首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diano M 《Plant physiology》1982,69(5):1217-1221
The mitochondrial polypeptides from maize lines susceptible and resistant to Helminthosporium maydis were studied by single- and two-dimensional gel electrophoresis. Approximately 120 polypeptides were detected by two-dimensional gel electrophoresis. However, it was not possible to detect qualitative differences between the mitochondrial polypeptides of the two inbreds. These observations are discussed with reference to the putative mechanism of action of the pathotoxin.  相似文献   

2.
3.
Soybean root cells undergo dramatic morphological and biochemical changes during the establishment of a feeding site in a compatible interaction with the soybean cyst nematode (SCN). We constructed a cDNA microarray with approximately 1,300 cDNA inserts targeted to identify differentially expressed genes during the compatible interaction of SCN with soybean roots 2 days after infection. Three independent biological replicates were grown and inoculated with SCN, and 2 days later RNA was extracted for hybridization to microarrays and compared to noninoculated controls. Statistical analysis indicated that approximately 8% of the genes monitored were induced and more than 50% of these were genes of unknown function. Notable genes that were more highly expressed 2 days after inoculation with SCN as compared to noninoculated roots included the repetitive proline-rich glycoprotein, the stress-induced gene SAM22, ß-1,3-endoglucanase, peroxidase, and those involved in carbohydrate metabolism, plant defense, and signaling.  相似文献   

4.
Seed dormancy is strongly related to the physiological conditions,especially as they relate to responsiveness to ABA, of embryocells during maturation of seeds. In this study, seeds of Triticumaestivum L. cv. Chihoku, which showed nondormancy at harvest,and line Kitakei-l354 (referred to as Kitakei), which showedpost-harvest dormancy, were collected 30 days after anthesis(DPA 30) and at the mature stage (DPA 60). Poly(A)+RNA was extractedfrom the embryos of the seeds and translated in a wheat germsystem. The majority of products of translation from the twogenotypes migrated to the same positions in two-dimensionalgels. Levels of six (for polypeptides h, i, k, m, n, and o)out of 14 Chihoku-specific mRNAs decreased dramatically duringseed maturation, concurrently with the loss of dormancy. Bycontrast, levels of 3 (for polypeptides c, e and f) out of 6Kitakei specific mRNAs were maintained during maturation andduring a 48-h imbibition of the dormant seeds but decreasedat germination. Polypeptides n of Chihoku and e of Kitakei hadthe same molecular size and slightly different pI values. Thesetwo polypeptides may be encoded by the same gene and may playsome role in the maintenance of seed dormancy. Levels of mRNAsfor 10 polypeptides, found in both Chihoku and Kitakei embryosat DPA 30, changed to different extents during maturation. Outof the 10 mRNAs, the relative abundance of 4 mRNAs of Kitakeidid not change dramatically during seed maturation, while inChihoku these mRNAs decreased in level or disappeared duringthe same maturation period. In addition, levels of 2 of these4 mRNAs did not decrease significantly during imbibition ofthe dormant Kitakei seeds but disappeared upon treatment forbreaking of dormancy. The maintenance of these mRNAs in thedormant seeds during maturation and imbibition suggests thatthe respective gene products are involved in the maintenanceof dormancy in wheat seeds. (Received December 5, 1991; Accepted April 1, 1992)  相似文献   

5.
The amount of soybean agglutinin (SBA) detectable by radioimmunoassay in seeds of resistant cultivars to Phytophthora megasperma var. sojae was approximately twice that of susceptible cultivars. SBA was preferentially released at earlier times (6-9 hours) and in higher amounts in the imbibate from resistant cultivars as compared to susceptible cultivars. The lectin in the imbibate was immunologically identical to the seed lectin, indicating little or no proteolysis had occurred, and was active in hemagglutination. Binding of fluorescein isothiocyanate-labeled SBA to mycelial cell walls could be abolished by adding N-acetyl galactosamine or galactose. Purified SBA at concentrations of 150 to 300 micrograms inhibited mycelial growth by 50%, and the imbibate from Govan (resistant) cultivar was more inhibitory than the imbibate from Shore (susceptible) cultivar. Removal of SBA from the imbibate by affinity chromatography abolished the inhibition of mycelial growth, but the inhibition could be recovered from the eluant containing lectin.  相似文献   

