首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of Mn, Fe, Zn, Cu, Cd, Cr, Ni, Ag, Mo, Nd, Al, Ce, As, Sr, Pb, Pt and Hg was analysed in water, sediments, and aquatic organisms from the San Roque Reservoir (Córdoba-Argentina), sampled during the wet and dry season, to evaluate their transfer through the food web. Stable nitrogen (δ15N) isotopes were used to investigate trophic interactions. According to this, samples were divided into three trophic groups: plankton, shrimp (Palaemonetes argentinus) and fish (Silverside, Odontesthes bonariensis). Liver and gills are the main heavy metal storage tissues in fish. Hg and As concentrations in the muscle of O. bonariensis exceed the Oral Reference doses for metals established by USEPA (2009). Trophic magnification factors (TMFs) for each element were determined from the slope of the regression between trace element concentrations and δ15N. Calculated TMFs showed fundamental differences in the trophodynamics of the studied elements during the wet and dry season in the San Roque Reservoir. Concentrations of Ni, Cd, Cr, Al, Mn, Fe, Mo, Ce, Nd, Pt and Pb during both seasons, and Sr during the dry season, showed statistically significant decreases (TMF < 1) with increasing trophic levels. Thus these elements were trophically diluted in the San Roque food chain. Conversely, Cu, Ag and As (dry season) showed no significant relationships with trophic levels. Among the elements studied, Hg in the wet season, and Zn in the dry season were the only ones showing a statistically significant increase (TMF > 1) in concentration with trophic level. Current results trigger the need for further studies to establish differential behaviour with different species within the aquatic web, particularly when evaluating the transfer of toxic elements to edible organisms, which could pose health risks to humans.  相似文献   

2.
Although some primary consumers such as chironomid larvae are known to exploit methane‐derived carbon via microbial consortia within aquatic food webs, few studies have traced the onward transfer of such carbon to their predators. The ruffe Gymnocephalus cernuus is a widespread benthivorous fish which feeds predominantly on chironomid larvae and is well adapted for foraging at lower depths than other percids. Therefore, any transfer of methanogenic carbon to higher trophic levels might be particularly evident in ruffe. We sampled ruffe and chironomid larvae from the littoral, sub‐littoral and profundal areas of Jyväsjärvi, Finland, a lake which has previously been shown to contain chironomid larvae exhibiting the very low stable carbon isotope ratios indicative of methane exploitation. A combination of fish gut content examination and stable isotope analysis was used to determine trophic linkages between fish and their putative prey. Irrespective of the depth from which the ruffe were caught, their diet was dominated by chironomids and pupae although the proportions of taxa changed. Zooplankton made a negligible contribution to ruffe diet. A progressive decrease in δ13C and δ15N values with increasing water column depth was observed for both chironomid larvae and ruffe, but not for other species of benthivorous fish. Furthermore, ruffe feeding at greater depths were significantly larger than those feeding in the littoral, suggesting an ontogenetic shift in habitat use, rather than diet, as chironomids remained the predominant prey item. The outputs from isotope mixing models suggested that the incorporation of methane‐derived carbon to larval chironomid biomass through feeding on methanotrophic bacteria increased at greater depth, varying from 0% in the littoral to 28% in the profundal. Using these outputs and the proportions of littoral, sub‐littoral or profundal chironomids contributing to ruffe biomass, we estimated that 17% of ruffe biomass in this lake was ultimately derived from chemoautotrophic sources. Methanogenic carbon thus supports considerable production of higher trophic levels in lakes.  相似文献   

3.
Invasive species are one of the widespread stressors of aquatic ecosystems. Several studies document food web effects of invasive fish, but little information is available on the effects of invasive macrophytes. We studied differences in food chain length as well as trophic position and trophic diversity of fish and odonates in lakes dominated by native plants or invasive Eurasian watermilfoil. Trophic position and food chain length were determined using baseline-adjusted δ15N isotope signatures. Trophic diversity, or isotope niche width, was estimated from convex hull area analysis. Results show that trophic position of secondary consumers was not affected by the invasive macrophyte, whereas trophic diversity was greater in watermilfoil-dominated lakes. The direction of isotopic niche expansion was different in fish and odonates, suggesting potential decoupling in predator–prey interactions. This study shows that dominant non-native macrophytes may cause significant changes in food web structure of invaded ecosystems. Trophic diversity may be a more sensitive indicator of environmental stress than trophic position and has the potential to be used for assessment of invasive species impacts and restoration success.  相似文献   

