首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-small-cell lung cancer (NSCLC) is the most common malignancy along with high mortality rate worldwide. Recently, nucleolar and spindle-associated protein 1 (NUSAP1) has been reported to be involved in the malignant progression of several cancers. However, in NSCLC, the biological function of NUSAP1 and its molecular mechanism have not been reported. Here, our findings indicated that the NUSAP1 messenger RNA expression level was remarkably upregulated in NSCLC tissues compared with that of adjacent normal tissues. We also found that NUSAP1 gene expression was notably upregulated in NSCLC cell lines (A549, 95-D, H358, and H1299) compared with that of normal human bronchial epithelial cell line (16HBE). Subsequently, the biological function of NUSAP1 was investigated in A549 and H358 cells transfected with NUSAP1 small interfering RNA (siRNA), respectively. Results showed that NUSAP1 knockdown inhibited NSCLC cell proliferation, and promoted cell apoptosis. Furthermore, the number of cell migration and invasion was significantly suppressed by NUSAP1 knockdown. In addition, our results indicated that NUSAP1 knockdown increased the gene expression of B-cell translocation gene 2 (BTG2), but decreased the expression levels of phosphoinositide 3-kinase (PI3K) and phosphorylated serine/threonine kinase (p-AKT). BTG2 siRNA partly abrogates the effect of NUSAP1 knockdown on BTG2 gene expression. Fumonisin B1 (FB1), a AKT activator, reversed the effect of NUSAP1 knockdown on the biological function in NSCLC. Taken together, NUSAP1 knockdown promotes NSCLC cell apoptosis, and inhibits cell proliferation, cell migration, and invasion, which is associated with regulating BTG2/PI3K/Akt signal pathway. Our findings suggest that NUSAP1 is a promising molecular target for NSCLC treatment.  相似文献   

2.
The density-dependent growth inhibition of non-transformed cells may be associated with inefficient transduction of the proliferative signal from cell adhesion molecules. To verify this concept, the C3H10T1/2 fibroblasts were stably transfected with the gene coding for the fibronectin fragment III/10 (FNIII/10). This resulted in differences in gene's expression between original C3H10T1/2 cells and their FNIII/10 transfectants. No significant differences in growth properties were observed in the original or in the transfected cells. C3H10T1/2 cells and their transfectants, when co-cultured, displayed more cells at confluence than the cells cultured alone. Moreover, co-cultured C3H10T1/2 cells and their transfectants showed elevated levels of phospho-ERK1/2 compared to homogenous cultures. Results obtained indicate that cellular homogeneity is responsible for density-dependent growth inhibition.  相似文献   

3.
4.
Epidermal growth factor receptor (EGFR) and c-MET receptors are expressed on many non-small cell lung cancer (NSCLC) cells. Current single agent therapeutic targeting of a mutant EGFR has a high efficacy in the clinic, but is not curative. Here, we investigated the combination of targeting EGFR and c-MET pathways in NSCLC cells resistant to receptor tyrosine kinase inhibitors (TKIs), using RNA interference and inhibition by TKIs. Different NSCLC cell lines with various genomic characteristics (H358, H1650 and H1975) were transfected with EGFR-specific-siRNA, T790M-specific-siRNA, c-MET siRNA or the combination. Subsequently EGFR TKIs (gefitinib, erlotinib or afatinib) or monoclonal antibody cetuximab were combined respectively with the c-MET-specific TKI su11274 in NSCLC cell lines. The cell proliferation, viability, caspase−3/7 activity and apoptotic morphology were monitored by spectrophotometry, fluorimetry and fluorescence microscopy. The combined effect of EGFR TKIs, or cetuximab and su11274, was evaluated using a combination index. The results showed that the cell lines that were relatively resistant to EGFR TKIs, especially the H1975 cell line containing the resistance T790M mutation, were found to be more sensitive to EGFR-specific-siRNA. The combination of EGFR siRNA plus c-MET siRNA enhanced cell growth inhibition, apoptosis induction and inhibition of downstream signaling in EGFR TKI resistant H358, H1650 and H1975 cells, despite the absence of activity of the c-MET siRNA alone. EGFR TKIs or cetuximab plus su11274 were also consistently superior to either agent alone. The strongest biological effect was observed when afatinib, an irreversible pan-HER blocker was combined with su11274, which achieved a synergistic effect in the T790M mutant H1975 cells. In a conclusion, our findings offer preclinical proof of principle for combined inhibition as a promising treatment strategy for NSCLC, especially for patients in whom current EGFR-targeted treatments fail due to the presence of the T790M-EGFR-mutation or high c-MET expression.  相似文献   

