首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rhamnolipid as a potent natural biosurfactant has a wide range of potential applications, including enhanced oil recovery (EOR), biodegradation, and bioremediation. Rhamnolipid is composed of rhamnose sugar molecule and beta-hydroxyalkanoic acid. The rhamnosyltransferase 1 complex (RhlAB) is the key enzyme responsible for transferring the rhamnose moiety to the beta-hydroxyalkanoic acid moiety to biosynthesize rhamnolipid. Through transposome-mediated chromosome integration, the RhlAB gene was inserted into the chromosome of the Pseudomonas aeruginosa PAO1-rhlA(-) and Escherichia coli BL21 (DE3), neither of which could produce rhamnolipid. After chromosome integration of the RhlAB gene, the constitute strains P. aeruginosa PEER02 and E. coli TnERAB did produce rhamnolipid. The HPLC/MS spectrum showed that the structure of purified rhamnolipid from P. aeruginosa PEER02 was similar to that from other P. aeruginosa strains, but with different percentage for each of the several congeners. The main congener (near 60%) of purified rhamnolipid from E. coli TnERAB was 3-(3-hydroxydecanoyloxy) decanoate (C(10)-C(10)) with mono-rhamnose. The surfactant performance of rhamnolipid was evaluated by measurement of interfacial tension (IFT) and oil recovery via sand-pack flooding tests. As expected, pH and salt concentration of the rhamnolipid solution significantly affected the IFT properties. With just 250 mg/L rhamnolipid (from P. aeruginosa PEER02 with soybean oil as substrate) in citrate-Na(2)HPO(4), pH 5, 2% NaCl, 42% of oil otherwise trapped was recovered from a sand pack. This result suggests rhamnolipid might be considered for EOR applications.  相似文献   

2.
生物表面活性剂在提高原油采收率方面的应用   总被引:20,自引:0,他引:20  
生物表面活性剂和一般的化学表面活性剂一样,都拥有亲水和疏水基因,是微生物生长在水不溶的有机物中并以营养物而产生的代谢产物。在油田应用中,生物表面活性剂的作用是微生物提高采收率的重要机理之一,具有水溶性好、反应产物均一、安全无毒、驱油效果好等特点。本文从产生生物表面活性剂的菌种及生物表面活性剂的类型、生物表面活性剂的特性、实验研究、矿场实验及展望等五个方面综述了生物表面活性剂在提高原油采收率方面的应  相似文献   

3.
4.
A halothermotolerant Gram-positive spore-forming bacterium was isolated from petroleum reservoirs in Iran and identified as Bacillus licheniformis sp. strain ACO1 by phenotypic characterization and 16S rRNA analysis. It showed a high capacity for bioemulsifier production and grew up to 60°C with NaCl at 180 g l−1. The optimum NaCl concentration, pH and temperature for bioemulsifier production were 4% (w/v), 8.0, and 45°C, respectively. Although ACO1 did not utilize hydrocarbons, it had a high emulsifying activity (E 24 = 65 ± 5%) on different hydrophobic substrates. Emulsification was optimal while growing on yeast extract as the sole carbon source and NaNO3 as the nitrogen source. The efficiency of the residual oil recovery increased by 22% after in situ growth of B. licheniformis ACO1 in a sand-pack model saturated with liquid paraffin.  相似文献   

5.
微生物强化采油(microbial enhanced oil recovery,MEOR)是近年来在国内外发展迅速的一项提高原油采收率技术。微生物在油藏中高效生产表面活性剂等驱油物质是微生物采油技术成功实施的关键之一。然而,油藏的缺/厌氧环境严重影响好氧表面活性剂产生菌在油藏原位的生存与代谢活性;油藏注空气会增加开采成本,且注入空气的作用时效和范围难以确定。因此,开发厌氧产表面活性剂菌种资源并强化其驱油效率对于提高原油采收率具有重要意义。本文综述了国内外近年来利用厌氧产表面活性剂微生物提高原油采收率的研究进展,简述了微生物厌氧产表面活性剂的相关驱油机理、菌种资源开发现状以及油藏原位驱油应用进展,并对当前的研究提出了一些思考。  相似文献   

