首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution and functional organization of Scarabaeinae beetles. We conclude that functional diversity may be used as a complementary approach to traditional measures, and that community deconstruction allows sufficient disentangling of responses of different trait-based groups.  相似文献   

2.
Metacommunity structure can be shaped by a variety of processes operating at different spatial scales. With increasing scale, the compositional variation among local communities (beta diversity) may reflect stronger environmental heterogeneity, but may also reflect reduced exchange of organisms between habitat patches. We analyzed the spatial architecture of a metacommunity of cladoceran zooplankton in temporary pools of High Andes wetlands, with the objective of explaining the spatial dependency of its structure. The spatial distribution of the pools is hierarchical and highly discontinuous: pools are clustered within small wetlands, which lay scattered over valleys that are separated from each other by mountain ridges. We studied a total of 59 pools, belonging to six different wetlands in four different valleys. We assessed pool environmental heterogeneity and sampled active communities and dormant propagule banks of cladoceran zooplankton. Environmental heterogeneity proved very high within wetlands and showed almost no increase with increasing spatial scale. Conversely, diversity partitioning analyses indicated an increase in beta diversity with spatial scale, especially among valleys. Variation partitioning on environmental data and spatial RDA models suggested environmental heterogeneity as the most important generator of beta diversity within wetlands. At the largest spatial scale, beta diversity manifested itself mainly as a differentiation of species occurrence patterns among valleys, which could not be entirely explained by environmental variables. Our study thus presents a case where environmental control seems to be the dominant metacommunity structuring process at the smallest spatial scale, whereas neutral processes and dispersal limitation are the most likely generators of beta diversity at the largest spatial scale.  相似文献   

3.
Beta多样性通常指群落在时间和空间上物种组成的差异, 包括物种周转组分和物种丰富度差异组分。驱动beta多样性格局形成的生态过程决定了群落的时空动态, 然而关于beta多样性及其两个组分格局形成的驱动力还存在较多争议。以往研究表明, beta多样性的格局存在取样尺度的依赖性, 驱动其形成的生态过程在不同取样尺度下的相对重要性也随之改变。本研究以哀牢山亚热带中山湿性常绿阔叶林20 ha动态监测样地为研究对象, 在不同取样尺度上, 将样方间的Bray-Curtis指数分解为物种周转组分和物种丰富度差异组分, 通过典范冗余分析和方差分解的方法揭示环境过滤和扩散限制对于beta多样性及其两个组分格局形成的相对重要性及其尺度依赖性。结果表明: (1) beta多样性、物种周转组分和物种丰富度差异组分均随取样尺度的增大而减小。在不同取样尺度下, 物种周转组分对于beta多样性的贡献始终占主导地位。(2)随着取样尺度的增大, 环境过滤驱动beta多样性格局形成的相对重要性逐渐增加, 而扩散限制的相对重要性逐渐降低。本研究进一步证实了取样尺度在beta多样性格局形成及其驱动力定量评价中的重要性, 今后的研究需要进一步解析上述尺度效应的形成机制。  相似文献   

4.
功能性状beta多样性反映了群落间功能性状组成的差异, 解析其形成机制是群落生态学研究的核心内容之一。本研究以云南西双版纳热带季节雨林20 ha动态监测样地为研究对象, 测定木本植物11个重要的功能性状, 采用多度加权的平均最近邻体性状距离度量不同取样尺度的功能性状beta多样性, 基于距离矩阵的多元回归方法解析林冠结构差异、环境异质性、空间距离在功能性状beta多样性格局形成中的相对作用。结果表明, 对于所有木本植物个体(DBH ≥ 1 cm)而言, 同时考虑林冠结构、环境和空间距离的模型为解释功能性状beta多样性格局的最优模型; 在3个不同取样尺度上, 林冠结构差异和环境距离都对功能性状beta多样性具有较大的解释力, 且随着取样尺度的增大而上升, 空间距离的作用基本可以忽略。本研究证实了林冠结构是局域尺度木本植物功能性状beta多样性格局形成的重要驱动力, 这一发现更新了环境异质性和空间距离是驱动功能性状beta多样性格局形成的主要因素的传统认知, 为将来研究功能性状beta多样性形成机制提供新的视角, 并证实了取样尺度在解析木本植物功能性状beta多样性格局形成机制中的重要性。  相似文献   