4.
Understanding spatial and temporal variation in the trophic base of stream food webs is critical for predicting population and community stability, and ecosystem function. We used stable isotope ratios (13C/12C, and 15N/14N) to characterize the trophic base of two streams in the Ozark Mountains of northwest Arkansas, U.S.A. We predicted that autochthonous resources would be more important during the spring and summer and allochthonous resources would be more important in the winter due to increased detritus inputs from the riparian zone during autumn leaf drop. We predicted that stream communities would demonstrate increased reliance on autochthonous resources at sites with larger watersheds and greater canopy openness. The study was conducted at three low-order sites in the Mulberry River Drainage (watershed area range: 81–232 km2) seasonally in 2006 and 2007. We used circular statistics to examine community-wide shifts in isotope space among fish and invertebrate consumers in relation to basal resources, including detritus and periphyton. Mixing models were used to quantify the relative contribution of autochthonous and allochthonous energy sources to individual invertebrate consumers. Significant isotopic shifts occurred but results varied by season and site indicating substantial variation in the trophic base of stream food webs. In terms of temporal variation, consumers shifted toward periphyton in the summer during periods of low discharge, but results varied during the interval between summer and winter. Our results did not demonstrate increased reliance on periphyton with increasing watershed area or canopy openness, and detritus was important at all the sites. In our study, riffle–pool geomorphology likely disrupted the expected spatial pattern and stream drying likely impacted the availability and distribution of basal resources.  相似文献   

5.
The δ15N values of organisms are commonly used across diverse ecosystems to estimate trophic position and infer trophic connectivity. We undertook a novel cross-basin comparison of trophic position in two ecologically well-characterized and different groups of dominant mid-water fish consumers using amino acid nitrogen isotope compositions. We found that trophic positions estimated from the δ15N values of individual amino acids are nearly uniform within both families of these fishes across five global regions despite great variability in bulk tissue δ15N values. Regional differences in the δ15N values of phenylalanine confirmed that bulk tissue δ15N values reflect region-specific water mass biogeochemistry controlling δ15N values at the base of the food web. Trophic positions calculated from amino acid isotopic analyses (AA-TP) for lanternfishes (family Myctophidae) (AA-TP ∼2.9) largely align with expectations from stomach content studies (TP ∼3.2), while AA-TPs for dragonfishes (family Stomiidae) (AA-TP ∼3.2) were lower than TPs derived from stomach content studies (TP∼4.1). We demonstrate that amino acid nitrogen isotope analysis can overcome shortcomings of bulk tissue isotope analysis across biogeochemically distinct systems to provide globally comparative information regarding marine food web structure.  相似文献   

6.
Characterizing relationships between individual body size and trophic niche position is essential for understanding how population and food-web dynamics are mediated by size-dependent trophic interactions. However, whether (and how) intraspecific size-trophic relationships (i.e., trophic ontogeny pattern at the population level) vary with time remains poorly understood. Using archival specimens of a freshwater predatory fish Gymnogobius isaza (Tanaka 1916) from Lake Biwa, Japan, we assembled a long-term (>40 years) time-series of the size-dependence of trophic niche position by examining nitrogen stable isotope ratios (δ 15N) of the fish specimens. The size-dependence of trophic niche position was defined as the slope of the relationship between δ 15N and log body size. Our analyses showed that the slope was significantly positive in about 60% of years and null in other years, changing through time. This is the first quantitative (i.e., stable isotope) evidence of long-term variability in the size-trophic relationship in a predatory fish. This finding had implications for the fish trophic dynamics, despite that about 60% of the yearly values were not statistically different from the long-term average. We proposed hypotheses for the underlying mechanism of the time-varying size-trophic relationship.  相似文献   

7.
Pharmaceutical compounds have been detected in freshwater for several decades. Once they enter the aquatic ecosystem, they may be transformed abiotically (i.e., photolysis) or biotically (i.e., microbial activity). To assess the influence of pharmaceuticals on microbial growth, basal salt media amended with seven pharmaceutical treatments (acetaminophen, caffeine, carbamazepine, cotinine, ibuprofen, sulfamethoxazole, and a no pharmaceutical control) were inoculated with stream sediment. The seven pharmaceutical treatments were then placed in five different culture environments that included both temperature treatments of 4, 25, 37°C and light treatments of continuous UV-A or UV-B exposure. Microbial growth in the basal salt media was quantified as absorbance (OD(550)) at 7, 14, 21, 31, and 48d following inoculation. Microbial growth was significantly influenced by pharmaceutical treatments (P?相似文献   