5.
Overexpression of C-X-C chemokine receptor type 4 (CXCR4) has been shown in several cancers, including non-small cell lung cancer (NSCLC) and is linked to early metastasis and worse prognosis. The crosstalk between cancer cells and tumor stroma promotes the growth and metastasis and CXCR4 signaling is a key element of this crosstalk.To test the effects of CXCR4 overexpression (CXCR4-OE), we transduced the human NSCLC cell line A549 by using a lentiviral vector. A 3D cell culture model showed generations of tumorspheres and the effects derived by the co-culturing of lung fibroblasts. Using a xenograft mouse model, we also studied the effects of CXCR4-OE in pulmonary cell engraftment and tumor burden in vivo.Our data indicate that CXCR4-OE leads to increased tumorsphere formation and epithelial-mesenchymal transition (EMT). CXCR4-OE by A549 cells resulted in a significant increase in the production of the CXCR4-ligand macrophage migration inhibitory factor (MIF) compared to those transduced with an empty vector (EV) or in which the CXCR4 expression was deleted (KO). In our in vitro system, we did not detect any production of the canonical CXCR4 ligand CXCL12. Autocrine MIF production and CXCR4 signaling are part of a self-perpetuating loop that amplifies tumor growth and EMT. Co-culture with lung fibroblasts further increased tumorsphere formation, partially driven by an increase in IL-6 production. When A549 cells were injected into murine lungs, we observed more abundant and significantly larger tumor lesions in recipients of CXCR4-OE A549 cells compared to those receiving EV or KO cells, consistent with our in vitro findings. Treatment of mice with the MIF antagonist ISO-1 resulted in significantly less tumor burden.In conclusion, our data highlight the role of the CXCR4-OE/MIF/IL-6 axis in epithelial mesenchymal crosstalk and NSCLC progression.  相似文献   

6.
Loss of PTEN expression is observed in most non-small cell lung cancers (NSCLC). However, the mechanism by which PTEN expression is regulated in NSCLC has not been fully elucidated. In this study, we investigated the role of DNA methyltransferases (Dnmts), microRNA-29b (miR-29b), and anti-miR-29b inhibitor in PTEN promoter methylation and PTEN gene expression in H358 NSCLC cells in vitro and in vivo. PTEN mRNA was measured by RT-PCR. PTEN and Dnmts protein levels were measured by Western blot. miR-29b expression was detected by Northern blot. A xenograft H358 tumor mouse model was established by subcutaneously inoculating H358 cells into the right hind limbs of nude mice. We found that radiation induced cell apoptosis and hypomethylation in PTEN promoter, PTEN and miR-29b expression, and downregulation of Dnmt1, 3a and 3b expression in H358 tumor cells. The effect of radiation on gene expression and apoptosis was blocked by anti-miR-29b inhibitor. In the xenograft H358 tumor model, anti-miR-29b inhibitor reversed radiation-induced tumor growth delay, PTEN reexpression and downregulation of Dnmts expression. Our study suggested that miR-29b is an upstream molecule of PTEN. miR-29b regulates PTEN gene expression through downregulating Dnmts expression and subsequently induces hypomethylation in PTEN promoter. Targeting therapy could be established in NSCLC by upregulating miR-29b expression.  相似文献   

