首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural populations exhibit a great deal of interindividual genetic variation in the response to toxins, exemplified by the variable clinical efficacy of pharmaceutical drugs in humans, and the evolution of pesticide resistant insects. Such variation can result from several phenomena, including variable metabolic detoxification of the xenobiotic, and differential sensitivity of the molecular target of the toxin. Our goal is to genetically dissect variation in the response to xenobiotics, and characterize naturally-segregating polymorphisms that modulate toxicity. Here, we use the Drosophila Synthetic Population Resource (DSPR), a multiparent advanced intercross panel of recombinant inbred lines, to identify QTL (Quantitative Trait Loci) underlying xenobiotic resistance, and employ caffeine as a model toxic compound. Phenotyping over 1,700 genotypes led to the identification of ten QTL, each explaining 4.5–14.4% of the broad-sense heritability for caffeine resistance. Four QTL harbor members of the cytochrome P450 family of detoxification enzymes, which represent strong a priori candidate genes. The case is especially strong for Cyp12d1, with multiple lines of evidence indicating the gene causally impacts caffeine resistance. Cyp12d1 is implicated by QTL mapped in both panels of DSPR RILs, is significantly upregulated in the presence of caffeine, and RNAi knockdown robustly decreases caffeine tolerance. Furthermore, copy number variation at Cyp12d1 is strongly associated with phenotype in the DSPR, with a trend in the same direction observed in the DGRP (Drosophila Genetic Reference Panel). No additional plausible causative polymorphisms were observed in a full genomewide association study in the DGRP, or in analyses restricted to QTL regions mapped in the DSPR. Just as in human populations, replicating modest-effect, naturally-segregating causative variants in an association study framework in flies will likely require very large sample sizes.  相似文献   

2.
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

3.
《Fly》2013,7(2):75-81
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

4.
Food intake is an essential animal activity, regulated by neural circuits that motivate food localization, evaluate nutritional content and acceptance or rejection responses through the gustatory system, and regulate neuroendocrine feedback loops that maintain energy homeostasis. Excess food consumption in people is associated with obesity and metabolic and cardiovascular disorders. However, little is known about the genetic basis of natural variation in food consumption. To gain insights in evolutionarily conserved genetic principles that regulate food intake, we took advantage of a model system, Drosophila melanogaster, in which food intake, environmental conditions and genetic background can be controlled precisely. We quantified variation in food intake among 182 inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the mean and within-line environmental variance of food consumption and observed sexual dimorphism and genetic variation in sexual dimorphism for both food intake traits (mean and variance). We performed genome wide association (GWA) analyses for mean food intake and environmental variance of food intake (using the coefficient of environmental variation, CV E, as the metric for environmental variance) and identified molecular polymorphisms associated with both traits. Validation experiments using RNAi-knockdown confirmed 24 of 31 (77%) candidate genes affecting food intake and/or variance of food intake, and a test cross between selected DGRP lines confirmed a SNP affecting mean food intake identified in the GWA analysis. The majority of the validated candidate genes were novel with respect to feeding behavior, and many had mammalian orthologs implicated in metabolic diseases.  相似文献   

5.
Callous-unemotional behavior (CU) is currently under consideration as a subtyping index for conduct disorder diagnosis. Twin studies routinely estimate the heritability of CU as greater than 50%. It is now possible to estimate genetic influence using DNA alone from samples of unrelated individuals, not relying on the assumptions of the twin method. Here we use this new DNA method (implemented in a software package called Genome-wide Complex Trait Analysis, GCTA) for the first time to estimate genetic influence on CU. We also report the first genome-wide association (GWA) study of CU as a quantitative trait. We compare these DNA results to those from twin analyses using the same measure and the same community sample of 2,930 children rated by their teachers at ages 7, 9 and 12. GCTA estimates of heritability were near zero, even though twin analysis of CU in this sample confirmed the high heritability of CU reported in the literature, and even though GCTA estimates of heritability were substantial for cognitive and anthropological traits in this sample. No significant associations were found in GWA analysis, which, like GCTA, only detects additive effects of common DNA variants. The phrase ‘missing heritability’ was coined to refer to the gap between variance associated with DNA variants identified in GWA studies versus twin study heritability. However, GCTA heritability, not twin study heritability, is the ceiling for GWA studies because both GCTA and GWA are limited to the overall additive effects of common DNA variants, whereas twin studies are not. This GCTA ceiling is very low for CU in our study, despite its high twin study heritability estimate. The gap between GCTA and twin study heritabilities will make it challenging to identify genes responsible for the heritability of CU.  相似文献   