5.
Agricultural land use commonly leaves a persistent signature on the ecosystems that develop after agricultural abandonment. This agricultural legacy limits the biodiversity supported by post‐agricultural habitats compared to remnant habitats that have never been used for agriculture. In particular, beta diversity (variation in community composition across space) at both large and small spatial scales can differ between post‐agricultural and remnant habitats, but we do not understand the mechanisms driving these differences. We surveyed plant communities at 29 pairs of post‐agricultural and remnant longleaf pine woodlands (58 total woodlands) to test for patterns consistent with two hypothesized mechanisms for why post‐agricultural ecosystems support altered beta diversity. 1) Post‐agricultural sites support different levels of underlying environmental heterogeneity than remnants. 2) Establishment of species associated with remnant habitats into post‐ agricultural woodlands is limited by dispersal and/or environmental conditions. We found no support for the environmental heterogeneity hypothesis and strong support for the idea that species establishment limits reassembling communities. Our results revealed a novel and important nuance to the establishment limitation hypothesis: spatially constrained, but not completely prevented, re‐establishment of remnant‐associated species in post‐agricultural woodlands increased within‐site beta diversity, contrary to results at larger among‐site (landscape) scales. Our use of a powerful paired‐site design permits these insights into how agriculture and abandonment affect beta diversity at two spatial scales, highlighting the prominent influence of edges even a half century after agricultural abandonment. The importance of constrained species establishment during ecosystem recovery, and its scale‐dependent effect, could provide valuable guidance to enhance the utility of post‐agricultural habitats for biodiversity conservation.  相似文献   

6.
7.
Understanding of the scaling of diversity is critical to enhance conservation strategies for subalpine moorland ecosystems vulnerable to future environmental changes. However, a paucity of quantitative data strongly limits such attempts. In this study, we used an additive diversity partitioning framework and quantified diversity patterns of moorland plant communities across hierarchical spatial scales, within- and between-sample transects, and between sites (corresponding to α and two levels of β diversity). Moorland sites markedly differed in size (range 1,000–160,000 m2) and were isolated from each other to varying extents within an inhospitable matrix (i.e., forests). We found that β diversity components were consistently higher, whereas the local α diversity component was consistently lower than expected by chance. We observed substantial contribution at the between-site scale to total species richness. By focusing on diversity patterns of moorland plant communities across multiple hierarchical spatial scales, we could thus identify the scale at which regional diversity is maximized. Our results suggest that protection of as many moorland sites as possible, to ensure beta diversity between sites, will effectively conserve total diversity. The use of additive diversity partitioning is a major step forward in providing strategies for the biological conservation of subalpine moorland ecosystems vulnerable to future environmental changes.  相似文献   

8.
It is widely accepted that species diversity is contingent upon the spatial scale used to analyze patterns and processes. Recent studies using coarse sampling grains over large extents have contributed much to our understanding of factors driving global diversity patterns. This advance is largely unmatched on the level of local to landscape scales despite being critical for our understanding of functional relationships across spatial scales. In our study on West African bat assemblages we employed a spatially explicit and nested design covering local to regional scales. Specifically, we analyzed diversity patterns in two contrasting, largely undisturbed landscapes, comprising a rainforest area and a forest‐savanna mosaic in Ivory Coast, West Africa. We employed additive partitioning, rarefaction, and species richness estimation to show that bat diversity increased significantly with habitat heterogeneity on the landscape scale through the effects of beta diversity. Within the extent of our study areas, habitat type rather than geographic distance explained assemblage composition across spatial scales. Null models showed structure of functional groups to be partly filtered on local scales through the effects of vegetation density while on the landscape scale both assemblages represented random draws from regional species pools. We present a mixture model that combines the effects of habitat heterogeneity and complexity on species richness along a biome transect, predicting a unimodal rather than a monotonic relationship with environmental variables related to water. The bat assemblages of our study by far exceed previous figures of species richness in Africa, and refute the notion of low species richness of Afrotropical bat assemblages, which appears to be based largely on sampling biases. Biome transitions should receive increased attention in conservation strategies aiming at the maintenance of ecological and evolutionary processes.  相似文献   

