首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Journal of Asia》2014,17(4):787-791
Encapsulation of temephos ranging from 1% to 16% and imidacloprid from 1% to 8% within biodegradable and biocompatible, polyethylene glycol in different ratios was done by using melt-dispersion method. The efficacy of encapsulated forms was evaluated and compared with their non-capsulated forms against larvae of Culex quinquefasciatus. The encapsulated temephos was more toxic than the encapsulated imidacloprid with LC50 values of 0.013, 0.010 and 0.003 mg/L after 24, 48 and 72 h, respectively. No doubt, the non-capsulated temephos and imidacloprid were more effective as compared to their encapsulated forms. However, the same mortality rate was achieved by the slow release of lesser amount of pesticides after encapsulation, e.g., 0.003 mg/L for 8% temephos formulation and 0.019 mg/L for 4% imidacloprid as compared to their non-capsulated form of temephos and imidacloprid (0.004 and 0.021 mL/L) after 72 h of exposure. Thus, encapsulated forms are more economical and eco-friendly due to controlled slow release of their nanoparticles.  相似文献   

2.
A bioassay‐guided fractionation of Cynanchum komarovii crude alkaloid extract led to the isolation of two alkaloids. The isolated alkaloids were identified as 7‐demethoxytylophorine (1) and 6‐hydroxyl‐2,3‐dimethoxy phenanthroindolizidine (2) based on the comparison of their spectroscopic characteristics with the literature data. Insecticidal, antifeedant and growth inhibitory effects of these two alkaloids against the 3rd instar larvae of Plutella xylostella L. (Lepidoptera: Plutellidae) were examined. The results showed that alkaloid 1 was more toxic than alkaloid 2 against the 3rd instar larvae of Plutella xylostella L., but both alkaloids were less toxic than the total alkaloid fraction. For antifeedant activity, alkaloid 1 showed AFC50 of 1.82 mg/ml at 24 h after treatment, alkaloid 2 showed 3.89 mg/ml, while total alkaloids showed 1.56 mg/ml. In dipping toxicity test, alkaloids 1 and 2 produced 93.3% and 63.3% mortality at 72 h after treatment, respectively, while total alkaloids produced 96.7% mortality. The LC50 values for alkaloids 1, 2 and the total alkaloids were 3.54, 9.21 and 2.63 mg/ml, respectively. The development of larvae was also inhibited, and the growth inhibition rates at the concentration of 15.00 mg/ml were 92.8%, 78.2% and 98.6% for alkaloids 1, 2 and total alkaloids, respectively, at 72 h after treatment. Compared with antifeedant and dipping effect, the alkaloids 1, 2 and total alkaloid fraction revealed weak feeding toxicity, and their corrected mortality rates at the concentration of 15.00 mg/ml were 60.0%, 40.0% and 63.3% at 7 days after treatment. The LC50 values for alkaloids 1, 2 and total alkaloids were 12.58, 32.37 and 8.88 mg/ml, respectively, at 7 days after treatment.  相似文献   

3.
Culex pipiens mosquitoes are the most widely distributed primary vector of the West Nile virus worldwide. Many attempts for investigation of botanical pesticides to avoid the development of pesticide resistance to conventional synthetic pesticides that are recognized as a threat to the diversity of ecosystems. The study aimed to determine the components of three essential oils of Lamiaceae family, lavender (Lavandula angustifolia), peppermint (Mentha piperita L.), and rosemary (Rosmarinus officinalis L.) by gas chromatography-mass spectrometry (GC–MS) analysis. Furthermore, aimed to validate the insecticidal activities of these oils as larvicidal agents against the third instar larvae of Culex pipiens using five different concentrations (62.5, 125, 250, 500, and 1000 ppm) for each oil in five replicates and as an adulticidal agent against approximately three-day-old female adults of Cx. Pipiens using 0.5, 1, 2, 4, and 5% concentrations in three replicates. The results generally showed a dose-related response. At 1000 ppm, rosemary oil showed the highest larvicidal (100%) (LC50, 214.97 ppm), followed by peppermint oil (92.00% mortality and LC50 (269.35 ppm). Lavender oil showed the lowest efficacy with 87.20% mortality and LC50 (301.11 ppm). At 5% oil concentration, the highest knockdown rate at 1 h was recorded for lavender oil (95.55%), followed by peppermint oil (88.89%) and lastly rosemary oil (84.44%). After 24 h, rosemary oil showed the lowest adult mortality rate (88.89%; LC50, 1.44%), while lavender and peppermint oils both showed a 100% mortality rate, with (LC50, 0.81% and 0.91%, respectively). The chemical constituents of the oils consisted of monoterpenes and sesquiterpenes that determined their insecticidal activities against the target insect stage. The study proposed that rosemary essential oil may be useful for the control of Cx. pipiens larvae as part of an integrated water treatment strategy, and lavender and peppermint oils may be used in an integrated plan for adult’s control.  相似文献   