7.
Obesity is documented to be a state of chronic mild inflammation associated with increased macrophage infiltration into adipose tissue and liver and skeletal muscle. As a pleiotropic inflammatory mediator, macrophage migration inhibitory factor (MIF) is associated with metabolic disease, so MIF may signal molecular links between adipocytes and myocytes. MIF expression was modified during myoblast differentiation, but the role of MIF during this process is unclear. C2C12 cells were transfected with MIF to investigate their role during differentiation. MIF expression attenuated C2C12 differentiation. It did not change proliferation, but downregulated cyclin D1 and CDK4, causing cell accumulation in the G1 phase. p21 protein was increased significantly and MyoD, MyoG, and p21 mRNA also increased significantly in the C2C12 cells treated with ISO-1, suggesting that inhibition of MIF promotes differentiation. MIF inhibits the myoblast differentiation by affecting the cell cycle progression, but does not affect proliferation.  相似文献   

8.
9.
目的:探讨Cav-1对非小细胞肺癌(NSCLC)细胞增殖的影响及其分子机制。方法:取我院收治的2017年1月至2018年1月15例NSCLC患者手术切除的肺组织,并获取肺癌旁组织15例。实时定量PCR检测其中Cav-1和lncRNA HOTAIR的表达。进一步检测Cav-1和lncRNA HOTAIR在各肺癌细胞系中的表达。采用脂质体3000介导将si CAV-1和pcDNA3.1/CAV-1转染入NSCLC细胞系中,实时定量PCR检测lncRNA HOTAIR的表达,CCK-8检测细胞增殖。随后,将si HOTAIR以及pcDNA3.1/HOTAIR转染入CAV-1过表达的NSCLC细胞系中,CCK-8检测细胞增殖情况。结果:NSCLC患者手术切除的肺组织中CAV-1m RNA和HOTAIR lncRNA的表达均显著高于其在癌旁组织(P0.001)。与健康人肺组织上皮细胞系(NuLi-1)相比,各肺癌细胞系中CAV-1 m RNA和HOTAIR lncRNA的表达均显著增加,鳞状细胞癌细胞系(SK-MES-1)除外。si CAV-1显著降低NSCLC中CAV-1的表达(P0.01)以及其增殖能力,而pcDNA3.1/CAV-1显著增加NSCLC中CAV-1的表达(P0.01)以及其增殖。与对照si RNA相比,si CAV-1显著降低HOTAIR lncRNA的表达(P 0.05)。与对照质粒相比,pcDNA3.1/CAV-1显著增加HOTAIR lncRNA的表达(P0.01)。si HOTAIR可显著抑制NSCLC细胞增殖(P0.05),且可明显取消pcDNA3.1/CAV-1转染对NSCLC细胞增殖的促进作用(P0.05),而pcDNA3.1/HOTAIR可显著增加NSCLC细胞增殖(P0.05),且CAV-1过表达可增强pcDNA3.1/HOTAIR对NSCLC细胞增殖的促进作用(P0.05),而si CAV-1转染可抑制pcDNA3.1/HOTAIR对NSCLC细胞增殖的促进作用。结论:CAV-1通过上调lncRNA HOTAIR的表达促进肺癌细胞的增殖。  相似文献   