9.
While community‐weighted means of plant traits have been linked to mean environmental conditions at large scales, the drivers of trait variation within communities are not well understood. Local environmental heterogeneity (such as microclimate variability), in addition to mean environmental conditions, may decrease the strength of environmental filtering and explain why communities support different amounts of trait variation. Here, we assess two hypotheses: first, that more heterogeneous local environments and second, that less extreme environments, should support a broader range of plant strategies and thus higher trait variation. We quantified drivers of trait variation across a range of environmental conditions and spatial scales ranging from sub‐meter to tens of kilometers in montane and alpine plant communities. We found that, within communities, both environmental heterogeneity and environmental means are drivers of trait variation. However, the importance of each environmental factor varied depending on the trait. Our results indicate that larger‐scale trait–climate linkages that hold across communities also apply at small spatial scales, suggesting that microclimate variation within communities is a key driver of community functional diversity. Microclimatic variation provides a potential mechanism for helping to maintain diversity in local communities and also suggests that small‐scale environmental heterogeneity should be measured as a better predictor of functional diversity.  相似文献   

10.
Pedruski MT  Arnott SE 《Oecologia》2011,166(1):221-228
Habitat connectivity and regional heterogeneity represent two factors likely to affect biodiversity across different spatial scales. We performed a 3 × 2 factorial design experiment to investigate the effects of connectivity, heterogeneity, and their interaction on artificial pond communities of freshwater invertebrates at the local (α), among-community (β), and regional (γ) scales. Despite expectations that the effects of connectivity would depend on levels of regional heterogeneity, no significant interactions were found for any diversity index investigated at any spatial scale. While observed responses of biodiversity to connectivity and heterogeneity depended to some extent on the diversity index and spatial partitioning formula used, the general pattern shows that these factors largely act at the β scale, as opposed to the α or γ scales. We conclude that the major role of connectivity in aquatic invertebrate communities is to act as a homogenizing force with relatively little effect on diversity at the α or γ levels. Conversely, heterogeneity acts as a force maintaining differences between communities.  相似文献   

11.
Landscape ecological networks (ENs) consist of landscape-scale conservation corridors that connect areas of high natural value within a production mosaic with protected areas (PAs). In South Africa, ENs have been implemented on a large spatial scale to offset the negative impacts of plantation forestry on indigenous grasslands. We focus on corridor width as a factor for conserving dung beetle and ant diversity within an EN. We also investigate the importance of natural environmental heterogeneity (elevation, vegetation type) and habitat quality (soil hardness, invasive alien plant density). We sampled dung beetles and ants in 30 corridors of different sizes, and at ten sites in a nearby PA. In addition, we also analysed dung beetles according to their feeding guild. Tunnelling dung beetle species richness increased with corridor width. Rolling dung beetle species richness was higher in the PA than in the corridors of the EN. The dung beetle assemblage within the EN differed from that within the PA. Corridors of various widths differed in ant composition but not in species richness. Furthermore, the PA and the EN differed in environmental variables, which contributed to differences in dung beetle species richness and assemblage composition. Within the EN, environmental heterogeneity across the landscape was more important than corridor width for driving species diversity of both dung beetles and ants. When planning future ENs, wide corridors (>280 m) that encompass as much natural heterogeneity across the landscape as possible will best conserve the range of local insect species.  相似文献   

