatively affects growth and development as well as symbiotic nitrogen fixation in alfalfa (Medicago sativa L.). To understand whether nodulation would affect drought stress response in alfalfa, we analyzed the lipid peroxidation, activities of antioxidant enzymes including superoxide dismutase (SOD), and catalase (CAT), contents of superoxide anion radical, non-enzymatic antioxidants including reduced glutathione (GSH) and proline, total protein, and soluble sugar in dehydration-stressed alfalfa. Three-month-old alfalfa plants without nodule, with active nodules, or with inactive nodules were dehydrated for 0, 1, 2, 4, 6, 8, and 10 h. We found that roots and leaves from plants with nodules, especially with active nodules, showed less lipid peroxidation which was associated with higher CAT activities and higher levels of GSH. Roots and leaves with active nodules also accumulated less free proline and soluble sugar compared to plants without nodules, suggesting that proline and soluble sugar may have a limited role in osmotic adjustment in these plants. The results suggested that active nodules may have a positive effect on drought stress tolerance in alfalfa.  相似文献   

10.
以盐敏感型黄瓜品种‘津春2号’为材料,研究了丛枝菌根真菌(AMF)对盐胁迫下黄瓜幼苗生长及叶片、根系中渗透调节物质含量和抗氧化酶活性的影响.结果表明:(1)在盐胁迫条件下,黄瓜幼苗生长受到明显抑制,其株高、地上部、地下部干鲜重均明显减小,同时体内可溶性蛋白、可溶性糖、脯氨酸和MDA含量,以及O2(÷)产生速率和SOD、POD、CAT活性均比对照显著升高.(2)盐胁迫下接种AMF可显著促进黄瓜植株的生长,进一步提高黄瓜幼苗体内可溶性蛋白、可溶性糖和脯氨酸含量及SOD、POD、CAT活性,而显著降低MDA含量和O2(÷)产生速率.研究表明,AMF可通过显著促进盐胁迫下黄瓜幼苗体内渗透调节物质积累和抗氧化酶活性提高,有效降低体内膜脂过氧化水平,从而缓解盐胁迫对植株的伤害,增强黄瓜幼苗对盐胁迫的耐性.  相似文献   

11.
为了解药用植物菥蓂(Thlaspi arvense)在紫外线(UV-B)辐射增强下生长及响应规律,以2月龄菥蓂幼苗为研究对象,在自然光照基础上人工增补3.26μW·cm-2(T1)和9.78μW·cm-2(T2)2种不同辐射强度处理,以自然光照下生长的菥蓂幼苗为对照,研究菥蓂幼苗中光合指标和叶绿素荧光参数、光合色素(叶绿素a和b)含量、渗透调节物质(丙二醛、可溶性蛋白、可溶性糖和脯氨酸)含量、抗氧化酶(超氧化物歧化酶、过氧化物酶、过氧化氢酶和抗坏血酸过氧化氢酶)活性和总黄酮、总酚和黑芥子苷等次生代谢产物含量对不同UV-B辐射强度的响应。结果表明:2种辐射强度下净光合速率、气孔导度、蒸腾速率、胞间二氧化碳摩尔分数、最大荧光(Fm)、PSⅡ最大光化学效率(Fv/Fm)和PSⅡ潜在光化学效率(Fv/Fo)均随辐射强度增大而降低;叶绿素a和叶绿素b、可溶性蛋白、可溶性糖和脯氨酸等渗透调节物质、超氧化物歧化酶、过氧化物酶、过氧化氢酶和抗坏血酸过...  相似文献   

12.
外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响   总被引:5,自引:0,他引:5  
采用营养液栽培法,研究外源谷胱甘肽(GSH)对NaCl胁迫下番茄幼苗生长、根系活力、电解质渗透率和丙二醛(MDA)、脯氨酸(Pro)、可溶性糖含量以及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性的影响,为利用外源物质减轻盐胁迫伤害提供理论依据。结果显示:(1)NaCl胁迫显著抑制了番茄幼苗的生长、根系活力和SOD、POD、CAT活性,提高了电解质渗透率及MDA、Pro、可溶性糖含量;(2)外源喷施GSH能够诱导NaCl胁迫下番茄幼苗叶片抗氧化酶SOD、POD、CAT活性上调,电解质渗透率及MDA含量下降,Pro和可溶性糖含量恢复至对照水平;(3)外源喷施还原型谷胱甘肽抑制剂(BSO)使NaCl胁迫下番茄幼苗的根系活力以及抗氧化酶SOD、POD、CAT活性下降,脯氨酸含量提高;(4)喷施GSH可诱导BSO和NaCl共处理番茄植株的根系活力、SOD、POD、CAT活性提高,MDA和Pro含量降低。研究表明,外源GSH可通过提高促进盐胁迫下番茄幼苗植株渗透调节能力及清除活性氧的酶促系统的防御能力、降低细胞膜脂过氧化程度、保护膜结构的完整性,从而有效缓解NaCl胁迫对番茄幼苗生长的抑制,提高其耐盐性。  相似文献   