4.
Carvacrol is a terpene compound with various biological activities. However, few studies have specifically focused on its insecticidal activity and mechanism of carvacrol. The larvae of Lymantria dispar are seriously harmful herbivorous insect. This study measured the antifeedant, growth-inhibitory, and toxic effects of carvacrol on L. dispar larvae. To further clarify the insecticidal mechanism of carvacrol, the effects of carvacrol on detoxifying enzymes, antioxidative enzymes, digestive enzyme activities, and the mRNA expression of the above-mentioned enzyme genes were investigated. The results of the study showed that the median lethal concentration (LC50) and the sublethal concentration (LC20) of carvacrol were 1.120 mg/mL and 0.297 mg/mL, respectively, at 72 h. After LC20 treatment of L. dispar larvae for 72 h, food intake and weight gain were significantly lower compared with the control. Enzyme activity assays showed that carvacrol significantly inhibited the activities of carboxylesterase (CarE), glutathione S-transferase (GST), and acetylcholinesterase (AchE), and the inhibition rate of AchE activity was highest (66.51%). Carvacrol also activated the activities of superoxide dismutase (SOD) and catalase (CAT), while it inhibited the activities of lipase (LIP) and amylase (AMS), and first inhibited and then activated protease. In addition, qRT-PCR tests showed that carvacrol affected the mRNA expression levels of CarE, GST, AchE, SOD, CAT, LIP, AMS, and protease. This study helps to clarify the insecticidal mechanism of carvacrol on L. dispar larvae.  相似文献   

5.
亚致死浓度氯虫苯甲酰胺可降低亚洲玉米螟的种群增长   总被引:1,自引:0,他引:1  
为了探讨氯虫苯甲酰胺对亚洲玉米螟Ostrinia furnacalis (Guenée)的抗性风险评估, 为科学使用氯虫苯甲酰胺防治亚洲玉米螟提供理论基础, 本研究在实验室条件下采用饲料混毒法测定了新型杀虫剂氯虫苯甲酰胺对亚洲玉米螟的毒力, 利用生命表技术研究了氯虫苯甲酰胺对亚洲玉米螟 3龄幼虫的亚致死效应。结果表明: 氯虫苯甲酰胺对亚洲玉米螟3龄幼虫的LC10, LC40 和LC50分别为0.038, 0.098 和0.123 mg a. i. /L。以氯虫苯甲酰胺LC10和LC40剂量分别处理亚州玉米螟3龄幼虫后, 幼虫和蛹的发育历期明显延长, 成虫寿命缩短, 产卵量也显著降低, 但对蛹重(雌: P=0.337, 雄: P=0.121)、卵孵化率(P=0.087)和性比(P=0.379)无显著影响。处理种群的净增值率(R0)、内禀增长率(rm)和周限增长率(λ)显著低于对照种群(P<0.0001)。结果提示, 氯虫苯甲酰胺的亚致死浓度可降低亚洲玉米螟的种群增长。  相似文献   