6.
Methylmercury (MeHg) is a potent environmental pollutant, which elicits significant toxicity in humans. The central nervous system (CNS) is the primary target of toxicity, and is particularly vulnerable during development. Maternal exposure to MeHg via consumption of fish and seafood can have irreversible effects on the neurobehavioral development of children, even in the absence of symptoms in the mother. It is well documented that developmental MeHg exposure may lead to neurological alterations, including cognitive and motor dysfunction. The neurotoxic effects of MeHg on the developing brain have been extensively studied. The mechanism of toxicity, however, is not fully understood. No single process can explain the multitude of effects observed in MeHg-induced neurotoxicity. This review summarizes the most current knowledge on the effects of MeHg during nervous system development considering both, in vitro and in vivo experimental models. Considerable attention was directed towards the role of glutamate and calcium dyshomeostasis, mitochondrial dysfunction, as well as the effects of MeHg on cytoskeletal components/regulators.  相似文献   

7.
Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the genomic narrow-sense heritability for this trait in the examined population was statistically zero. The low amount of additive genetic variance that could be captured by the genome-wide genotypes likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, as the broad-sense heritability for root length was significantly larger, and primarily due to epistasis, we also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. Four interacting pairs of loci were revealed, involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. The genotype-phenotype maps for these pairs revealed epistasis that cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. The statistical epistatic analyses were thus indispensable for confirming known, and identifying new, candidate genes for root length in this population of wild-collected A. thaliana accessions. We also illustrate how epistatic cancellation of the additive genetic variance explains the insignificant narrow-sense and significant broad-sense heritability by using a combination of careful statistical epistatic analyses and functional genetic experiments.  相似文献   

8.
Many mycophagous Drosophila species have adapted to tolerate high concentrations of mycotoxins, an ability not reported in any other eukaryotes. Although an association between mycophagy and mycotoxin tolerance has been established in many Drosophila species, the genetic mechanisms of the tolerance are unknown. This study presents the inter‐ and intraspecific variation in the mycotoxin tolerance trait. We studied the mycotoxin tolerance in four Drosophila species from four separate clades within the immigranstripunctata radiation from two distinct locations. The effect of mycotoxin treatment on 20 isofemale lines per species was studied using seven gross phenotypes: survival to pupation, survival to eclosion, development time to pupation and eclosion, thorax length, fecundity, and longevity. We observed interspecific variation among four species, with D. falleni being the most tolerant, followed by D. recens, D. neotestacea, and D. tripunctata, in that order. The results also revealed geographical variation and intraspecific genetic variation in mycotoxin tolerance. This report provides the foundation for further delineating the genetic mechanisms of the mycotoxin tolerance trait.  相似文献   

9.
Pupation site choice of Drosophila third‐instar larvae is critical for the survival of individuals, as pupae are exposed to various biotic and abiotic dangers while immobilized during the 3–4 days of metamorphosis. This singular behavioural choice is sensitive to both environmental and genetic factors. Here, we developed a high‐throughput phenotyping approach to assay the variation in pupation height in Drosophila melanogaster, while controlling for possibly confounding factors. We find substantial variation of mean pupation height among sampled natural stocks and we show that the Drosophila Genetic Reference Panel (DGRP) reflects this variation. Using the DGRP stocks for genome‐wide association (GWA) mapping, 16 loci involved in determining pupation height could be resolved. The candidate genes in these loci are enriched for high expression in the larval central nervous system. A genetic network could be constructed from the candidate loci, which places scribble (scrib) at the centre, plus other genes known to be involved in nervous system development, such as Epidermal growth factor receptor (Egfr) and p53. Using gene disruption lines, we could functionally validate several of the initially identified loci, as well as additional loci predicted from network analysis. Our study shows that the combination of high‐throughput phenotyping with a genetic analysis of variation captured from the wild can be used to approach the genetic dissection of an environmentally relevant behavioural phenotype.  相似文献   

10.

Background

In designing genome-wide association (GWA) studies it is important to calculate statistical power. General statistical power calculation procedures for quantitative measures often require information concerning summary statistics of distributions such as mean and variance. However, with genetic studies, the effect size of quantitative traits is traditionally expressed as heritability, a quantity defined as the amount of phenotypic variation in the population that can be ascribed to the genetic variants among individuals. Heritability is hard to transform into summary statistics. Therefore, general power calculation procedures cannot be used directly in GWA studies. The development of appropriate statistical methods and a user-friendly software package to address this problem would be welcomed.

Results

This paper presents GWAPower, a statistical software package of power calculation designed for GWA studies with quantitative traits, where genetic effect is defined as heritability. Based on several popular one-degree-of-freedom genetic models, this method avoids the need to specify the non-centrality parameter of the F-distribution under the alternative hypothesis. Therefore, it can use heritability information directly without approximation. In GWAPower, the power calculation can be easily adjusted for adding covariates and linkage disequilibrium information. An example is provided to illustrate GWAPower, followed by discussions.