13.
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.  相似文献   

14.
混合盐碱胁迫对青山杨渗透调节物质及活性氧代谢的影响   总被引:6,自引:0,他引:6  
为研究青山杨(Populus pseudo-cathayana × P. deltoides)对盐碱的适应能力,对青山杨2年生扦插苗进行不同盐度和碱度的28组胁迫处理.结果表明:随盐浓度增加,青山杨叶片的电解质外渗率、丙二醛和脯氨酸含量呈上升趋势,可溶性糖、SOD和POD活性先升后降.pH值升高使电解质外渗率、丙二醛和POD活性呈上升趋势,脯氨酸和可溶性糖含量先升后降,SOD活性上升趋势不明显.盐浓度低于100 mmol·L-1时,随pH值升高,各项生理指标的变化不明显,SOD具有较高的活性;盐浓度在200 mmol·L-1、pH 8.99以上时,其电解质外渗率在50%以上,POD活性和丙二醛含量大幅度增加,脯氨酸和可溶性糖含量下降,SOD活性较低.推断盐浓度>200 mmol·L-1、pH>8.99的盐碱条件不适宜青山杨的生长.  相似文献   

15.
Several different concentrations of α-tocopherol were applied to Carex leucochlora after plants had been treated with high salinity (0.8 % NaCl) in a greenhouse for one month. The results revealed that 0.8 mM α-tocopherol treatment showed the greatest alleviation of growth inhibition and cell membrane damage induced by salt stress. In comparison with NaCl alone, the 0.8 mM α-tocopherol application significantly decreased the content of hydrogen peroxide and the rate of superoxide radical generation, and increased the content of chlorophyll b, carotenoids, free proline, and soluble protein, but had no effect on the content of chlorophyll a and soluble sugar. These results suggest that α-tocopherol could effectively protect C. leucochlora plants from salt stress damage presumably by quenching the excessive reactive oxygen species to protect the photosynthetic pigments and by enhancing the osmotic adjustment.  相似文献   

16.
近年来,藓类植物作为一类模式植物,在分子生物学、抗性生理学研究中受到重视,因此,开展逆境条件下藓类植物渗透调节物质和膜保护系统相关指标变化的研究,将为了解藓类植物对逆境条件适应的生理机制提供基础资料。多蒴灰藓(Hypnum fertile Senden.)分布广泛,生境多样,本文研究了低温(5℃)和高温(40℃和60℃)在不同胁迫时间(0、1、2、4、6、8h)下多蒴灰藓体内可溶性糖、游离脯氨酸、丙二醛(MDA)含量和过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性的变化,以期了解多蒴灰藓对不同温度条件的适应能力和响应的生理机制。结果表明:在5℃低温处理下,随处理时间延长,多蒴灰藓的可溶性糖含量逐渐增加,在高温处理下,呈现先升高后降低的趋势;游离脯氨酸、MDA在低温和高温胁迫下随处理时间延长都逐渐升高。CAT在5℃低温处理下活性逐渐升高,在40℃高温处理下先升高后降低,在60℃高温处理下则迅速降低,6 h后酶完全丧失活性。SOD的活性在5℃低温处理下随处理时间延长逐渐降低,在高温处理下则表现出先升高后降低趋势,40℃高温胁迫下6 h达到最大值,60℃胁迫下0.5 h达到最大值。POD在5℃和40℃处理下活性随处理时间延长逐渐升高,在60℃高温处理下则先升高后降低。这些结果表明,多蒴灰藓适生于20℃左右的温度条件下,60℃高温对多蒴灰藓的伤害明显,与高温相比,多蒴灰藓更适合生长于低温环境;多蒴灰藓通过增加游离脯氨酸以提高对温度逆境的适应;POD和CAT在多蒴灰藓抵御低温胁迫时可能起着主要作用,而SOD则在其抵御高温胁迫时起一定的作用。  相似文献   

