首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila melanogaster is attracted to chemicals produced by fermentation and it is abundantly found in rotten fruits. Considering its habitat, the fruit fly is reported to be tolerant to environmental chemicals. Quantitative real‐time polymerase chain reaction was employed to investigate the expression pattern and physiological function of genes putatively involved in chemical detoxification. In quantitative real‐time polymerase chain reaction assays, normalization of target gene expression with internal reference genes is required. These reference genes should be stably expressed during chemical exposure and in chemical‐free conditions. In this study, therefore, we used two programs (geNorm and BestKeeper) to evaluate the expression stability of five reference genes (nd, rpL18, ef1β, hsp22 and tbp) in female adult flies exposed to various concentrations of methanol and ethyl acetate. Four genes (nd, rpL18, ef1β and tbp) were found to be suitable for use as reference genes in methanol‐treated flies and three genes (ef1β, nd, tbp) were found to be suitable for use as reference genes in ethyl acetate‐treated flies. These results suggested that a combination of two genes among these stably expressed genes can be used for accurate normalization of target gene expression in quantitative real‐time polymerase chain reaction‐based determination of gene expression profiles in D. melanogaster treated with both chemicals.  相似文献   

2.
3.
Toxicity assessments using the diatom Ditylum brightwellii are well documented; however, analysis of their toxicogenomics has been little attempted. Currently, quantitative real-time PCR is the most accurate and widely applied method to detect differential gene expression, including that of specific genes induced by environmental contaminants. This method requires internal reference genes to normalize expression levels, and their selection is a critical factor for the correct analysis of the results. Here, we assessed the gene expression stability of nine housekeeping genes (HKGs), including 18S rRNA, ACT, TUA, EF2, MDH, UBQ, UCE, PCNA, and GAPDH, in 28 RNA samples of D. brightwellii. All the tested HKGs displayed different expression patterns under different experimental conditions such as heat shock and exposure to metals and non-metals. Analysis of C T values showed that at least two genes were required for proper normalization according to the tested conditions. Overall, TUA, followed by ACT, was the most stable gene under all conditions. Furthermore, we examined the expression of the HSP70 gene in D. brightwellii when exposed to heat shock and chemicals by using the most stable references and found that the gene was significantly up-regulated during the stress period. This study has evaluated, for the first time, the normalization genes in D. brightwellii, providing potential references for gene expression studies of diatoms.  相似文献   

4.
5.
6.
Accurate estimation of gene expression differences during development requires sensitive techniques combined with gold-standard normalization procedures. This is particularly true in the case of quantitative traits, where expression changes might be small. Nevertheless, systematic selection and validation of reference genes has been overlooked, even in Drosophila studies. Here, we tested the stability of six traditional reference genes across samples of imaginal wing disks from morphologically divergent strains of Drosophila melanogaster, in a two-class comparison: quantitative or qualitative variation in wing morphology. Overall, we identified and validated a pair of genes (RpL32 and Tbp) as being stably expressed in both experimental comparisons. These genes might be considered as a bona fide pair of reference genes for gene expression analyses of morphological divergence in D. melanogaster wings. They might also be taken as good candidates for experimental identification of stable reference genes in other morphological comparisons using Drosophila or other insect species. Besides, we found that some genes traditionally used as reference in qPCR experiments were not stably expressed in wing disks from the different fly strains. In fact, a significant bias was observed when the expression of three genes of interest, which are involved in the regulation of growth and patterning during imaginal wing development, was normalized with such putative reference genes. Our results demonstrate how inaccurate findings and opposite conclusions might be drawn if traditional reference genes are arbitrarily used for internal normalization without proper validation in the given experimental condition, a practice still common in qPCR experiments.  相似文献   

7.
In Drosophila melanogaster transformants, the alcohol dehydrogenase (Adh) genes from D. affinidisjuncta and D. grimshawi show similar levels of expression except in the adult midgut where the D. affinidisjuncta gene is expressed about 10- to 20-fold more strongly. To study the arrangement of cis-acting sequences responsible for this regulatory difference, homologous restriction sites were used to create a series of chimeric genes that switched fragments from the 5′ and 3′ flanking regions of these two genes. Chimeric genes were introduced into the germ-line of D. melanogaster, and Adh gene expression was analyzed by measuring RNA levels. Various gene fragments in the promoter region and elsewhere influence expression in the adult midgut and in whole larvae and adults. Comparison of these results with earlier studies involving chimeras between the D. affinidisjuncta and D. hawaiiensis genes indicates that expression in the adult midgut is influenced by multiple regulatory sequences and that distinct arrangements of regulatory sequences can result in similar levels of expression both in the adult midgut and in the whole organism.  相似文献   