10.
Autophagy can function as a survival mechanism for cancer cells and therefore, its inhibition is currently being explored as a therapy for different cancer types. For breast cancer, triple negative breast cancer (TNBC) is the subtype most sensitive to the inhibition of autophagy; but its inhibition has also been shown to promote ROS-dependent secretion of macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine. In this work, we explore the role of MIF in breast cancer, the mechanism by which autophagy inhibition promotes MIF secretion and its effects on neighboring cancer cell signaling and macrophage polarization. We analyzed MIF mRNA expression levels in tumors from breast cancer patients from different subtypes and found that Luminal B, HER2 and Basal subtypes, which are associated to high proliferation, displayed high MIF levels. However, MIF expression had no prognostic relevance in any breast cancer subtype. In addition, we found that autophagy inhibition in 66cl4 TNBC cells increased intracellular Reactive Oxygen Species (ROS) levels, which increased MIF expression and secretion. MIF secreted from 66cl4 TNBC cells induced the activation of MIF-regulated pathways in syngeneic cell lines, increasing Akt phosphorylation in 4T1 cells and ERK phosphorylation in 67NR cells. Regarding MIF/ chemokine receptors, higher levels of CD74 and CXCR2 were found in TNBC tumor cell lines when compared to non-tumorigenic cells and CXCR7 was elevated in the highly metastatic 4T1 cell line. Finally, secreted MIF from autophagy deficient 66cl4 cells induced macrophage polarization towards the M1 subtype. Together, our results indicate an important role for the inhibition of autophagy in the regulation of ROS-mediated MIF gene expression and secretion, with paracrine effects on cancer cell signaling and pro-inflammatory repercussions in macrophage M1 polarization. This data should be considered when considering the inhibition of autophagy as a therapy for different types of cancer.  相似文献   

11.
Mineral oil-induced peritoneal exudate cells (PEC) from 10 different inbred mouse strains were tested for their responses to macrophage migration inhibitory factor (MIF). PEC from 5 out of 10 mouse strains responded to MIF, PEC from BALB/c mice showed an intermediate responsiveness, and PEC from A/J, C3H/HeJ, CBA/N, and C57BL/10ScCR mice were refractory to MIF. MIF responsiveness was not linked to the H-2 complex. However, a possible link between responsiveness to LPS and MIF was suggested, since the mouse strains not responding to MIF were previously reported to be deficient for responses to LPS.  相似文献   

12.
目的:通过数据库预测ADAMTS6在非小细胞肺癌(Non-small-cell lung cancer,NSCLC)组织中的表达及其与NSCLC患者临床预后的关系,构建ADAMTS6的shRNA干扰载体并建立ADMATS6的NSCLC稳定敲减细胞株。方法:通过Oncomine数据库分析ADAMTS6在NSCLC组织和肺正常组织的表达差异,通过Kaplan-Meier Plotter数据库分析ADAMTS6的表达水平与临床NSCLC患者预后关系,设计合成ADAMTS6的shRNA干扰序列,shRNA模板退火并与双酶切pGLV3-GFP线性化载体连接,转化挑取阳性菌落后送测序。干扰质粒进行病毒包装并感染人NSCLC细胞株NCI-H358,使用嘌呤霉素进行稳定敲减细胞株筛选。荧光观察慢病毒感染细胞密度,通过qRT-PCR和Western blot检测ADAMTS6的mRNA和蛋白水平的敲减效果。结果:Oncomine数据库分析结果显示NSCLC组织中ADAMTS6 mRNA表达较正常肺组织显著升高(P0.001);Kaplan-Meier Plotter数据库分析结果显示高表达ADAMTS6的NSCLC患者预后较低表达ADAMTS6的NSCLC患者差(P0.05);pGLV3-GFP载体双酶切线性化后与shRNA退火模板连接成功,测序结果正确。荧光观察显示慢病毒感染细胞密度在95%左右,通过qRT-PCR和Western blot检测ADAMTS6慢病毒干扰质粒已成功敲减ADAMTS6的m RNA和蛋白水平。结论:ADAMTS6的高表达可能与NSCLC患者的不良临床预后密切相关。本研究构建了ADAMTS6的慢病毒感染质粒,并成功建立NCI-H358稳定敲减细胞株,为进一步研究ADAMTS6在NSCLC中的作用及机制奠定了基础。  相似文献   