Conclusions

GWAPower is a user-friendly free software package for calculating statistical power based on heritability in GWA studies with quantitative traits. The software is freely available at: http://dl.dropbox.com/u/10502931/GWAPower.zip  相似文献   

11.

Background

Ionizing radiation is genotoxic to cells. Healthy tissue toxicity in patients and radiation resistance in tumors present common clinical challenges in delivering effective radiation therapies. Radiation response is a complex, polygenic trait with unknown genetic determinants. The Drosophila Genetic Reference Panel (DGRP) provides a model to investigate the genetics of natural variation for sensitivity to radiation.

Methods and Findings

Radiation response was quantified in 154 inbred DGRP lines, among which 92 radiosensitive lines and 62 radioresistant lines were classified as controls and cases, respectively. A case-control genome-wide association screen for radioresistance was performed. There are 32 single nucleotide polymorphisms (SNPs) associated with radio resistance at a nominal p<10−5; all had modest effect sizes and were common variants with the minor allele frequency >5%. All the genes implicated by those SNP hits were novel, many without a known role in radiation resistance and some with unknown function. Variants in known DNA damage and repair genes associated with radiation response were below the significance threshold of p<10−5 and were not present among the significant hits. No SNP met the genome-wide significance threshold (p = 1.49×10−7), indicating a necessity for a larger sample size.

Conclusions

Several genes not previously associated with variation in radiation resistance were identified. These genes, especially the ones with human homologs, form the basis for exploring new pathways involved in radiation resistance in novel functional studies. An improved DGRP model with a sample size of at least 265 lines and ideally up to 793 lines is recommended for future studies of complex traits.  相似文献   

12.
Hosts have evolved two distinct defence strategies against parasites: resistance (which prevents infection or limit parasite growth) and tolerance (which alleviates the fitness consequences of infection). However, heritable variation in resistance and tolerance and the genetic correlation between these two traits have rarely been characterized in wild host populations. Here, we estimate these parameters for both traits in Leuciscus burdigalensis, a freshwater fish parasitized by Tracheliastes polycolpus. We used a genetic database to construct a full-sib pedigree in a wild L. burdigalensis population. We then used univariate animal models to estimate inclusive heritability (i.e. all forms of genetic and non-genetic inheritance) in resistance and tolerance. Finally, we assessed the genetic correlation between these two traits using a bivariate animal model. We found significant heritability for resistance (H = 17.6%; 95% CI: 7.2–32.2%) and tolerance (H = 18.8%; 95% CI: 4.4–36.1%), whereas we found no evidence for the existence of a genetic correlation between these traits. Furthermore, we confirm that resistance and tolerance are strongly affected by environmental effects. Our results demonstrate that (i) heritable variation exists for parasite resistance and tolerance in wild host populations, and (ii) these traits can evolve independently in populations.  相似文献   

13.

Background

Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.

Methodology/Principal Findings

a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.  相似文献   

14.
To obtain crops tolerant to aluminum (Al) toxicity in acid soils, several methods have been used to screen different plant species and genotypes to this production constraint. Little is known about the effect of the method on genetic analyses and breeding method suggested. Three genetic studies were conducted to examine evaluation method on inheritance and gene action of sorghum [Sorghum bicolor (L.) Moench] to Al toxicity as measured by seedling dry matter production.Results of acid soil and solution culture studies indicated that tolerance to Al toxicity was inherited as a dominant character. Narrow-sense heritability estimates in the greenhouse acid-soil study were low for shoot and root dry matter production. Six of the same hybrids tested in solution culture produced high additive-genetic variance and had narrow-sense heritability estimates of 72% for shoot and 65% for root DM yields. Griffing's diallel analysis showed that seven of nine restorer lines had substantially higher specific than general combining ability variances for both root and shoot dry matter yields.Inconsistencies between the acid soil and solution culture techniques showed that different genetic responses to the treatments were being measured. The solution culture study indicated to the plant breeder that genes conditioning Al tolerance could be incorporated into pure lines while the greenhouse acid-soil study would predict that this would not be possible. The diallel study of plants grown in solution culture showed that developing both Al-tolerant varieties and hybrids would be possible depending upon Al-tolerant germplasm used. Acid-soil field studies of actual genetic gain for Al to lerance are needed.  相似文献   

15.
Methylmercury (MeHg) is the most toxic form of mercury which is bioaccumulated in the aquatic food chain. It has been shown that one of the main targets of MeHg toxicity is the brain, but there is little knowledge of the molecular mechanisms of its toxic effects. In this work we used a proteomics analysis to determine the changes in the brain proteome of juvenile beluga (Huso huso) exposed to dietary MeHg. The juvenile beluga were fed the diet containing 0.8 ppm MeHg for 70 days. Proteins of the brain tissue were analyzed using two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry. We found eight proteins with significant altered expression level in the fish brain exposed to MeHg. These proteins are involved in different cell functions including cell metabolism, protein folding, cell division, and signal transduction. Our results support the idea that MeHg exerts its toxicity through oxidative stress induction and apoptotic effects. They also suggest that chronic MeHg exposure would induce an important metabolic deficiency in the brain. These findings provide basic information to understand possible mechanisms of MeHg toxicity in aquatic ecosystems.  相似文献   