6.
张嵩元  汪卫东 《微生物学报》2021,61(10):3059-3075
鼠李糖脂是一类重要的生物表面活性剂。相比于化学合成的表面活性剂,其具有更优秀的理化性质及环境友好等特点,被广泛应用于微生物采油、环境污染修复等工程中。目前,鼠李糖脂的工业生产主要采用铜绿假单胞菌这一具有致病性的天然合成菌株,与此同时,受菌株遗传背景的限制,优化发酵过程等方法在产量提升方面遇到了一些瓶颈问题。利用基因工程方法对菌株进行改良有望进一步提高鼠李糖脂生产的安全性、产量、产物性能等多项指标,因此受到了越来越广泛的关注。本文综述了近年来利用基因工程方法优化鼠李糖脂生物合成的最新进展,讨论了异源合成、代谢通路改造、基因表达优化、蛋白质工程、底盘工程等多种策略的应用,并展望了一系列可行的研究方向。  相似文献   

7.
微生物提高原油采出率的室内研究   总被引:1,自引:0,他引:1  
微生物采油技术是一种提高原油采出率的卓有成效的方法。本文通过在实验室条件下模拟江苏油田韦4区块的储层情况,进行岩芯的驱替实验,对微生物采油技术在韦4区块的运用作了一些研究和评价,并得出应用结论,为该技术在现场的实验奠定了理论基础。  相似文献   

8.
9.
The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40 °C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series.  相似文献   

10.
Summary The ability of indigenous populations of microorganisms in Berea sandstone to improve the volumetric sweep efficiency and increase oil recovery by in situ growth and metabolism following the injection of nutrients was studied. Cores of differing permeabilities connected in parallel without crossflow and slabs of sandstone with differing permeabilities in capillary contact to allow crossflow were used. The addition of a sucrosenitrate mineral salts medium stimulated the growth and metabolism of microorganisms in the sandstone systems. This resulted in a preferential decrease in permeability in the core or slab with the higher initial permeability, diverted flow into the lower-permeability core or slab and improved the volumetric sweep efficiency. Injectivity into the slab with the lower initial permeability in the crossflow system increased during subsequent nutrient injections. Thus, microbial selective plugging does occur in laboratory systems that have the complex flow patterns observed in petroleum reservoirs without losing the ability to inject fluids into the formation. In situ microbial growth and metabolism increased oil recovery 10 to 38% of the original oil in place. Biogenic gas production accompanied oil production, and much of the gas was entrained within the produced oil suggesting that gas production was an important factor leading to increased oil recovery. Quantitation of the amount of phospholipid in the core confirmed that microbial growth preferentially occurred throughout the core with the higher initial permeability. These data showed that in situ microbial growth in the high-permeability regions improved not only the volumetric sweep efficiency but also the microscopic oil displacement efficiency.  相似文献   

11.
Sandpack columns filled with heavy oil and water, with or without a nitrate-reducing inoculum, were used to determine if nitrate injections could lead to enhanced oil recovery. Production of oil and water into vials filled with helium or argon was monitored during repeated anaerobic incubations at 30 °C. Regardless of the presence of inoculum, columns containing nitrate consistently produced more oil than those without nitrate during incubations. Microbial reduction of nitrate to nitrogen with production of carbon dioxide might contribute to the establishment of gas drive. The presence of nitrate could also lead to increased production of biomass and/or biosurfactants, reducing oil-water interfacial tension. Counter-diffusion of nitrogen and carbon dioxide dissolved in column liquids and of helium or argon present in the vial gas phase likely contributed to the establishment of gas drive in all columns. Heptane was present in consistently lower concentrations in columns with nitrate than in those without nitrate at the end of incubations, suggesting that it was an important source of carbon and energy for microbial growth. Azoarcus spp. dominated the consortium when the inoculum was grown with heptane as the sole source of carbon and energy, indicating that this bacterium might contribute to the observed oil production.  相似文献   

12.
Sun S  Zhang Z  Luo Y  Zhong W  Xiao M  Yi W  Yu L  Fu P 《Bioresource technology》2011,102(10):6153-6158
Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37 °C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l−1 in molasses medium at 54 °C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR.  相似文献   