6.
Roots from two tomato cultivars, one resistant (Rossol) andthe other susceptible (Roma VF) to root-knot nematodes, werecultured in vitro and tested for their response to paraquat,an herbicide which generates superoxide in cells. The effectof paraquat on the permeability of root membranes was testedby the safranine method. Membranes from resistant roots wereinjured more markedly than susceptible ones. A statistical analysisof the variations on a series of enzyme activities from rootsincubated for 2 days with paraquat was carried out. Superoxidedismutase was repressed in treated resistant roots togetherwith ascorbate and glutathione peroxidases. In susceptible rootsthese enzymes were not significantly affected by paraquat treatmentexcept for ascorbate peroxidase which increased slightly. Syringaldazineand polyphenol oxidases, two enzymes active in the hypersensitiveresponse to nematodes, increased in resistant but not in thesusceptible cultivar. p-Phenilendiamine-pyrocathecol oxidasewas not affected while catalase increased markedly by paraquattreatment in both cultivars. (Received January 21, 1991; Accepted August 6, 1991)  相似文献   

7.
8.
Growth and activities of peroxidases, chitinases and glucanases were studied in order to evaluate the response of calli and roots of pink root-susceptible Allium cepa cvs. Valcatorce and T-412 and resistant A. fistulosum cv. Nogiwa Negi, to sterile culture filtrates of Phoma terrestris. Untreated calli and roots of A. fistulosum exhibited higher activity of peroxidases and glucanases than that of Valcatorce and T-412. Enzyme activities and growth of roots and calli were not affected in filtrate-treated A. fistulosum. The growth of calli and roots of A. cepa cultivars decreased significantly after exposure to P. terrestris filtrates while the peroxidase and glucanase activities increased. Peroxidase and glucanase activities were also enhanced in roots of Valcatorce bulbs grown in P. terrestris-inoculated soil as compared to healthy control plants. We conclude that a high constitutive activity of glucanases and perhaps chitinases might account for the resistance of A. fistulosum. The differential reaction (with respect to root growth) of pink root-susceptible and resistant materials to culture filtrates indicates that this in vitro-system might be useful for the screening of onion breeding lines.  相似文献   