6.
氯虫苯甲酰胺对白背飞虱实验种群的亚致死效应   总被引:5,自引:0,他引:5  
杨洪  王召  金道超 《昆虫学报》2012,55(10):1161-1167
为正确评估防治水稻鳞翅目害虫的新型杀虫剂氯虫苯甲酰胺对非靶标害虫白背飞虱Sogatella furcifera (Horváth)的影响, 本文采取稻茎浸渍法测定了氯虫苯甲酰胺对白背飞虱的毒力, 利用生命表技术研究了氯虫苯甲酰胺对白背飞虱的亚致死效应。结果表明: 氯虫苯甲酰胺对白背飞虱3龄若虫和成虫的LC50分别为19.26 mg/L和19.69 mg/L。以氯虫苯甲酰胺LC10和LC25剂量分别处理白背飞虱3龄若虫后, F0和F1代雌虫产卵量及其寿命均降低, 尤其LC25处理与对照间存在显著差异(P<0.05), F0和F1代雌虫寿命分别缩短了1.80 d和2.62 d, F0和F1代雌虫产卵量分别减少了52.94粒和78.45粒。药剂处理对F1代各虫态发育历期也有一定影响。根据不同剂量处理后白背飞虱各发育阶段的存活率和成虫的繁殖力, 组建了生殖力生命表, 发现LC10和LC25剂量处理的种群内禀增长率rm分别降低了11.25%和34.41%, 净增殖率R0分别降低了36.56%和74.57%, 而世代平均历期T和种群加倍时间t均延长。结果说明, 氯虫苯甲酰胺LC10和LC25剂量可抑制白背飞虱种群的增长; 大田中使用氯虫苯甲酰胺防治鳞翅目害虫时, 可抑制同时发生的非靶标害虫白背飞虱田间种群增长。  相似文献   

7.
The efficacy of three formulations (i.e., natural lavender crude, essential oil, and gel) extracted from Lavender angustifolia was tested against vectors of the epidemic dengue virus, Aedesaegypti, to evaluate their larvicidal activity effect. The ethanolic extract of the lavender crude was prepared using a rotary evaporator, while the other extracts, such as essential oil and gel, were obtained from iHerb, a supplier of medicinal herbs in the US. The mortality rate of larvae was evaluated 24 h after exposure. Larvicidal activity of the lavender crude was 91% mortality at 150 ppm, 94% for essential oil at a concentration of 3000 ppm, and 97% for lavender gel at a 1000 ppm. Natural lavender crude was one of the most promising extracts tested against Ae.aegypti larvae, with lethal concentrations at LC50 and LC90 of 76.4 and 174.5 ppm post-treatment. The essential oil had the least effect on mosquito larvae, with LC50 and LC90 reaching 1814.8 and 3381.9 ppm, respectively. The lavender gel was moderately effective against Ae. aegypti larvae, with LC50 and LC90 values reaching 416.3 and 987.7 ppm after exposure. The occurrence of morphological abnormalities in the larvae treated with the three compounds, in turn, resulted in an incomplete life cycle. Therefore, our results indicated that natural lavender crude displayed the highest larvicidal activity against larvae, followed by gel and essential oil. Thus, this study concluded that lavender crude is an effective, eco-friendly compound that can be used as an alternative to chemical products to control vector-borne epidemic diseases.  相似文献   

8.
《Journal of Asia》2022,25(2):101881
The diamondback moth (DBM), Plutella xylostella (L.), is a globally destructive pest of cruciferous vegetables. Excessive use of synthetic pesticides to control this species results in negative effects on the environment, human health, and nontargeted organisms. The essential oils (EOs) derived from plants may be developed as effective alternatives to conventional pesticides. In this study, thirteen EOs were extracted by hydrodistillation, respectively. Their chemical compositions were identified by gas chromatography-mass spectrometry (GC–MS). Furthermore, the biological activities of EOs such as toxicity, antifeedant activity, and growth inhibition effect, toward DBM larvae were investigated. Against DBM second-instar larvae, the most toxic EO was Pelargonium graveolens (LC50 = 0.36 μg/μl) after 72 hr of exposure, followed by Polygonum hydropiper (LC50 = 0.53 μg/μl). The Ocimum basilicum EO exhibited the highest antifeedant effect to third-instar larvae at at all set concentrations. At 15 μg/μl, the EOs of Acorus calamus, O. basilicum, and P. graveolens completely inhibited the feeding activities of larvae (100%). The Ruta graveolens EO showed the lowest relative growth rate and the highest growth inhibition rate towards third-instar larvae at diverse concentrations. And the EOs of P. hydropiper, A. calamus, and O. basilicum showed promising growth inhibition activities. Overall, the five EOs (P. graveolens, O. basilicum, R. graveolens, P. hydropiper, and A. calamus) showed moderate to high bioactivity, whereas eight EOs were found to be less active against DBM larvae. These results indicate that the five tested EOs are promising to be developed as novel botanical insecticides to control DBM population.  相似文献   