16.
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.  相似文献   

17.
Treatment of diapausing pupae of M. configurata with dibutyryl cyclic AMP or 8-(4-chlorophenylthio) cyclic AMP (CPT cyclic AMP) reduced the incidence of eclosion to zero compared to about 15% for controls, whereas treatment with cyclic GMP increased eclosion to more than 90%. Treatment with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) resulted in a high incidence (79.8%) of eclosion, but treatment with dibutyryl cyclic AMP + IMBX or CPT cyclic AMP + IBMX gave low incidences (<9.1%) of eclosion. Other methylxanthines (theophylline, 8-phenyltheophylline, caffeine) and papaverine had relatively little effect on eclosion even at high doses.Treatment of post-diapause pupae with dibutyryl cyclic AMP or CPT cyclic AMP resulted in a low incidence (<5.0%) of eclosion compared to 98.8% eclosion in controls. Suppression of eclosion was more effective if dibutyryl cyclic AMP was given within the first 2 days of pupal-adult development at 20°C and became less effective as development progressed, indicating that dibutyryl cyclic AMP inhibits endocrine events initiating development rather than inhibiting subsequent metamorphic development. Treatment of post-diapausing pupae with cyclic GMP, IBMX, other methylxanthines or papaverine did not affect eclosion. These results are consistent with a dual control of pupal diapause in M. configurata by cyclic nucleotides, with cyclic AMP acting to maintain diapause and cyclic GMP acting to terminate it.  相似文献   

18.
Abstract The D. melanogaster rst and kirre genes encode two highly related immunoglobulin-like cell adhesion molecules that function redundantly during embryonic muscle development. The two genes appear to be derived from a common ancestor by gene duplication. Gene duplications have been proposed to be of major evolutionary significance since duplicated redundant sequences can accumulate mutations without detrimental effects for the organism and leave the duplicated genes free to assume novel functions. To address the issue of conservation of the duplicated sequences and their putative redundancy, as well as to identify putative functional divergence of the paralogs during drosophilid evolution, we performed an interspecies comparison of the rst and kirre genes from D. virilis and D. melanogaster. The D. virilis genome contains orthologues of both rst and kirre and hence the duplication took place before the split of the two lineages and has subsequently been conserved. However, whilst the Rst orthologues show a high degree of sequence similarity, this similarity is lower in Kirre orthologues. Especially the intracellular domains of D. virilis and D. melanogaster Kirre sequences are highly divergent: the D. virilis kirre gene lacks the 3′-most exon present in D. melanogaster, which contains motifs conserved between kirre and rst in D. melanogaster. Hence, while each of the two genes is highly conserved at the level of its exon-intron organization, the selection forces acting on the rst and kirre coding sequences are different. These findings are discussed in the light of general evolutionary mechanisms.  相似文献   

19.
Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequenced lines. We find that the top associated variants differ between traits and sexes; do not map to canonical growth pathway genes, but can be linked to these by epistasis analysis; and are enriched for genes and putative enhancers. Performing GWA on well-studied developmental traits under controlled conditions expands our understanding of developmental processes underlying phenotypic diversity.  相似文献   

20.
We previously reported that methylmercury (MeHg) exposure is associated with DNA hypomethylation in the brain stem of male polar bears. Here, we conveniently use archived tissues obtained from controlled laboratory exposure studies to look for evidence that MeHg can disrupt DNA methylation across taxa. Brain (cerebrum) tissues from MeHg-exposed mink (Neovison vison), chicken (Gallus gallus) and yellow perch (Perca flavescens) were analyzed for total Hg levels and global DNA methylation. Tissues from chicken and mink, but not perch, were also analyzed for DNA methyltransferase (DNMT) activity. In mink we observed significant reductions in global DNA methylation in an environmentally-relevant dietary exposure group (1 ppm MeHg), but not in a higher group (2 ppm MeHg). DNMT activity was significantly reduced in all treatment groups. In chicken or yellow perch, no statistically significant effects of MeHg were observed. Dose-dependent trends were observed in the chicken data but the direction of the change was not consistent between the two endpoints. Our results suggest that MeHg can be epigenetically active in that it has the capacity to affect DNA methylation in mammals. The variability in results across species may suggest inter-taxa differences in epigenetic responses to MeHg, or may be related to differences among the exposure scenarios used as animals were exposed to MeHg through different routes (dietary, egg injection), for different periods of time (19–89 days) and at different life stages (embryonic, juvenile, adult).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号