9.
Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The model plant Arabidopsis (Arabidopsis thaliana) encodes two such genes in tandem loci on chromosome 1, EIF4E1B (At1g29550) and EIF4E1C (At1g29590). This work identifies EIF4E1B/EIF4E1C-type genes as a Brassicaceae-specific diverged form of EIF4E. There is little evidence for EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues, though microarray and RNA Sequencing data support enrichment in reproductive tissue. Purified recombinant eIF4E1b and eIF4E1c proteins retain cap-binding ability and form functional complexes in vitro with eIF4G. The eIF4E1b/eIF4E1c-type proteins support translation in yeast (Saccharomyces cerevisiae) but promote translation initiation in vitro at a lower rate compared with eIF4E. Findings from surface plasmon resonance studies indicate that eIF4E1b and eIF4E1c are unlikely to bind eIF4G in vivo when in competition with eIF4E. This study concludes that eIF4E1b/eIF4E1c-type proteins, although bona fide cap-binding proteins, have divergent properties and, based on apparent limited tissue distribution in Arabidopsis, should be considered functionally distinct from the canonical plant eIF4E involved in translation initiation.Cap-dependent translation in eukaryotes begins with recognition of the 7-methylguanosine cap at the 5′ end of an mRNA by the translation initiation factor eIF4E, which forms the eIF4F complex with the scaffolding protein eIF4G. The binding of the RNA helicase eIF4A along with eIF4B promotes unwinding of mRNA secondary structure (Aitken and Lorsch, 2012). The eIF4F complex then serves to circularize mRNA by interaction of eIF4G with poly(A) binding protein and recruit the preinitiation complex through binding of eIF4G to eIF3 and eIF5, ultimately leading to the assembly of the 80S ribosome (Aitken and Lorsch, 2012). eIF4E is an attractive target for global regulation of translational activity through its position at the earliest step, mRNA cap recognition. In many organisms, eIF4E availability is regulated by 4E-binding proteins as well as phosphorylation and sumoylation (Jackson et al., 2010; Xu et al., 2010). However, plants appear to lack 4E-binding proteins, and the role of phosphorylation of eIF4E in translational control is less clear (Pierrat et al., 2007).The eIF4E proteins generally thought to be involved in translation initiation are Class I eIF4E proteins (Joshi et al., 2005), of which two exist in flowering plants: eIF4E, which pairs with eIF4G to form the eIF4F complex, and the plant-specific isoform eIFiso4E, which pairs with eIFiso4G to form eIFiso4F (Mayberry et al., 2011; Patrick and Browning, 2012). Class I eIF4E family members have conserved Trp residues at positions equivalent to Trp-43 and Trp-56 of Homo sapiens eIF4E (Joshi et al., 2005), and the canonical members of this class, such as plant eIF4E and eIFiso4E, have the ability to promote translation through binding of mRNA cap structure and eIF4G (or eIFiso4G).In some organisms, however, secondary Class I isoforms exist with expression patterns and functions divergent from the conserved eIF4E (Rhoads, 2009). Caenorhabditis elegans has four isoforms involved in differentiation between mono- and trimethylated mRNA caps (Keiper et al., 2000) and have specialized roles for regulation of certain sets of mRNAs, particularly in the germline (Amiri et al., 2001; Song et al., 2010). Trypanosoma brucei has four isoforms with varying ability to bind cap analog and eIF4G isoforms (Freire et al., 2011). Schizosaccharomyces pombe has a second eIF4E isoform, eIF4E2, which is nonessential under normal growth conditions, but accumulates in response to high temperatures (Ptushkina et al., 2001). It cannot, however, complement deletion of EIF4E1, and while it can bind capped mRNA and promote translation in vitro, it has reduced ability to bind an eIF4G-derived peptide.Vertebrates encode a novel Class I isoform called EIF4E1B with oocyte-specific expression and functions (Evsikov and Marín de Evsikova, 2009). Zebrafish (Danio rerio) EIF4E1B, with expression limited to muscle and reproductive tissue, has conserved residues identified as necessary for binding cap analog and eIF4G, yet fails to bind either and cannot functionally complement deletion of yeast (Saccharomyces cerevisiae) eIF4E (Robalino et al., 2004). In Xenopus spp. oocytes, the eIF4E1b protein was found to bind eIF4E transporter and cytoplasmic polyadenylation element binding protein to form a translation-repressing complex (Minshall et al., 2007). Drosophila species have undergone extensive expansion of EIF4E-encoding loci to as many as seven different Class I eIF4E isoforms (Tettweiler et al., 2012). The seven EIF4E isoforms of Drosophila melanogaster are differentially expressed, with only five able to bind to eIF4G and complement deletion of yeast eIF4E (Hernández et al., 2005). The eIF4E-3 isoform of D. melanogaster was recently described as having a specific role in spermatogenesis (Hernández et al., 2012).Upon completion of sequencing of the Arabidopsis (Arabidopsis thaliana) genome (Rhee et al., 2003), it was discovered that in addition to the conserved plant EIF4E (At4g18040) and EIFISO4E (At5g35620), there existed a tandem pair of genes of high sequence similarity on chromosome 1 that also encoded Class I eIF4E family proteins, EIF4E1B (At1g29550, also known as EIF4E3) and EIF4E1C (At1g29590, also known as EIF4E2). Published microarray and RNA Sequencing (RNA-Seq) data indicate little to no EIF4E1C gene expression; however, the EIF4E1B gene appears to be expressed at low levels in most tissues and enriched in tissues involved in reproduction. The protein sequences contain the residues predicted to be involved in regular eIF4E function but also showed some divergence at highly conserved residues of the canonical plant eIF4E. Genome sequencing data indicate that these genes are part of a divergent eIF4E clade specific to Brassicaceae.The biochemical properties of the eIF4E1b and eIF4E1c proteins were investigated in this work, and it was found that while they can bind mRNA cap analog and eIF4G and support translation in yeast lacking eIF4E, their eIF4G-binding and translation initiation enhancing capabilities in vitro were less robust when compared with the conserved Arabidopsis eIF4E. In addition, it appears that these EIF4E1B-type genes cannot substitute for EIF4E or EIFISO4E in planta because deletion of both of these genes appears to be lethal. Taken together, these findings indicate the EIF4E1B-type genes represent a divergent eIF4E whose roles should be considered separately from the canonical eIF4E in plant translation initiation.  相似文献   