9.
Bacillus thuringiensis var. kurstaki (Berliner) (Bt) has been suggested as a biological control agent for Tuta absoluta (Meyrick). The objective of this study was to determine the interaction between abamectin, azadirachtin, indoxacarb, chlorantraniliprole, dichlorvos and metaflumizone with Bt. Effect of recommended doses of the chemical insecticides on colonisation of Bt was also investigated in culture medium. Except for metaflumizone, none of the chemicals tested reduced the colonisation of Bt compared with control. Interaction between Bt and the chemical insecticides on 2nd-instar larvae was also assessed. In interaction tests, Bt was applied at LC50 level, 0, 12, 24 or 36 h after treating the larvae with LC10 or LC25 of the chemical insecticides. An antagonistic effect was observed in all treatments where Bt was applied immediately after the chemical insecticide. Also, antagonism was observed when treatment with Bt was done 12 h after azadirachtin and metaflumizone applications. Applying Bt 12 and 24 h after treatment with LC25 of chlorantraniliprole, dichlorvos and abamectin resulted in synergism. But, synergism with LC10 of dichlorvos and abamectin was observed only after 12 h. Additive effect was observed in the rest of the time and concentration combinations. Based on the results obtained, simultaneous use of the chemical insecticides tested and Bt is not recommended for T. absoluta control; and an appropriate time interval should be taken into consideration accordingly.  相似文献   

10.
The larvicidal activity of an experimental formulation of Bacillus thuringiensis israelensis (Bti) against Aedes aegypti larvae was evaluated under laboratory and simulated field conditions (SFC). Samples of technical powder (TP) were assayed to establish the LC50 and the potency of the product. The larvicidal activity of the TP and the tablet (T) were evaluated under SFC to assess the efficacy and the residual activity, measured against Ae. aegypti larvae. Either a T or 250 mg of TP were added to 50 L of water in plastic containers. Containers were exposed to sunlight or kept in the shade. Results showed a LC50 of 0.26 mg/L and a potency of 750 ITU/mg. In spite of differences in the toxicity amongst TP and T samples, all of them killed 98–100% of the larvae and the mortality remained high for six months, in the shade. The replacement of 20% or 60% of the water volume did not affect the activity of the product. Seasonal differences influenced the persistence of the product in containers exposed to sunlight. Both formulations showed an excellent performance, especially when kept in the shade. The Bti tablet evaluated in this study is potentially very useful in programs to control dengue vectors.  相似文献   

11.
《Journal of Asia》2020,23(2):320-326
The confused flour beetle, Tribolium confusum, is a common and severe pest of stored products. Here, using fumigation tests during four different exposure times, we evaluated the toxicity of different doses of essential oil of spike lavender, Lavandula spica and one of its major constituents, linalool, on different life stages of T. confusum under laboratory conditions. The toxicity of the L. spica oil and linalool varied as a function of the developmental stage and treatment duration. Young larvae (L1) were the most susceptible to toxic effects, with LC50 = 19.535 μl/L of air for L. spica oil and LC50 = 14.198 μl/L of air for linalool after 24 h of exposure, whereas older larvae (L8) were affected only very little by fumigation. Linalool caused higher egg mortality than L. spica oil at equivalent doses, but lower mortality in pupae and adults. Emergence of intact adult insects from surviving eggs, larvae and pupae was further reduced as a function of dose and exposure time to both L. spica oil and linalool compared to control-treated insects. Our results show that L. spica oil and linalool might be suitable for biological control of T. confusum, but tests at a larger scale are necessary to confirm our results.  相似文献   

