首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of two insect growth regulators (IGRs), hexaflumuron and pyriproxyfen, were studied on the purified phenoloxidase (PO) of Chilo suppressalis. Purification procedure revealed two isozymes of PO, namely POI and POII. IC50 concentrations of hexaflumuron and pyriproxyfen on POI were 0.36, 0.23?μg/ml and on POII were 0.105, 0.42?μg/ml, respectively. Determination of optimal pH and temperature revealed pH 5 and temperature 40?°C as the optimal values for the enzymatic activity. Treating POs with IC50 concentrations of two IGRs was pH and temperature dependent. Effects of these IGRs on POI caused significant increase of Km value versus control suggesting competitive inhibition. Hexaflumuron and pyriproxyfen cause reduction in Vmax value of POII versus control suggesting non-competitive inhibition. The current study shows direct effects of two IGRs on purified PO of C. suppressalis for the first time. These findings could be helpful to develop safe compounds with inhibitory mechanism on PO to neutralise insect immune responses against entomopathogenic agents.  相似文献   

2.
To determine effective activators of crab hemocyanin (Hc) and the properties of Hc-derived phenoloxidase (HdPO), Hc, for the first time, was purified from hemolymph of Charybdis japonica, and the properties of activated HdPO were studied by using L-DOPA as a substrate. Three distinct subunits were isolated, and each had a molecular mass of about 80, 75 and 70 kDa, respectively. SDS and HLS were much effective in conversion of Hc into HdPO whose PO activity was optimal at pH 7.0 and temperature of 40 °C. The Km value of the HdPO was 2.90 mM for L-DOPA and 7.33 mM for tyrosine. The PO activity of HdPO was most sensitive to 1-phenyl-2-thiourea, cysteine and ascorbic acid, and much sensitive to thio urea and sodium sulfite. Based on its inhibition characteristics and the substrate specificity, this HdPO could be classified as a kind of tyrosinase-type phenoloxidase. The PO activity of HdPO was also strongly inhibited by Cu2+, Zn2+, ethylenediaminetetraacetic acid (EDTA) and diethyldithiocarbamate (DETC). The results with EDTA, DETC, and some metal ions, combined with the perfect recovery effect of Cu2+ on DETC-inhibited PO activity, indicate that the HdPO is a kind of copper-containing metalloenzyme. All these imply that the Hc, as an oxygen carrier, can be activated to have PO activities by SDS or HLS, and the activated HdPO has the properties of a tyrosinase-type copper-containing phenoloxidase. This study makes us to understand more easily the multifunctions of crustacean Hc in oxygen carrier and melaninization at certain stresses in host defence as well.  相似文献   

3.
《Mycoscience》2020,61(3):128-135
Alkaliphilic xylanase from Neosartorya spinosa UZ-2-11 was purified using a three-step of purification scheme of ammonium sulphate precipitation followed by Sephadex G-100 gel filtration and DEAE-cellulose ion-exchange chromatography, and compared its properties with N. tatenoi KKU-CLB-3-2-4-1 of our previous report. The purified xylanase from N. spinosa UZ-2-11 exhibited maximum activity at pH 9.0 and 45 °C which was similar to endo-xylanase from N. tatenoi KKU-CLB-3-2-4-1. However, this enzyme was stable in a range of pH 6.0–11.0. It was also more stable at a high temperature of 50 °C where the activity was still up to 50% after heating for 120 min. The xylanase was purified 7.89-fold with 3.0% of yield to obtain a specific activity of 11.88 U/mg. The molecular weight of xylanase from this fungus was 27.68 kDa. The Km and Vmax values of the purified xylanase were 0.24 mg/mL and 15.85 μmol/min/mg, respectively. The xylanase activity was moderately inhibited by Hg2+ at a concentration of 10 mM, which was different to the case of N. tatenoi KKU-CLB-3-2-4-1 where Hg2+ was a strong inhibitor. In addition, the hydrolysed birchwood xylan was obtained mailnly xylobiose, xylotriose, xylotetraose and xylopentaose as end products, suggesting that it was an endo-xylanase.  相似文献   

4.
《Process Biochemistry》2014,49(7):1196-1204
Laccase from a tree legume, Leucaena leucocephala, was purified to homogeneity using a quick two-step procedure: alginate bead entrapment and celite adsorption chromatography. Laccase was purified 110.6-fold with an overall recovery of 51.0% and a specific activity of 58.5 units/mg. The purified laccase was found to be a heterodimer (∼220 kDa), containing two subunits of 100 and 120 kDa. The affinity of laccase was found to be highest for catechol and lowest for hydroquinone, however, highest Kcat and Kcat/Km were obtained for hydroquinone. Purified laccase exhibited pH and temperature optima of 7.0 and 80 °C, respectively. Mn2+, Cd2+, Fe2+, Cu2+ and Na+ activated laccase while Ca2+ treatment increased laccase activity up to 3 mM, beyond which it inhibited laccase. Co2+, Hg2+, DTT, SDS and EDTA showed an inhibition of laccase activity. The Leucaena laccase was found to be fairly tolerant to organic solvents; upon exposure for 1 h individually to 50% (v/v) each of ethanol, DMF, DMSO and benzene, more than 50% of the activity was retained, while in the presence of 50% (v/v) each of methanol, isopropanol and chloroform, a 40% residual activity was observed. The purified laccase efficiently decolorized synthetic dyes such as indigocarmine and congo red in the absence of any redox mediator.  相似文献   