10.
Host physiological events in relation to infestation by parasitic nematodes are not well documented. Soybean plant responses to Meloidogyne incognita infestation were compared to resistant (Bryan) and susceptible (Brim) cultivars at 0, 1, 3, 10, 20, and 34 days after infestation (DAI). The resistant cultivar had higher chitinase activity than the susceptible cultivar at every sample time beginning at 3 DAI. Results from isoelectric focusing gel electrophoresis analyses indicated that three acidic chitinase isozymes with isoelectric points (pIs) of 4.8, 4.4, and 4.2 accumulated to a greater extent in the resistant compared to the susceptible cultivar following challenge. SDS-PAGE analysis of root proteins revealed that two proteins with molecular weights of approximately 31 and 46 kD accumulated more rapidly and to a higher level in the resistant than in the susceptible cultivar. Additionally, three major protein bands (33, 22, and 20 kD) with chitinase activity were detected with a modified SDS-PAGE analysis in which glycolchitin was added into the gel matrix. These results indicate that higher chitinase activity and early induction of specific chitinase isozymes may be associated with resistance to root-knot nematode in soybean.  相似文献   

11.
Free cytoplasmic calcium has been postulated to play a role in preventing powdery mildew in a series of homozygous ml-o mutants of barley, Hordeum vulgare L. Protoplasts isolated from 7-day-old plants of the ml-o resistant-susceptible (R-S) barley isolines, Riso 5678/3* × Carlsberg II R and S, were used to test for differences in fluxes of Ca2+ across the plasmalemma. Greater influx or lesser efflux might account for a higher free cytosolic Ca2+ postulated to exist in ml-o R mutants. Uniform patterns of uptake were maintained for 3 hours from solutions of 0.2 and 2 millimolar Ca2+. Washout curves of 45Ca2+ from R and S protoplasts revealed three compartments—presumed to represent release from the vacuole, organelles, and the cytoplasm (which included bound as well as free Ca2+). Uptake and washout did not differ between isolines. On the basis of recent determinations of submicromolar levels of free cytoplasmic Ca2+ and our initial rates of 45Ca-labeled Ca2+ uptake, we show that measurement of the unidirectional influx of Ca2+ across the plasmalemma is not feasible because the specific activity of the pool of free cytoplasmic calcium increases almost instantaneously to a level that would result in a significant, but unknown, efflux of label. Similarly, measurement of the efflux of Ca2+ across the plasmalemma is not possible since the activity of the pool of free cytoplasmic calcium is a factor of 350 smaller than the most rapid component of the washout experiment. This pool of cytoplasmic free Ca2+ will wash out too rapidly and be too small to detect under the conditions of these experiments.  相似文献   

12.
13.
Thomas W. Cline 《Genetics》1978,90(4):683-697
A new spontaneous mutation named Sex-lethal, Male-specific No. 1 (SxlM1) is described that is lethal to males, even in the presence of an Sxl+ duplication. Females homozygous for SxlM1 are fully viable. This dominant, male-specific lethal mutation is on the X chromosome approximately 0.007 map units to the right of a previously isolated female-specific mutation, Female-lethal, here renamed Sex-lethal, Female-specific No. 1 (SxlF1). SxlM1 and SxlF1 are opposite in nearly every repect, particularly with regard to their interaction with maternal effect of the autosomal mutation, daughterless (da). Females that are homozygous for da produce defective eggs that cannot support female (XX) development. A single dose of SxlM1 enables daughters to survive this da female-specific lethal maternal effect. A duplication of the Sxl locus weakly mimics this action of SxlM1. In contrast, SxlF1 and a deficiency for Sxl, strongly enhance the female-lethal effects of da. The actions of SxlM1 and SxlF1 are explained by a model in which expression of the Sxl locus is essential for females, lethal for males, and under the control of a product of the da locus. It is suggested that SxlM1 is a constitutive mutation at the Sxl locus.  相似文献   