13.
The responsiveness to macrophage migration inhibitory factor (MIF) of peritoneal exudate cells (PEC) from the LPS unresponsive C3H/HeJ and C57BL/10ScCR mice was assessed by the indirect agarose microdroplet macrophage migration inhibition assay. No migration inhibition with PEC from C3H/HeJ nor C57BL/10ScCR mice was detected, whereas PEC from both C3H/HeN and C57BL/10Sn mice were significantly inhibited by even a 1/32 dilution of MIF-containing supernatants. Responsiveness to MIF of C3H/HeJ PEC could, however, be induced. In vivo inoculations of Mycobacterium bovis, strain BCG, 7 days before in vitro assay rendered C3H/HeJ PEC responsive to MIF. The lack of responsiveness to MIF by C3H/HeJ PEC appeared related to some form of suppression, since a mixture of PEC from C3H/HeN mice with 10 to 15% PEC from C3H/HeJ mice resulted in undetectable migration inhibition at any MIF dilution. In contrast to the usual lack of responsiveness of their macrophage to MIF, C3H/HeJ mice were able to produce MIK in response to PPD as well as their counterpart C3H/HeN mice after BCG sensitization. These results demonstrate that macrophages from C3H/HeJ and C57BL/10ScCR mice are unable to be inhibited in their in vitro migration of MIF (possibly being directly or indirectly influenced by a suppressor cell), whereas lymphoid cells from at least one of these strains, the C3H/HeJ mice, can produce MIF in response to antigenic stimulation.  相似文献   

14.
Recent reports have indicated that macrophage migration inhibitory factor (MIF) plays a key role in systemic as well as local inflammatory and immune responses. In this study, the presence and localization of MIF in human gingival tissue were examined. The expression of MIF was confirmed by western blot analysis, which demonstrated the same band at 12.5 kDa in different gingival tissues. Immunohistochemical studies showed that MIF protein existed in the cytoplasm of keratinocytes, especially in free gingival epithelium and junctional epithelium. It was also found in basal cells, fibroblasts, and various cells. These cells were considered to be stimulated mechanically at all times. To determine the effect of mechanical stimuli, Gin-1 cells were cyclically stretched for a short time by using a Flexercell Strain Unit. RT-PCR analysis demonstrated upregulation of MIF mRNA in these Gin-1 cells. In this study, MIF existed not only in inflammatory parts but also in those areas with high cell proliferative activity subjected to external stimulus. Moreover, the finding that MIF protein levels of the control determined by immunohistochemical detection were quite similar to those for grown and stretched Gin-1 cells suggested that MIF protein was stored in the cytoplasm for some time and that MIF is an important autocrine mediator of homeostatic-dependent signaling events. These results suggest that MIF plays an important role in the homeostatic process of periodontal inflammation.  相似文献   

15.
Cysteine-rich protein 61 (Cyr61) is a member of a family of growth factor-inducible immediate-early genes. It regulates cell adhesion, migration, proliferation, and differentiation and is involved in tumor growth. In our experiments, the role of Cyr61 in non-small cell lung cancer (NSCLC) was examined. Expression of Cyr61 mRNA was decreased markedly in four of five human lung tumor samples compared with their normal matched lung samples. NSCLC cell lines NCI-H520 and H460, which have no endogenous Cyr61, formed 60-90% fewer colonies after being transfected with a Cyr61 cDNA expression vector than cells transfected with the same amount of empty vector. After stable transfection of a Cyr61 cDNA expression vector, proliferation of both H520-Cyr61 and H460-Cyr61 sublines decreased remarkably compared with the cells stably transfected with empty vector. The addition of antibody against Cyr61 partially rescued the growth suppression of both H520-Cyr61 and H460-Cyr61 cells. Cell cycle analysis revealed that both H520-Cyr61 and H460-Cyr61 cells developed G(1) arrest, prominently up-regulated expression of p53 and p21(WAF1), and had decreased activity of cyclin-dependent kinase 2. The increase of pocket protein pRB2/p130 was also detected in these cells. Notably, both of the Cyr61-stably transfected lung cancer cell lines developed smaller tumors than those formed by the wild-type cells in nude mice. Taken together, we conclude that Cyr61 may play a role as a tumor suppressor in NSCLC.  相似文献   