8.
Differential expression of genes is crucial to embryogenesis. The analysis of gene expression requires appropriate references that should be minimally regulated during the embryonic development. To select the most stable genes for gene normalization, the expression profiles of eight commonly used reference genes (ACTB, GAPDH, rpL17, α-Tub, EF1-α, UbcE, B2M, and 18S rRNA) were examined during Japanese flounder (Paralichthys olivaceus) embryonic development using quantitative real-time polymerase chain reaction. It was found that all seven mRNA genes appeared to be developmentally regulated and exhibited significant variation of expression. However, further analyses revealed the stage-specific expression stability. Hence when normalization using these mRNA genes, the differential and stage-related expression should be considered. 18S rRNA gene, on the other hand, showed the most stable expression and could be recommended as a suitable reference gene during all embryonic developmental stages in P. olivaceus. In summary, our results provided not only the appropriate reference gene for embryonic development research in P. olivaceus, but also possible guidance to reference gene selection for embryonic gene expression analyses in other fish species.  相似文献   

9.
10.
Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions.  相似文献   

11.
A gene encoding a ubiquitously expressed mRNA inDrosophila melanogaster was isolated and identified as the gene for ribosomal protein L9 (rpL9) by its extensive sequence homology to the corresponding gene from rat. TherpL9 gene is localized in polytene region 32D where two independent P element insertions flanking the locus are available. Remobilization of either P element generated lines with a typicalMinute phenotype, e.g. thin and short bristles, prolonged development, and female semisterility in heterozygotes as well as homozygous lethality. All these characteristics can be rescued when a 3.9 kb restriction fragment containing therpL9 gene is reintroduced by P element-mediated germline transformation. This result confirms thatM(2)32D codes for ribosomal protein L9.  相似文献   

12.
13.
To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR) data, normalization relative to reliable reference gene(s) is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin), were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population), and abiotic (photoperiod, temperature) conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper) and one web-based comprehensive tool (RefFinder) were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK) and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.  相似文献   

14.
15.
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.  相似文献   

16.
The selection and validation of stably expressed reference genes is a critical issue for proper RT-qPCR data normalization. In zebrafish expression studies, many commonly used reference genes are not generally applicable given their variability in expression levels under a variety of experimental conditions. Inappropriate use of these reference genes may lead to false interpretation of expression data and unreliable conclusions. In this study, we evaluated a novel normalization method in zebrafish using expressed repetitive elements (ERE) as reference targets, instead of specific protein coding mRNA targets. We assessed and compared the expression stability of a number of EREs to that of commonly used zebrafish reference genes in a diverse set of experimental conditions including a developmental time series, a set of different organs from adult fish and different treatments of zebrafish embryos including morpholino injections and administration of chemicals. Using geNorm and rank aggregation analysis we demonstrated that EREs have a higher overall expression stability compared to the commonly used reference genes. Moreover, we propose a limited set of ERE reference targets (hatn10, dna15ta1 and loopern4), that show stable expression throughout the wide range of experiments in this study, as strong candidates for inclusion as reference targets for qPCR normalization in future zebrafish expression studies. Our applied strategy to find and evaluate candidate expressed repeat elements for RT-qPCR data normalization has high potential to be used also for other species.  相似文献   

17.
18.
19.
20.

Background

In eukaryotic cells, oxidative phosphorylation (OXPHOS) uses the products of both nuclear and mitochondrial genes to generate cellular ATP. Interspecies comparative analysis of these genes, which appear to be under strong functional constraints, may shed light on the evolutionary mechanisms that act on a set of genes correlated by function and subcellular localization of their products.

Results

We have identified and annotated the Drosophila melanogaster, D. pseudoobscura and Anopheles gambiae orthologs of 78 nuclear genes encoding mitochondrial proteins involved in oxidative phosphorylation by a comparative analysis of their genomic sequences and organization. We have also identified 47 genes in these three dipteran species each of which shares significant sequence homology with one of the above-mentioned OXPHOS orthologs, and which are likely to have originated by duplication during evolution. Gene structure and intron length are essentially conserved in the three species, although gain or loss of introns is common in A. gambiae. In most tissues of D. melanogaster and A. gambiae the expression level of the duplicate gene is much lower than that of the original gene, and in D. melanogaster at least, its expression is almost always strongly testis-biased, in contrast to the soma-biased expression of the parent gene.

Conclusions

Quickly achieving an expression pattern different from the parent genes may be required for new OXPHOS gene duplicates to be maintained in the genome. This may be a general evolutionary mechanism for originating phenotypic changes that could lead to species differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号