8.
A forest-stream trophic link was examined by stable carbon isotope analyses which evaluated the relationship of aquatic insects emerging from a stream to the diets of web-building spiders. Spiders, aquatic and terrestrial prey, and basal resources of forest and stream food webs were collected in a deciduous forest along a Japanese headwater stream during May and July 2001. The 13C analyses suggested that riparian tetragnathid spiders relied on aquatic insects and that the monthly variation of such dependence is partly associated with the seasonal dynamics of aquatic insect abundance in the riparian forest. Similarly, linyphiid spiders in the riparian forest exhibited 13C values similar to aquatic prey in May. However, their 13C values were close to terrestrial prey in both riparian and upland (150m away from the stream) forests during June to July, suggesting the seasonal incorporation of stream-derived carbon into their tissue. In contrast, araneid spiders relied on terrestrial prey in both riparian and upland forests throughout the study period. These isotopic results were consistent with a previous study that reported seasonal variation in the aquatic prey contribution to total web contents for each spider group in this forest, implying that spiders assimilate trapped prey and that aquatic insect flux indeed contributes to the energetics of riparian tetragnathid and linyphiid spiders.  相似文献   

9.
The ratio of 15N/14N (δ15N) from consumer and prey tissue is commonly used in ecological studies to determine trophic level, food web structure, and mean trophic level in aquatic ecosystems. There is a predictable positive relationship between the δ15N values in tissue and trophic level, caused by the bioaccumulation of 15N in tissues of consumers with each step up the food chain. Reconstructing trophic structure or food chain length over time may provide resource managers with insights about ecosystem biodiversity and resilience. Yet, in many marine systems the absence of baseline information before anthropogenic disturbances makes comparative studies addressing ecosystem responses extremely difficult. Here we attempt to retrospectively reconstruct trophic position in four species of fish from the upper Gulf of California, Mexico before perturbations such as overfishing or the damming of the Colorado River. We first validated if otolith δ15N approximates the δ15N observed in fish tissue. We then used the δ15N encapsulated in ancient fish otoliths that are between 1,000 and 5,500 years old to define the food web structure. Our results suggested that δ15N in otoliths has slightly more positive δ15N than soft tissue. The δ15N values from ancient otoliths appropriately defined the fishes’ relative trophic position. We found significant differences in δ15N between functional groups, apex predator versus intermediate predators. Juveniles and adult fishes displayed trophic separation between functional groups. Our findings advocate the application of δ15N analysis of prehistoric otoliths for establishing pre-disturbance ecological benchmarks.  相似文献   

10.
11.
Alpine streams can exhibit naturally high levels of flow intermittency. However, how flow intermittency in alpine streams affects ecosystem functions such as food web trophic structure is virtually unknown. Here, we characterized the trophic diversity of aquatic food webs in 28 headwater streams of the Val Roseg, a glacierized alpine catchment. We compared stable isotope (δ13C and δ15N) trophic indices to high temporal resolution data on flow intermittency. Overall trophic diversity, food chain length and diversity of basal resource use did not differ to a large extent across streams. In contrast, gradient and mixing model analysis indicated that primary consumers assimilated proportionally more periphyton and less allochthonous organic matter in more intermittent streams. Higher coarse particulate organic matter (CPOM) C:N ratios were an additional driver of changes in macroinvertebrate diets. These results indicate that the trophic base of stream food webs shifts away from terrestrial organic matter to autochthonous organic matter as flow intermittency increases, most likely due to reduced CPOM conditioning in dry streams. This study highlights the significant, yet gradual shifts in ecosystem function that occur as streamflow becomes more intermittent in alpine streams. As alpine streams become more intermittent, identifying which functional changes occur via gradual as opposed to threshold responses is likely to be vitally important to their management and conservation.  相似文献   