13.
14.
Rhamnolipids (RMLs) have more effectiveness for specific uses according to their homologue proportions. Thus, the novelty of this work was to compare mono-RMLs and di-RMLs physicochemical properties on microbial enhanced oil recovery (MEOR) applications. For this, RML produced by three strains of Pseudomonas aeruginosa containing different homologues proportion were used: a mainly mono-RMLs producer (mono-RMLs); a mainly di-RMLs producer (di-RMLs), and the other one that produces relatively balanced amounts of mono-RML and di-RML homologues (mono/di-RML). For mono-RML, the most abundant molecules were Rha-C10C10 (m/z 503.3), for di-RML were RhaRha-C10C10 (m/z 649.4) and for Mono/di-RML were Rha-C10C10 (m/z 503.3) and RhaRha-C10C10 (m/z 649.4). All RMLs types presented robustness under high temperature and variation of salinity and pH, and high ability for oil displacement, foam stability, wettability reversal and were classified as safe for environment according to the European Union Directive No. 67/548/EEC. For all these properties, it was observed a highlight for mono-RML. Mono-RML presented the lowest surface tension (26.40 mN/m), interfacial tension (1.14 mN/m), and critical micellar concentration (CMC 27.04 mg/L), the highest emulsification index (EI24 100%) and the best wettability reversal (100% with 25 ppm). In addition, mono-RML showed the best acute toxicity value (454 mg/L), making its application potential even more attractive. Based on the results, it was concluded that all RMLs homologues studied have potential for MEOR applications. However, results showed that mono-RML stood out and have the best mechanism of oil incorporation in micelles due their most effective surface-active physicochemical features.  相似文献   

15.
The development of effective and environmentally friendly methods for the green synthesis of nanoparticles (NPs) is a critical stage in the field of nanotechnology. Silver nanoparticles (AgNPs) are significant due to their unique physical, chemical, and biological properties, as well as their numerous applications. Physical, chemical, and green synthesis approaches can all be used to produce AgNPs; however, synthesis using biological precursors, particularly plant-based green synthesis, has shown outstanding results. In recent years, owing to a combination of frequent droughts, unusual rainfall, salt-affected areas, and high temperatures, climate change has changed several ecosystems. Crop yields have decreased globally as a result of these changes in the environment. Green synthesized AgNPs role in boosting antioxidant defense mechanisms, methylglyoxal (MG) detoxification, and developing tolerance for abiotic stress-induced oxidative damage has been thoroughly described in plant species over the last decade. Although various studies on abiotic stress tolerance and metallic nanoparticles (NPs) in plants have been conducted, but the details of AgNPs mediated abiotic stress tolerance have not been well summarized. Therefore, the plant responses to abiotic stress need to be well understood and to apply the gained knowledge to increase stress tolerance by using AgNPs for crop plants. In this review, we outlined the green synthesis of AgNPs extracted from plant extract. We also have updates on the most important accomplishments through exogenous application of AgNPs to improve plant tolerance to drought, salinity, low and high-temperature stresses.  相似文献   

16.
A field experiment was performed to monitor changes in exogenous bacteria and to investigate the diversity of indigenous bacteria during a field trial of microbial enhanced oil recovery (MEOR). Two wells (26-195 and 27-221) were injected with three exogenous strains and then closed to allow for microbial growth and metabolism. After a waiting period, the pumps were restarted and the samples were collected. The bacterial populations of these samples were analyzed by denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments. DGGE profiles indicated that the exogenous strains were retrieved in the production water samples and indigenous strains could also be detected. After the pumps were restarted, average oil yield increased to 1.58 and 4.52 tons per day in wells 26-195 and 27-221, respectively, compared with almost no oil output before the injection of exogenous bacteria. Exogenous bacteria and indigenous bacteria contributed together to the increased oil output. Sequence analysis of the DGGE bands revealed that Proteobacteria were a major component of the predominant bacteria in both wells. Changes in the bacteria population in the reservoirs during MEOR process were monitored by molecular analysis of the 16S rRNA gene sequence. DGGE analysis was a successful approach to investigate the changes in microorganisms used for enhancing oil recovery. The feasibility of MEOR technology in the petroleum industry was also demonstrated.  相似文献   