14.
15.
16.
Growth and differentiation factor 5 (GDF5) plays a central role in bone and cartilage development by regulating the proliferation and differentiation of chondrogenic tissue. GDF5 is synthesized as a preproprotein. The biological function of the proregion comprising 354 residues is undefined. We identified two families with a heterozygosity for the novel missense mutations p.T201P or p.L263P located in the proregion of GDF5. The patients presented with dominant brachydactyly type C characterized by the shortening of skeletal elements in the distal extremities. Both mutations gave rise to decreased biological activity in in vitro analyses. The variants reduced the GDF5-induced activation of SMAD signaling by the GDF5 receptors BMPR1A and BMPR1B. Ectopic expression in micromass cultures yielded relatively low protein levels of the variants and showed diminished chondrogenic activity as compared to wild-type GDF5. Interestingly, stimulation of micromass cells with recombinant human proGDF5T201P and proGDF5L263P revealed their reduced chondrogenic potential compared to the wild-type protein. Limited proteolysis of the mutant recombinant proproteins resulted in a fragment pattern profoundly different from wild-type proGDF5. Modeling of a part of the GDF5 proregion into the known three-dimensional structure of TGFβ1 latency-associated peptide revealed that the homologous positions of both mutations are conserved regions that may be important for the folding of the mature protein or the assembly of dimeric protein complexes. We hypothesize that the missense mutations p.T201P and p.L263P interfere with the protein structure and thereby reduce the amount of fully processed, biologically active GDF5, finally causing the clinical loss of function phenotype.  相似文献   

17.
DiTomaso JM 《Plant physiology》1993,102(4):1331-1336
Electrophysiological studies in roots of pea (Pisum sativum L.) and rigid ryegrass (Lolium rigidum Gaud.) seedlings were conducted to elucidate the mechanism involved in the membrane response to the herbicide diclofop. In pea, a dicotyledonous plant insensitive to diclofop, membrane depolarization at varying pH values and herbicide concentrations increased at higher concentrations of the protonated form of diclofop acid (pKa 3.57). In unbuffered nutrient solution (pH 5.7), diclofop acid (50 [mu]M) depolarized the membrane potential (Em) in roots of both resistant and susceptible biotypes of rigid ryegrass, whereas recovery of Em occurred only in the resistant biotype following removal of the herbicide. This differential response was correlated with an increase (450%) in the rate of acidification of the external solution by the susceptible biotype, and the Em differences between biotypes were eliminated in solutions buffered at pH 5.0 or 6.0. In addition, p-chloromercuribenzene-sulfonic acid did not prevent the depolarization of Em by 50 [mu]M diclofop acid. It is concluded that the differential membrane response to diclofop acid in herbicide-resistant and -susceptible biotypes of rigid ryegrass is due to pH differences at the cell wall/plasmalemma interface. Although the membrane response is probably not involved in the primary inhibitory effect of diclofop on plant growth, it could reduce the concentration of the permeant protonated form of the herbicide and possibly could contribute to increased tolerance to diclofop and other weak acid herbicides.  相似文献   

18.
19.
A novel α-amylase (AmyK38) was found in cultures of an alkaliphilic Bacillus isolate designated KSM-K38. Based on the morphological and physiological characteristics and phylogenetic position as determined by 16S ribosomal DNA gene sequencing and DNA-DNA reassociation analysis, it was suggested that the isolate was a new species of the genus Bacillus. The enzyme had an optimal pH of 8.0 to 9.5 and displayed maximum catalytic activity at 55 to 60°C. The apparent molecular mass was approximately 55 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the isoelectric point was around pH 4.2. This enzyme efficiently hydrolyzed various carbohydrates to yield maltotriose, maltohexaose, maltoheptaose, and, in addition, maltose as major end products after completion of the reaction. The activity was not prevented at all by EDTA and EGTA at concentrations as high as 100 mM. Moreover, AmyK38 was highly resistant to chemical oxidation and maintained more than 80% of its original activity even after incubation for 1 h in the presence of excess H2O2 (1.8 M).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号