12.
Climatic variation alters biochemical and ecological processes, but it is difficult both to quantify the magnitude of such changes, and to differentiate long-term shifts from inter-annual variability. Here, we simultaneously quantify decade-scale isotopic variability at the lowest and highest trophic positions in the offshore California Current System (CCS) by measuring δ15N and δ13C values of amino acids in a top predator, the sperm whale (Physeter macrocephalus). Using a time series of skin tissue samples as a biological archive, isotopic records from individual amino acids (AAs) can reveal the proximate factors driving a temporal decline we observed in bulk isotope values (a decline of ≥1 ‰) by decoupling changes in primary producer isotope values from those linked to the trophic position of this toothed whale. A continuous decline in baseline (i.e., primary producer) δ15N and δ13C values was observed from 1993 to 2005 (a decrease of ∼4‰ for δ15N source-AAs and 3‰ for δ13C essential-AAs), while the trophic position of whales was variable over time and it did not exhibit directional trends. The baseline δ15N and δ13C shifts suggest rapid ongoing changes in the carbon and nitrogen biogeochemical cycling in the offshore CCS, potentially occurring at faster rates than long-term shifts observed elsewhere in the Pacific. While the mechanisms forcing these biogeochemical shifts remain to be determined, our data suggest possible links to natural climate variability, and also corresponding shifts in surface nutrient availability. Our study demonstrates that isotopic analysis of individual amino acids from a top marine mammal predator can be a powerful new approach to reconstructing temporal variation in both biochemical cycling and trophic structure.  相似文献   

13.
Stable isotope analysis has been extensively used as an effective tool in determination of trophic relationship in ecosystems. In freshwater ecosystem, aquatic invertebrates represent main component of a river food web. This study was carried out to determine potential food sources of freshwater organism together with pattern of trophic position along the river food web. In this study, rivers of Belum-Temengor Forest Complex (BTFC) has been selected as sampling site as it is a pristine area that contains high diversity and abundance of organisms and can be a benchmark for other rivers in Malaysia. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were applied to estimate trophic position and food web paradigm. Analysis of stable isotopes based on organic material collected from the study area revealed that the highest δ13C value was reported from filamentous algae (? 22.68 ± 0.1260/00) and the lowest δ13C was in allocthonous leaf packs (? 31.58 ± 0.1870/00). Meanwhile the highest δ15N value was in fish (8.45 ± 0.1770/00) and the lowest value of δ15N was in autochthonous aquatic macrophyte (2.00 ± 1.2340/00). Based on the δ15N results, there are three trophic levels in the study river and it is suggested that the trophic chain begins with organic matter followed by group of insects and ends with fish (organic matter < insects < fish).  相似文献   

14.
Stable isotope analysis (SIA) of highly migratory marine pelagic animals can improve understanding of their migratory patterns and trophic ecology. However, accurate interpretation of isotopic analyses relies on knowledge of isotope turnover rates and tissue-diet isotope discrimination factors. Laboratory-derived turnover rates and discrimination factors have been difficult to obtain due to the challenges of maintaining these species in captivity. We conducted a study to determine tissue- (white muscle and liver) and isotope- (nitrogen and carbon) specific turnover rates and trophic discrimination factors (TDFs) using archived tissues from captive Pacific bluefin tuna (PBFT), Thunnus orientalis, 1–2914 days after a diet shift in captivity. Half-life values for 15N turnover in white muscle and liver were 167 and 86 days, and for 13C were 255 and 162 days, respectively. TDFs for white muscle and liver were 1.9 and 1.1‰ for δ 15N and 1.8 and 1.2‰ for δ 13C, respectively. Our results demonstrate that turnover of 15N and 13C in bluefin tuna tissues is well described by a single compartment first-order kinetics model. We report variability in turnover rates between tissue types and their isotope dynamics, and hypothesize that metabolic processes play a large role in turnover of nitrogen and carbon in PBFT white muscle and liver tissues. 15N in white muscle tissue showed the most predictable change with diet over time, suggesting that white muscle δ 15N data may provide the most reliable inferences for diet and migration studies using stable isotopes in wild fish. These results allow more accurate interpretation of field data and dramatically improve our ability to use stable isotope data from wild tunas to better understand their migration patterns and trophic ecology.  相似文献   