12.
We examine the spatial pattern of woody species diversity at different scales, in two sites of Mt. Holomontas in northern Greece, which falls within the transitional zone between temperate forests and Mediterranean-type ecosystems. We investigate how diversity is distributed in space and whether the perceived pattern changes with the scale of observation. We use two different metrics of diversity: species richness and species turnover. Our main finding is that the spatial pattern of diversity changes with the scale of observation or analysis. For a given scale, the pattern of species richness (alpha diversity) is negatively correlated with the pattern of species turnover (beta diversity). Species-rich areas have more species in common with their neighbors than species-poor areas. The between-scale disparity of the spatial pattern of diversity may be a general feature of ecological systems. For this to be validated, studies with different groups of species in different biomes and in different biogeographical areas are required; our study contributes to this direction providing evidence that this holds true for woody species in Mediterranean communities. Finally, we discuss how these findings might affect important issues in theoretical and applied ecology, such as identifying the environmental factors driving biodiversity.  相似文献   

13.
14.
Aim The Mediterranean Basin is recognized for its high levels of species richness, rarity and endemicity. Our main aim was to evaluate the relative effects of environmental and spatial variables and their scale‐specific importance on beta diversity patterns along a gradient of mediterraneity, using spiders as a model group. Location This study was carried out in 18 coastal dune sites along the Portuguese Atlantic coast. This area encompasses 445 km and comprises two distinct biogeographic regions, Eurosiberian (northern coast) and Mediterranean (centre and south). Methods A forward selection procedure was carried out to select environmental and spatial variables responsible for determining beta diversity patterns. Variation partitioning and principal coordinates of neighbour matrices (PCNM) were used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta diversity patterns and to estimate the relative importance of environmental structured variation and pure spatial variation at multiple spatial scales. Results Climate, ground vegetation dune cover and area were selected by a forward selection procedure. The same procedure identified three PCNM variables, all corresponding to large and medium spatial scales. Variation partitioning revealed that 46.1% of the variation of beta diversity patterns was explained by a combination of environmental and PCNM variables. Most of this variation (42.5%) corresponded to spatial variation (environmental spatially structured and pure spatial). Climate and vegetation structure influences were predominant at the PCNM1 and PCNM3 scales, while area was more important at the intermediate PCNM2 scale. Main conclusions Our study revealed that beta diversity of spiders was primarily controlled by a broad‐scale gradient of mediterraneity. The relative importance of environmental variables on the spider assemblage composition varied with spatial scale. This study highlights the need of considering the scale‐specific influence of niche and neutral processes on beta diversity patterns.  相似文献   

15.
Aims Despite wide consensus that ecological patterns and processes should be studied at multiple spatial scales, the temporal component of diversity variation has remained poorly examined. Specifically, rare species may exhibit patterns of diversity variation profoundly different from those of dominant taxa. Location Southern Finland. Methods We used multiplicative partitioning of true diversities (species richness, Shannon diversity) to identify the most important scale(s) of variation of benthic macroinvertebrate communities across several hierarchical scales, from individual samples to multiple littorals, lakes and years. We also assessed the among‐scale variability of benthic macroinvertebrate community composition by using measures of between‐ and within‐group distances at hierarchical scales. Results On average, a single benthic sample contained 23% of the total regional macroinvertebrate species pool. For both species richness and Shannon diversity, beta‐diversity was clearly the major component of regional diversity, with within‐littoral beta‐diversity (β1) being the largest component of gamma‐diversity. The interannual component of total diversity was small, being almost negligible for Shannon index. Among‐sample (within‐littoral) diversity was related to variation of substratum heterogeneity at the same scale. By contrast, only a small proportion of rare taxa was found in an average benthic sample. Thus, dominant species among lakes and years were about the same, whereas rare species were mostly detected in a few benthic samples in one lake (or year). For rare species, the temporal component of diversity was more important than spatial turnover at most scales. Main conclusions While individual species occurrences and abundances, particularly those of rare taxa, may vary strongly through space and time, patterns of dominance in lake littoral benthic communities are highly predictable. Consequently, many rare species will be missed in temporally restricted samples of lake littorals. In comprehensive biodiversity surveys, interannual sampling of littoral macroinvertebrate communities is therefore needed.  相似文献   