16.
The use of tyrosine kinase inhibitors (TKIs) against EGFR/c-Met in non-small cell lung cancer (NSCLC) has been shown to be effective in increasing patient progression free survival (PFS), but their efficacy is limited due to the development of resistance and tumor recurrence. Therefore, understanding the molecular mechanisms underlying development of drug resistance in NSCLC is necessary for developing novel and effective therapeutic approaches to improve patient outcome. This study aims to understand the mechanism of EGFR/c-Met tyrosine kinase inhibitor (TKI) resistance in NSCLC. H2170 and H358 cell lines were made resistant to SU11274, a c-Met inhibitor, and erlotinib, an EGFR inhibitor, through step-wise increases in TKI exposure. The IC50 concentrations of resistant lines exhibited a 4–5 and 11–22-fold increase for SU11274 and erlotinib, respectively, when compared to parental lines. Furthermore, mTOR and Wnt signaling was studied in both cell lines to determine their roles in mediating TKI resistance. We observed a 2–4-fold upregulation of mTOR signaling proteins and a 2- to 8-fold upregulation of Wnt signaling proteins in H2170 erlotinib and SU11274 resistant cells. H2170 and H358 cells were further treated with the mTOR inhibitor everolimus and the Wnt inhibitor XAV939. H358 resistant cells were inhibited by 95% by a triple combination of everolimus, erlotinib and SU11274 in comparison to 34% by a double combination of these drugs. Parental H2170 cells displayed no sensitivity to XAV939, while resistant cells were significantly inhibited (39%) by XAV939 as a single agent, as well as in combination with SU11274 and erlotinib. Similar results were obtained with H358 resistant cells. This study suggests a novel molecular mechanism of drug resistance in lung cancer.  相似文献   

17.
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We aimed to investigate the role of LINC00184 in NSCLC. Migration, proliferation and invasion of NSCLC cells were analysed using the wound healing assay, cell counting kit-8 assay and transwell assay, respectively. Apoptosis and cell cycle were assessed using flow cytometry. Online bioinformatics tools were utilized to predict downstream microRNAs (miRNA) or genes related to LINC00184 expression. The RNA pull-down experiment and luciferase reporter assay were performed to verify the predictions thereof. LINC00184, miR-524-5p, and high mobility group 2 protein (HMGB2) expression levels in NSCLC tissues and cell lines were detected using quantitative real-time polymerase chain reaction. An NSCLC mouse model was constructed for in vivo experiments. LINC00184 overexpression was observed in NSCLC tissues and cell lines and was found to be correlated with poor prognosis. LINC00184 knockdown inhibited cell proliferation, migration and invasion, induced cell cycle arrest and accelerated apoptosis in NSCLC cell lines. LINC00184 suppressed tumour growth and proliferation in NSCLC mouse models and directly targeted the miR-524-5p/HMGB2 axis. Moreover, the expression levels of LINC00184 and HMGB2 were negatively correlated with miR-524-5p expression, whereas LINC00184 expression was positively correlated with HMGB2 expression. LINC00184 affected the cell cycle, proliferation, apoptosis, migration and invasion in NSCLC via regulation of the miR-524-5p/HMGB2 axis.  相似文献   