15.
1. Analysis of the stable isotope signatures of carbon (C) and nitrogen (N) of foods and consumers has led to some preliminary understanding of the relative importance of autochthonous and allochthonous resources in tropical streams. However, robust generalizations about the dynamics of food webs in these habitats, and their response to shading gradients or season, are still lacking. In addition, the feasibility of employing a baseline δ15N value for estimating trophic positions (TPs) of consumers in small tropical streams has yet to be explored. 2. We analysed data on stable isotope signatures of food sources and aquatic consumers obtained from 14 studies carried out in small streams in monsoonal Hong Kong (22°30′N, 114°10′E) between 1996 and 2006. Emphasis was placed on determining the relative importance of leaf litter and autochthonous foods in supporting consumer biomass, and the extent to which trophic base and TP vary among streams and seasons. 3. Although allochthonous leaf litter was generally 13C‐ and 15N‐depleted relative to autochthonous foods, there were marked isotopic shifts of food sources and consumers in response to season (dry versus wet) and stream shading. Consumer taxa were generally more 13C‐ and 15N‐enriched in the unshaded streams, but seasonal effects were more variable. Despite these changes, there was consistent evidence that stream food webs were based on periphytic algae and/or cyanobacteria with leaf litter serving as a minor food. 4. Heptageniidae (Ephemeroptera), Tipulidae (Diptera), Elmidae (Coleoptera) and shrimps (Atyidae) were used as a baseline for calculating the TPs of other consumer taxa. The maximum TPs in shaded streams remained fairly constant between seasons (dry = 3.93; wet = 3.97), while those in unshaded streams were higher and showed seasonal fluctuations (dry = 5.13; wet = 4.39). 5. Although variations in consumer isotope signatures in response to season and shading gradients did not confound our interpretation of the stream food base, changes in consumer δ15N did affect the calculation of consumer TPs. Misleading estimates of consumer TPs are likely if samples are collected from a narrow range of streams and/or during one season. Overestimation of the TPs of specialist herbivores (e.g. fish grazers) is also possible when autochthonous resources are substantially more 15N‐enriched than allochthonous foods.  相似文献   

16.
A key factor for estimates of assimilation of resources and trophic position based on stable isotope data is the trophic discrimination factor (TDF). TDFs are assumed based on literature reviews, but may vary depending on a variety of factors, including the type of diet. We analyzed effects of alternative TDFs on estimates of assimilated resources and trophic positions for an omnivorous fish, Jenynsia multidentata, that reveals dietary variation among locations across a salinity gradient of a coastal lagoon in southern Brazil. We also compared estimates of foods ingested vs. foods assimilated. Food assimilation was estimated using carbon (δ13C) and nitrogen (δ15N) stable isotope ratios of food sources and consumer muscle tissue and an isotopic mixing model (SIAR); consumer trophic position (TP) was estimated from consumer and production source δ15N values. Diet was estimated using an index of relative importance based on frequency of occurrence and volumetric and numeric proportions of food items from stomach contents. The effect of variation in TDF on food assimilation and TP was tested using three alternative TDFs reported in review papers. We then created a new method that used food source-specific TDFs (reported separately for herbivores and carnivores) weighted in proportion to estimated assimilation of resources according to mixing model estimates to estimate TP (hereafter TPWAR). We found that plant material was not assimilated in a proportion similar to its importance in the diet of fish at a freshwater site, and the new method yielded best assimilation estimates. Animal material made greatest contributions to fish biomass irrespective of TDFs used in the mixing model. The new method produced TP estimates consistent with differences in estimated food assimilation along the salinity gradient. Our findings support the idea that food source-specific TDFs should be used in trophic studies of omnivores, since the method improved our ability to estimate trophic position and resource assimilation, two important ecological indicators.  相似文献   

17.
Fish trophic niches reflect important ecological interactions and provide insight into the structure of mangrove food webs. Few studies have been conducted in mangrove fish predators to investigate interpopulation trophic niches and ontogenetic shifts. Using stable isotope analysis and two complementary approaches, the authors investigated trophic niche patterns within and between two ontogenetic groups (juveniles and sub-adults) of a generalist predator (Acentrogobius viridipunctatus) in four mangroves with heterogeneous environmental conditions (e.g., tidal regimes, salinity fluctuations and mangrove tree community). The authors hypothesized that the trophic niche between populations would vary regionally and trophic position would increase consistently from juvenile to sub-adult stages. The results revealed that both δ13C and δ15N values varied greatly across populations and between ontogenetic groups, and complex spatio-ontogenetic variations were expressed by Layman's metrics. They also found some niche separation in space, which is most likely related to resource availability in spatially diverse ecosystems. In addition, trophic niche position increased consistently from juveniles to sub-adults, indicating ontogenetic feeding shifts. The isotopic plasticity index and Fulton's condition index also showed significant spatial-ontogenetic variation, which is consistent with optimal foraging theory. The findings highlight that trophic plasticity has a high adaptive value for mangrove fish predators in dynamic ecosystems.  相似文献   