16.
17.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.  相似文献   

18.
Beta diversity describes how local communities within an area or region differ in species composition/abundance. There have been attempts to use changes in beta diversity as a biotic indicator of disturbance, but lack of theory and methodological caveats have hampered progress. We here propose that the neutral theory of biodiversity plus the definition of beta diversity as the total variance of a community matrix provide a suitable, novel, starting point for ecological applications. Observed levels of beta diversity (BD) can be compared to neutral predictions with three possible outcomes: Observed BD equals neutral prediction or is larger (divergence) or smaller (convergence) than the neutral prediction. Disturbance might lead to either divergence or convergence, depending on type and strength. We here apply these ideas to datasets collected on oribatid mites (a key, very diverse soil taxon) under several regimes of disturbances. When disturbance is expected to increase the heterogeneity of soil spatial properties or the sampling strategy encompassed a range of diverging environmental conditions, we observed diverging assemblages. On the contrary, we observed patterns consistent with neutrality when disturbance could determine homogenization of soil properties in space or the sampling strategy encompassed fairly homogeneous areas. With our method, spatial and temporal changes in beta diversity can be directly and easily monitored to detect significant changes in community dynamics, although the method itself cannot inform on underlying mechanisms. However, human‐driven disturbances and the spatial scales at which they operate are usually known. In this case, our approach allows the formulation of testable predictions in terms of expected changes in beta diversity, thereby offering a promising monitoring tool.  相似文献   

19.
This study aims to establish a relationship between the sampling scale and tree species beta diversity temperate forests and to identify the underlying causes of beta diversity at different sampling scales. The data were obtained from three large observational study areas in the Changbai mountain region in northeastern China. All trees with a dbh ≥1 cm were stem‐mapped and measured. The beta diversity was calculated for four different grain sizes, and the associated variances were partitioned into components explained by environmental and spatial variables to determine the contributions of environmental filtering and dispersal limitation to beta diversity. The results showed that both beta diversity and the causes of beta diversity were dependent on the sampling scale. Beta diversity decreased with increasing scales. The best‐explained beta diversity variation was up to about 60% which was discovered in the secondary conifer and broad‐leaved mixed forest (CBF) study area at the 40 × 40 m scale. The variation partitioning result indicated that environmental filtering showed greater effects at bigger grain sizes, while dispersal limitation was found to be more important at smaller grain sizes. What is more, the result showed an increasing explanatory ability of environmental effects with increasing sampling grains but no clearly trend of spatial effects. The study emphasized that the underlying causes of beta diversity variation may be quite different within the same region depending on varying sampling scales. Therefore, scale effects should be taken into account in future studies on beta diversity, which is critical in identifying different relative importance of spatial and environmental drivers on species composition variation.  相似文献   

20.

Disentangling the role of mechanisms driving metacommunity structure is fundamental for conservation strategies. Several studies have been done in aquatic communities; however, little is known about the factors driving oomycete communities. This research aimed to investigate beta diversity patterns and assess the role of environmental (chemical, physical, and hydrologic), spatial, and temporal (sampling months) factors in driving oomycete beta diversity in a spatial extent of 33 km from two Brazilian rivers. We took water samples in 10 sites quarterly, from August 2017 to May 2018. The partition of beta diversity into its components – species replacement and richness difference – was performed using the Jaccard dissimilarity index. Distance-based redundancy analysis and variation partitioning were used to assess the relationship between explanatory variables and beta diversity. We found that beta diversity was spatially and temporally high, and the replacement component was the main driver of the oomycete metacommunity’s beta diversity. Replacement and total beta diversity were explained mainly by spatial location and the month of sampling, while the richness difference was more associated with the environmental variables chlorophyll a and ammonia. Our findings suggest that dispersal limitation (spatial) and temporal factors are the main drivers of the total beta diversity and replacement in the oomycete metacommunity, while species sorting (environmental factor) influences the richness difference. Accordingly, that taking temporal factors into account in metacommunity studies is important to explain beta diversity patterns, especially in rivers with remarkable variability in hydrological regime and under eutrophic conditions.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号