12.
The use of chemical insecticides in agriculture has posed several challenges to environment and ecosystem health. Pesticides of biological origin are considered to be suitable for sustainable environment. In the present study bioactive compounds from Penicillium sp. was isolated and tested for insecticidal activity on Spodoptera litura and Culex quinquefasciatus larvae. Ethyl acetate extract of Penicillium sp. were characterized using GC–MS and FT-IR analysis. GC–MS analysis showed 20 different bioactive compounds namely, Propanoic acid, ethyl ester, Acetic Acid, Propyl Ester, Isopentyl Acetate, Acetic Acid, 2-Methylpropyl Ester, Behenic alcohol, 1-Hexadecene, 1-Octadecene, 1-Hexacosanol, n-Hexadecanoic acid, 1-Tetradecanol, 1-Dodecene, Tetrydamine, and Octadecanoic acid. The presence of functional groups such as, chloroalkanes, sulfonates, phosphines, amines, carboxylic acid, alkanes, and isocyanates was identified by using FTIR. Ethyl acetate extract of Penicillium sp., were tested for larvicidal activity on Spodoptera litura and Culex quinquefasciatus larvae showed significant larval mortality after 48 h of exposure with LC50: 72.205 mg/ml: LC90: 282.783 mg/ml and LC50: 94.701 mg/ml: LC90:475.049 mg/ml respectively. High antifeedant activity was observed in 300 μg/ml at 48 h of crude extract exposure. The present study concludes that Penicillium sp., secondary metabolites are effective for control of Spodoptera litura and Culex quinquefasciatus larvae.  相似文献   

13.
八种杀虫剂对韭菜迟眼蕈蚊发育和繁殖的亚致死效应   总被引:4,自引:0,他引:4  
慕卫  刘峰  贾忠明  赵德  慕立义 《昆虫学报》2005,48(1):147-150
用胃毒触杀法确定8种常用杀虫剂对韭菜迟眼蕈蚊Bradysiaodoriphaga 3龄幼虫的LC20和LC50剂量后,以其LC20分别处理3龄幼虫,将存活幼虫正常饲养,测定该剂量药剂对韭菜迟眼蕈蚊化蛹率、蛹重、羽化率,成虫存活率、雌雄比、单雌产卵量及卵孵化率等指标的影响。结果表明:毒死蜱等4种药剂的影响较显著,其影响程度由高到低依次为毒死蜱>辛硫磷>阿维菌素溴虫腈;而另4种药剂丙硫克百威、灭多威、丁硫克百威和吡虫啉则影响不显著。此外也测定了用后4种药剂LC50剂量处理的存活试虫的上述生物学指标,结果表明:除化蛹率和羽化率较对照降低且差异显著外,其他生物学指标与对照处理无明显变化。  相似文献   

14.
The larvicidal effect of the crude carbon tetrachloride, methanol and petroleum ether leaf extracts of a widely grown medicinal plant, Ocimum basilicum, against Anopheles stephensi and Culex quinquefasciatus was evaluated. Petroleum ether extract was found to be the most effective against the larvae of both mosquitoes, with LC50 values of 8.29, 4.57; 87.68, 47.25 ppm and LC90 values of 10.06, 6.06; 129.32, 65.58 ppm against A. stephensi and C. quinquefasciatus being observed after 24 and 48 h of treatment, respectively. The efficacy of petroleum ether was followed by that of the carbon tetrachloride and methanol extracts, which had LC50 values of 268.61, 143.85; 446.61, 384.84 ppm and LC90 values of 641.23, 507.80; 923.60, 887.00 ppm against A. stephensi after 24 and 48 h, respectively, and LC50 values of 24.14, 17.02; 63.48, 53.77 ppm and LC90 values of 295.38, 204.23; 689.71, 388.87 ppm against C. quinquefasciatus after 24 and 48 h of treatment, respectively. These extracts are highly toxic against mosquito larvae from a range of species; therefore, they may be useful for the management of mosquito larvae to control vector borne diseases.  相似文献   

15.
Four different extracts of Aloe vera L. leaves were evaluated for acaricidal activity against female adults of carmine spider mite, Tetranychus cinnabarinus (Boisduval), by slide-dip bioassay. At 72 h after treatment, the acetone extract showed the strongest acaricidal activity with LC50 value of 90 ppm. The LC50 values for ethyl acetate, water, and ethanol extracts were 113, 340, and 391 ppm, respectively. The acetone extract was fractionated using a silica gel column. Among the twenty-two fractions obtained the fifth, tenth, eleventh, twelfth, fifteenth, and seventeenth fractions showed strong acaricidal activity, causing 80.39 to 92.16% mortality at 72 h after treatment. The tenth and eleventh fractions had the strong activity, with LC50 values of 44 ppm and 33 ppm, respectively. The results suggested that A. vera has a great potential for development as a botanical acaricide for T. cinnabarinus control.  相似文献   