17.
《农业工程》2020,40(5):417-424
Essential oil of Indian borage has different activities such as anti-bacterial and anti-malarial. Salinity stress has harmful effects on the productivity of aromatic plants. This study aimed decrease the harmful effect of sodium chloride (NaCl) on Indian borage plants by adapting them to salinity stress through the use of arginine. Plants were exposed to NaCl (0, 2 and 4 g/L) and/or arginine (0, 150 and 300 mg/L). Morphological characters (leaf area, total fresh and dry herbs as well as total fresh and dry roots), essential oil composition, photosynthetic pigments, proline, soluble sugars, crude protein, nutrients (NPK), antioxidant enzymes activities and protein banding patterns of Indian borage plants were evaluated. Obtained results were statistically analyzed using 2-way analysis of variance. Salinity treatments decreased morphological characters, photosynthetic pigments, crude protein and nutrient contents. Salinity promoted the accumulation of essential oil and its major constituents (carvacrol, thymol, γ-terpinene and limonene), proline, soluble sugars and the activities of antioxidant enzymes. Plants treated with salinity x arginine resulted in higher values of all growth characters and chemical composition than those treated with salinity only. On the other hand, salinity x arginine produced various changes in the number of bands. It may be concluded that application of arginine resulted in positive increases in growth, yield and chemical constituents of Indian borage under NaCl stress. So this study indicated that arginine resulted in a reduction of the hazards effect of salt stress.  相似文献   

18.
为探索宽叶雀稗(Paspalum wetsfeteini)耐瘠薄机理,采用分蘖繁殖获得其相同基因型试验苗,通过盆栽养分胁迫试验,分析胁迫后10~60 d幼苗叶绿素、脯氨酸、可溶性糖、可溶性蛋白、丙二醛等含量以及SOD、POD、CAT活性。结果表明,SOD、POD活性在养分胁迫后20 d达到峰值,脯氨酸、可溶性糖、可溶性蛋白含量和CAT活性则在养分胁迫后30 d达到峰值。叶绿素含量在养分胁迫后10~30 d无显著变化(P>0.05),40 d时出现显著降低(P<0.05)。丙二醛含量在胁迫后10~20 d无显著差异,30 d开始出现显著上升(P<0.05)。胁迫60 d后,养分胁迫的宽叶雀稗株高、叶长、叶宽、根长、根表面积分别是对照的55.61%、64.85%、65.0%、140%、136%,同时叶肉细胞更为狭长,叶背绒毛长约为对照的5%。  相似文献   

19.
土壤盐渍化严重影响小麦生产,提高小麦耐盐性是应对土壤盐渍化的主要生物途径之一.小麦芽期亦是对盐分较为敏感的时期,小麦芽期耐盐性的强弱对盐碱地小麦种植至关重要.为探讨利用叶片生理指标进行小麦芽期耐盐性评价的可行性,该文以沧麦6005及其73个叠氮化钠诱变家系为试验材料,在超纯水和40%人工海水条件下,对芽期叶片中脯氨酸、...  相似文献   

20.
NaCl分根胁迫对羊草幼苗生长及其生理生化特性的影响   总被引:5,自引:0,他引:5  
在自动控制的遮雨棚中,研究了200 mmol·L-1NaCl胁迫对不同分根处理羊草幼苗生物量、活性氧代谢以及渗透调节物质含量的影响.结果表明:单一胁迫根茎(RHS)、单一胁迫根系(ROS)以及同时胁迫根茎和根系(RHSS)3种处理方式下羊草幼苗各器官干重均低于对照,且大体呈现RHSS>ROS>RHS趋势.在RHS和ROS处理下,羊草叶片和根茎SOD、POD、CAT活性及MDA含量均无显著差异;RHSS处理时根系中SOD、CAT活性相比ROS处理显著降低.3种处理下根茎和根系MDA、可溶性糖、脯氨酸含量均显著高于对照,可溶性糖、脯氨酸含量在RHS和ROS处理间存在显著差异.可见,根茎在羊草响应盐胁迫的生理过程中与根系具有类似的功能;盐胁迫下羊草不同器官同一抗氧化酶对活性氧淬灭具有不同的作用,与POD相比不同器官SOD和CAT作用可能更大;根茎可能参与光合同化物——可溶性糖在羊草地上部和地下部的调节运输,且协同根系增强了羊草对盐胁迫的耐性作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号