18.
Rnd3/RhoE is a small Rho GTPase involved in the regulation of different cell behaviors. Dysregulation of Rnd3 has been linked to tumorigenesis and metastasis. Lung cancers are the leading cause of cancer-related death in the West and around the world. The expression of Rnd3 and its ectopic role in non-small cell lung cancer (NSCLC) remain to be explored. Here, we reported that Rnd3 was down-regulated in three NSCLC cell lines: H358, H520 and A549. The down-regulation of Rnd3 led to hyper-activation of Rho Kinase and Notch signaling. The reintroduction of Rnd3 or selective inhibition of Notch signaling, but not Rho Kinase signaling, blocked the proliferation of H358 and H520 cells. Mechanistically, Notch intracellular domain (NICD) protein abundance in H358 cells was regulated by Rnd3-mediated NICD proteasome degradation. Rnd3 regulated H358 and H520 cell proliferation through a Notch1/NICD/Hes1 signaling axis independent of Rho Kinase.  相似文献   

19.
目的:通过体外实验探讨miR-575对非小细胞肺癌(NSCLC)细胞增殖与侵袭能力的影响及相关机制。方法:采用实时定量PCR法检测不同非小细胞肺癌细胞系中miR-575、BLID的表达;CCK-8法检测转染miR-575模拟物、抑制因子后不同时间A549细胞增殖情况的变化;Transwell法检测A549细胞的侵袭情况;Targetcan法及双荧光素酶检测miR-575对BLID 3'UTR端的靶向作用;Western blot法检测BLID蛋白的表达。结果:A549、SPC-A1、H1299、H1650等人非小细胞肺癌细胞系中miR-575的表达均显著高于永生化的人支气管上皮细胞系16HBE(P0.001)。MiR-575模拟物转染的A549细胞miR-575的表达明显高于对照组(P0.001),同时细胞的增殖和侵袭力增强(P0.05);反之,miR-575抑制因子转染的A549细胞miR-575的表达显著降低,且细胞的增殖和侵袭力明显降低(P0.01)。Targetscan法预测BLID可能是miR-575的下游靶基因,荧光素酶结果显示miR-575不仅能够有效抑制野生型BLID 3'UTR端的荧光素酶反应(P0.01),而且能够降低BLID的蛋白表达量(P0.01)。实时定量PCR结果显示BLID在NSCLC细胞系中均呈现显著的低表达(P0.001),且转染BLID后,NSCLC细胞的增殖和细胞侵袭被明显抑制(P0.05),而当miR-575与BLID共转染时,miR-575能够逆转BLID所抑制的细胞增殖和侵袭(P0.01)。结论:在NSCLC细胞系中,miR-575的表达上调,且能够通过直接作用于下游靶点抑癌基因BLID从而促非小细胞肺癌细胞增殖及侵袭。  相似文献   

20.
We have confirmed the requirement of macrophages in the antigen-induced T-lymphocyte proliferative response and in the generation of migration inhibition factor (MIF) by immune lymphocytes. Extending these observations, we have found that autologous and non-syngeneic, oil-induced peritoneal exudate macrophages were equally effective in restoring the proliferative response and MIF production by column-purified lymph node T cells. MIF activity was optimally restored when T cells were reconstituted with 1 to 40% exudate-derived macrophages whereas 10 to 30% macrophages were needed to optimally restore the T-cell proliferative response. Normal resident macrophages from the peritoneal cavity were also capable of restoring T-cell reactivity as were normal or BCG-activated pulmonary alveolar macrophages. It was also found that the addition of as few as 1.0% glycogen-elicited peritoneal exudate cells restored the production of MIF by T cells. Quantitative considerations demonstrated that the responsible cells in these preparations were polymorphonuclear cells rather than macrophages. In contrast, neither MIF production nor the proliferative response by T cells were restored by the addition of red blood cells. In these studies we were able to demonstrate that freeze-thawed macrophages could restore antigen-induced MIF production, but not antigen-induced cellular proliferation. The ability of freeze-thawed macrophages to stimulate T cells to produce MIF was apparently associated with the macrophage membranes and not with a soluble factor in the macrophage extracts. These results demonstrate that multiple sources of phagocytic cells may interact cooperatively with lymphocytes in reactions of cell-mediated immunity. Further, at least in the case of MIF production, this interaction involves a membrane-bound determinant that is effective even in the absence of viable macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号