18.
The utility of using fish scales collected during stock assessment exercises to assess the trophic relationships of riverine fishes using their stable isotopes of d13C and d15N was tested using three riverine fish communities in England (Rivers Great Ouse, Ivel and Goyt). In each river, European barbel Barbus barbus was an important species, with other cyprinid species, including chub Squalius cephalus, present. Stable isotope analyses was completed using relatively small sample sizes per species (<11) from fish samples collected in 2001, 2005 and 2006 when up to 5 scales were collected from each fish. The calculation of standard ellipse areas (as a measure of trophic niche size) revealed that relative to other fishes, B. barbus occupied high trophic positions with minimal overlap in their trophic niche with other species, especially S. cephalus. As the analysed fish samples comprised species of various length ranges and as length has strong ontogenetic consequences for fish diet composition, generalized linear models were developed in which length was the covariate; model outputs included length‐adjusted mean δ13C and δ15N for each species. In each fish community, significant differences in δ13C and δ15N were apparent between B. barbus and S. cephalus, but were less apparent between B. barbus and other fishes. Thus, whilst the utility of using fish scales from stock assessments in stable isotope analyses are limited due to the differing length ranges of the sampled fishes, they can be useful in identifying trophic differences between species when methods such as stomach content analyses are unavailable.  相似文献   

19.
Although deep-sea cephalopods are key marine organims, their feeding ecology remains essentially unknown. Here, we report for the first time the trophic structure of an assemblage of these animals (19 species) by measuring the isotopic signature of wings of their lower beaks, which accumulated in stomachs of stranded sperm whales. Overall, the species encompassed a narrow range in δ13C values (1.7‰), indicating that they lived in closely related and overlapping habitats. δ13C values can be interpreted in terms of distribution with the more 13C-depleted species (e.g. Stigmatoteuthis arcturi, Vampyroteuthis infernalis) having a more pelagic habitat than the more 13C-enriched, bathyal species (e.g. Todarodes sagittatus and the giant squid Architeuthis dux). The cephalopods sampled had δ15N values ranging 4.6‰, which is consistent with the species spanning approximately 1.5 trophic levels. Neither the giant octopod (Haliphron atlanticus) nor the giant squid reached the highest trophic position. Species δ15N was independent of body size, with large squids having both the highest (Taningia danae) and lowest (Lepidoteuthis grimaldii) δ15N values. Their trophic position indicates that some species share the top of the food web, together with other megacarnivores such as the sperm whale.  相似文献   

20.
We examined stable carbon and nitrogen isotope ratios for a large variety of consumers in intertidal and subtidal habitats, and their potential primary food sources [i.e., microphytobenthos (MPB), phytoplankton, and Phragmites australis] in a coastal bay system, Yeoja Bay of Korea, to test the hypothesis that the transfer of intertidal MPB-derived organic carbon to the subtidal food web can be mediated by motile consumers. Compared to a narrow δ13C range (−18 to −16‰) of offshore consumers, a broad δ13C range (−18 to −12‰) of both intertidal and subtidal consumers indicated that 13C-enriched sources of organic matter are an important trophic source to coastal consumers. In the intertidal areas, δ13C of most consumers overlapped with or was 13C-enriched relative to MPB. Despite the scarcity of MPB in the subtidal, highly motile consumers in subtidal habitat had nearly identical δ13C range with many intertidal foragers (including crustaceans and fish), overlapping with the range of MPB. In contrast, δ13C values of many sedentary benthic invertebrates in the subtidal areas were similar to those of offshore consumers and more 13C-depleted than motile foragers, indicating high dependence on phytoplankton-derived carbon. The isotopic mixing model calculation confirms that the majority of motile consumers and also some of subtidal sedentary ones depend on intertidal MPB for more than a half of their tissue carbon. Finally, although further quantitative estimates are needed, these results suggest that direct foraging by motile consumers on intertidal areas, and thereby biological transport of MPB-derived organic carbon to the subtidal areas, may provide important trophic connection between intertidal production and the nearshore shallow subtidal food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号