16.
The mosquito Culex pipiens is the most widely distributed dipteran species in all regions of Egypt and the principal vector of Wuchereria bancrofti and certain arboviruses in human beings. For controlling C. pipiens vector, biological tools (e.g., larvivorous fish and bioinsecticides) are more potent and safer options to the environment, human beings, and beneficial organisms than chemical pesticides. The efficiency of O. niloticus juveniles as predatory fish species and two bioinsecticides, spinosad 24% and spinetoram 12%, was investigated against the C. pipiens developmental stages in the laboratory. The first trial evaluated the predatory efficacy of small-sized O. niloticus (2.1–2.6 cm; 250–315 mg) and large-sized O. niloticus (2.5–3.2 cm; 250–315 mg) against the 3rd larvae and pupae of C. pipiens. This is the first report in Egypt confirming the predation potential of O. niloticus as efficient predatory fish against the immature C. pipiens. Large-sized O. niloticus predated a greater number of 3rd of C. pipiens larvae and pupae than the small-sized ones. Furthermore, the daily consumption of C. pipiens larvae by small- and large-sized O. niloticus was significantly higher than the pupae. The second trial assessed the toxicity efficacy of spinosad 24% and spinetoram 12% against C. pipiens larvae and pupae. The results confirmed that the tested bioinsecticides showed higher potency toward C. pipiens larvae than pupae after exposure for 24 h and 48 h. Spinosad was more toxic toward 3rd C. pipiens larvae (LC50 = 0.013 and 0.003 mg/L) and pupae (LC50 = 320.69 and 44.28 mg/L) than spinetoram after 24 and 48 h. Herein, O. niloticus juveniles (as promising native predatory fish) and spinosyns bioinsecticides were more effective against C. pipiens in the larval stage than in the pupal stage. In conclusion, Nile tilapia juveniles and biorational compounds, spinosad 24% and spinetoram 12%, might be considered as promising and favorable environmental biological agents for controlling C. pipiens in Egypt. However, further trials are needed to investigate the potential of these agents in the control of this mosquito vector under field conditions.  相似文献   

17.
We studied acute and joint toxicity of three different agrochemicals(chlorantraniliprole, flubendiamide-abamectin and penoxsulam) to Chinese tiger frog(Hoplobatrachus chinensis) tadpoles with the method of stability water tests. Results showed that the three agrochemicals increased tadpole mortality. For acute toxicity, the LC50 values after 24, 48 and 72 h of chlorantraniliprole, flubendiamide-abamectin and penoxsulam exposure were 5.37, 4.90 and 4.68 mg/L; 0.035, 0.025 and 0.021 mg/L; 1.74, 1.45 and 1.29 mg/L, respectively. The safety concentrations(SC) of chlorantraniliprole, flubendiamide-abamectin and penoxsulam to the tadpoles were 1.23, 0.30 and 0.003 mg/L, respectively. Based on these findings, chlorantraniliprole and penoxsulam were moderately toxic, while flubendiamide-abamectin was highly toxic. All pairwise joint toxicity tests showed moderate toxicity. The LC50 values after 24, 48 and 72 h of exposure were 7.08, 6.61 and 6.03 mg/L for chlorantraniliprole+penoxsulam, with corresponding values of 2.455, 2.328 and 2.183 mg/L for chlorantraniliprole+flubendiamide-abamectin, and 1.132, 1.084 and 1.050 mg/L for penoxsulam+flubendiamide-abamectin, with safe concentrations of 1.73, 0.63 and 0.30 mg/L, respectively. For toxic evaluations of pairwise combinations of the three agrochemicals, only the joint toxicity of chlorantraniliprole and flubendiamide-abamectin after 24 h was found to be synergistic, whereas all other tests were antagonistic. Our findings provide valuable information on the toxic effects of agrochemicals on amphibians and how various types of agrochemicals can be reasonably used in agricultural areas.  相似文献   