17.
The present study focused on the green synthesis of silver nanoparticles from Coriander sativum (CS) containing structural polymers, phenolic compounds and glycosidic bioactive macromolecules. Plant phenolic compounds can act as antioxidants, lignin, and attractants like flavonoids and carotenoids. Henceforth, silver nanoparticles (AgNPs) were prepared extracellularly by the combinatorial action of stabilizing and reduction of the CS leaf extract. The biologically synthesized CS-AgNPs were studied by UV-spectroscopy, zeta potential determination, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis to characterize and confirm the formation of crystalline nanoparticles. The synthesized nanoparticles demonstrated strong antimicrobial activity against all microbial strains examined with varying degrees. The scavenging action on free radicals by CS-AgNPs showed strong antioxidant efficiency with superoxide and hydroxyl radicals at different concentrations as compared with standard ascorbic acid. The presence of in vitro anticancer effect was confirmed at different concentrations on the MCF-7 cell line as revealed with decrease in cell viability which was proportionately related to the concentration of CS-AgNPs illustrating the toxigenic nature of synthesized nanoparticles on cancerous cells.  相似文献   

18.
The present study explores the production of biodiesel, a sustainable replacement for depleting fossil fuel by utilizing microbial oil, which was procured from Yarrowia lipolytica employing chicken tallow as the carbon substrate. Chicken tallow, yeast extract, and MgSO4·7H2O were screened for biomass production through Plackett–Burman design. Further, Box–Behnken design analysis was performed, and the optimal concentration of the medium variables was found to be 20 g/L of chicken tallow, 7.0 g/L of yeast extract, and 0.45 g/L of MgSO4·7H2O.The various parameters viz., pH (6), temperature (30 °C), RPM (150), inoculum volume (5%, v/v), and C/N ratio (100) were optimized for maximal biomass and lipid yield, and lipid content. Nile red-stained cells were observed for intracellular lipid bodies using fluorescence microscopy, and its fluorescence intensity was measured bythe flow cytometer. The dimorphic transition and substrate assimilation of Y. lipolytica were analyzed using scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). Batch kinetic studies revealed the concomitant synthesis of microbial lipid (4.16 g/L), lipase (43 U/mL), and biosurfactant (1.41 g/L). The GC-MS analysis of microbial oil presented the fatty acid profile as oleic acid (49.15%), palmitic acid (29.83%), stearic acid (11.43%), linoleic acid (3.83%), palmitoleic acid (3.77%), and myristic acid (1.32%).  相似文献   

19.
Among 25 crude oil-degrading bacteria isolated from a marine environment, four strains, which grew well on crude oil, were selected for more study. All the four isolated had maximum growth on 2.5% of crude oil and strain BC (Pseudomonas) could remove crude oil by 83%. The drop collapse method and microtiter assay show that this strain produces more biosurfactant, and its biofilm formation is higher compared to other strains. Bacterial adhesions to crude oil for strains CS-2 (Pseudomonas), BC, PG-5 (Rhodococcus) and H (Bacillus) were 30%, 46%, 10% and 1%, respectively. Therefore, strain H with a low production of biosurfactant and biofilm formation had showed the least growth on these compounds. PCR analysis of these four strains showed that all isolates had alk-B genes from group (III) alkane hydroxylase. All isolate strains could utilize cyclohexan, octane, hexadecane, octadecan and diesel fuel oil; however, the microtiter plate assay showed that strain BC had more growth, respiration and biofilm formation on octadecan.  相似文献   

20.
Zinc and its derivatives requirement increased to enhance human immunity against the different pandemics, including covid-19. Green synthesis is an emerging field of research. Zinc oxide (ZnO) nanoparticles have been prepared from Anoectochilus elatus and characterized using absorption, vibrational and electron microscope analysis. They were carried for antibacterial, inflammatory control tendency, and potential antioxidant activities. The brine shrimp lethal assay tested the biologically derived nanomaterial toxicity and the lethal concentration (LC50) is 599.79 µg/ml. The inhibition against the important disease-causing pathogens was measured against four-gram negative, gram-positive bacteria and two fungus pathogens. The nanomaterial exposed inhibition zone for gram-positive bacteria between 17 mm and 25 mm. The inhibition zone against gram-negative bacteria exists between 19 mm and 24 mm. The anti-inflammatory activity was assessed by inhibition of protein denaturation and protease inhibitory activity using nanomaterial. The antioxidant activity was examined using four assays for the therapeutic activities. The average size range of 60–80 nm nanoparticles has prepared and exposed the good biological activity between 50 µg/ml and 100 µg/ml. The comparative results of anti-inflammatory and antioxidant assay results with standards such as Aspirin and vitamin C exposed that two to three times higher concentrations are required for the fifty percent of inhibitions. The prepared low-cost nanoparticle has exhibited excellent biological activity without any side effects and may enhance immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号