18.
《Journal of Asia》2023,26(1):102025
Mosquitoes bite human beings and transmit many diseases, such as malaria, dengue fever, and Zika virus. Vector control of mosquitoes is an effective strategy for reducing the spread of disease. However, extensive use of insecticides (e.g. pyrethroids and organophosphorus) has caused resistance in mosquitoes, which weakens the effectiveness of mosquito control. Phytochemicals have been considered an alternative approach to mosquito control. Essential oil (EO) was obtained from the leaves and flowers of Origanum vulgare, and its synergistic activity with piperonyl butoxide (PBO) was tested against Aedes albopictus and Culex pipiens quinquefasciatus larvae. Thirty-seven compounds were identified, among which carvacrol and thymol were two major constituents (30.73 % and 18.81 %, respectively). O. vulgare EO had a significant toxic effect against fourth-stage larvae of Cx. p. quinquefasciatus and Ae. albopictus, with LC50 values of 17.51 and 75.90 mg/L. Carvacrol and thymol also each appeared to be more effective against Cx. p. quinquefasciatus (LC50 = 19.30 and 11.56 mg/L, respectively) than Ae. albopictus (LC50 = 26.62 and 26.66 mg/L, respectively). PBO interacted synergistically with O. vulgare EO, carvacrol and thymol with 2.60–6.26 times as much of the active compound needed without PBO as against Cx. p. quinquefasciatus and Ae. albopictus larvae. Overall, our results contribute to the development of new natural mosquito insecticides.  相似文献   

19.
Buprofezin is an insect growth regulator and widely used insecticide in Malaysia. The present study evaluated the toxic effects of buprofezin on the embryo and larvae of African catfish (Clarias gariepinus) as a model organism. The embryos and larvae were exposed to 7 different concentrations (0, 0.05, 0.5, 5, 25, 50 and 100 mg/L) of buprofezin. Each concentration was assessed in five replicates. Eggs were artificially fertilized and 200 eggs and larvae were subjected to a static bath treatment for all the concentrations. The mortality of embryos was significantly increased with increasing buprofezin concentrations from 5 to 100 mg/L (p< 0.05). However, the mortality was not significantly different (p<0.05) among the following concentrations: 0 (control), 0.05, 0.5 and 5 mg/L. Data obtained from the buprofezin acute toxicity tests were evaluated using probit analysis. The 24 h LC50 value (with 95% confidence limits) of buprofezin for embryos was estimated to be 6.725 (3.167-15.017) mg/L. The hatching of fish embryos was recorded as 68.8, 68.9, 66.9, 66.4, 26.9, 25.1 and 0.12% in response to 7 different concentrations of buprofezin, respectively. The mortality rate of larvae significantly (p<0.05) increased with increasing buprofezin concentrations exposed to 24-48 h. The 24 and 48 h LC50 values (with 95% confidence limits) of buprofezin for the larvae was estimated to be 5.702 (3.198-8.898) and 4.642 (3.264-6.287) mg/L respectively. There were no significant differences (p>0.05) in the LC50 values obtained at 24 and 48 h exposure times. Malformations were observed when the embryos and larvae exposed to more than 5 mg/L. The results emerged from the study suggest that even the low concentration (5 mg/L) of buprofezin in the aquatic environment may have adverse effect on the early embryonic and larval development of African catfish.  相似文献   

20.
Dactylogyrus is a common parasitic pathogen, which causes high mortality of fish when presents in large numbers, resulting in serious economic losses. Herbal medicines contain myriad of bioactive compounds is a valuable reserve for developing safe and effective anti-parasite drugs. Here, we conducted bioassay-guided fractionation to isolate and identify the anti-parasitic constituents from Spatholobi caulis. Among five extraction solvents (petroleum ether, chloroform, ethyl acetate, methanol and water), S. caulis methanolic extract had the highest parasiticide activity in Carassius auratus, and therefore subjected to further separation and purification using multiple chromatography methods. One compound exhibiting the strongest parasiticidal activity was obtained and identified as ononin by analyzing its spectral data (NMR and ESI-MS). The EC50 value of ononin against Dactylogyrus was 0.655 mg/L and showed 100% parasiticide activity with 3.0 mg/L. The 24, 48, 72, 96 h LC50 for goldfish were 4.691 (the 95% CI of 4.526–4.873) mg/L, 4.612 (4.441–4.800) mg/L, 4.472 (4.345–4.607) mg/L, 4.288 (4.155–4.428) mg/L, respectively. The present results discovered for the first time that ononin had potent parasiticidal activity and have the potential to be developed as new anti-parasitic drug for the control of Dactylogyrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号