5.
The Pseudomonas sp. LBC1 produced extracellular laccase when grown in the nutrient broth. The enzyme was purified using acetone precipitation and an anion-exchange chromatography. The molecular weight of the purified laccase was estimated as 70 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. An enzyme showed maximum substrate specificity towards o-tolidine than other substrates of laccase including 2,2′-azinobis, 3-ethylbenzothiazoline-6-sulfonic acid, hydroquinone, N,N′-dimethyl phenylene diamine, syringic acid and veratryl alcohol. The optimum pH and temperature for the laccase activity were 4.0 and 40 °C, respectively. Cyclic voltammogram revealed the redox potential of purified enzyme as 0.30 V. The laccase was stable up to 40 °C and within pH range 6.0–8.0. Sodium azide and EDTA strongly inhibited laccase activity. The purified laccase completely degraded the higher concentration of bisphenol A within 5 h. Biodegradation metabolites of bisphenol A were characterized by using FTIR, HPLC and GC–MS.  相似文献   

6.
《Insect Biochemistry》1986,16(3):573-581
Latent phenoloxidase was purified from prepupae of the housefly, Musca domestica vicina Maquart. The purification procedures included DEAE-cellulose column chromatography, sucrose density gradient centrifugation adn second sucrose density gradient centrifugation. The final preparations appear to be homogeneous based on results obtained from polyacrylamide gel electrophoresis in the presence of EDTA. Electrophoresis in the absence of EDTA caused spontaneous activation of latent phenoloxidase. While latent phenoloxidase was fairly stable over the range of temperatures between 0 and 40°C, it was quite sensitive to changes in pH, being stable only around pH 6.0. The molecular weight of latent phenoloxidase was estimated to be 178,000, as determined by gel filtration and sucrose density gradient centrifugation. Furthermore, phenoloxidase formed by the activation of latent phenoloxidase indicated a higher molecular weight (340,000) than that of latent phenoloxidase. Thus, it appears that the mechanism of the activation of latent phenoloxidase involves the association and disassociation system.  相似文献   

7.
In the current study, a dimeric phenoloxidase (PO) from the hemolymph of healthy and diseased (pebrine infected) larvae of Antheraea assamensis Helfer was extracted and purified. The protein was subjected to purification using Sephacryl S‐100 and CM Sepharose chromatography. The enzyme comprised of two subunits of ~76.8 and 76 kDa that showed PO activity in 6 mM l ‐3,4‐dihydroxyphenylalanine (L ‐DOPA) and 8 mM catechol but not in hydroquinone. Optimum temperature for PO activity was 30°C in l ‐DOPA and 37°C in catechol. Optimum pH ranged from 6.8 to 7.0 in L ‐DOPA and 7.0–7.2 in catechol. Specific activity of the purified PO from healthy larvae was 53.9 µM/min per mg of protein per ml in L ‐DOPA and 50.77 µM/min per mg of protein per ml in catechol. Specific activity of PO from diseased larvae was 30.0 µM/min per mg of protein per ml in L ‐DOPA and 28.55 µM/min per mg of protein per ml in catechol. Purification fold was 3.27–4.21 for healthy and 2.38–2.56 for diseased fractions. The enzyme showed the Michaelis constant (Km) of 2.46–2.85 mM for healthy and diseased fractions in L ‐DOPA. In catechol Km of 9.23–17.71 mM was observed. Peptidoglycan was the best activator of purified PO from both healthy and diseased fractions. Interactions between controls and activators appeared statistically significant (F = 767.5; df = 3; P < 0.0001). Na+, K+, and Cu2+ increased, whereas Ca2+, Zn2+, Mg2+, and Co2+ decreased PO activity. The overall interactions appeared highly significant (F = 217.0; df = 27; P < 0.0001). Kojic acid, dithiothreitol, thiourea, phenylthiourea, carbendazim, N‐bromosuccinimide, N,N,N′,N′‐tetraacetic acid, and diethyldithiocarbamate inhibited PO activity.  相似文献   

8.
Balanced nutrition is fundamental to health and immunity. For herbivorous insects, nutrient-compositional shifts in host plants due to elevated atmospheric CO2 concentrations and temperature may compromise this balance. Therefore, understanding their immune responses to such shifts is vital if we are to predict the outcomes of climate change for plant–herbivore–parasitoid and pathogen interactions. We tested the immune response of Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) feeding on Eucalyptus tereticornis Sm. seedlings exposed to elevated CO2 (640 μmol mol−1; CE) and temperature (ambient plus 4 °C; TE). Larvae were immune-challenged with a nylon monofilament in order to simulate parasitoid or pathogen attack without other effects of actual parasitism or pathology. The cellular (in vivo melanisation) and humoral (in vitro phenoloxidase PO activity) immune responses were assessed, and linked to changes in leaf chemistry. CE reduced foliar nitrogen (N) concentrations and increased C:N ratios and concentrations of total phenolics. The humoral response was reduced at CE. PO activity and haemolymph protein concentrations decreased at CE, while haemolymph protein concentrations were positively correlated with foliar N concentrations. However, the cellular response increased at CE and this was not correlated with any foliar traits. Immune parameters were not impacted by TE. Our study revealed that opposite cellular and humoral immune responses occurred as a result of plant-mediated effects at CE. In contrast, elevated temperatures within the tested range had minimal impact on immune responses. These complex interactions may alter the outcomes of parasitoid and pathogen attack in future climates.  相似文献   

9.
The fungus Scopulariopsis brevicaulis was isolated from poultry farm soil at Namakkal, India. The extracellular keratinase from this fungus was purified to homogeneity by ammonium sulphate precipitation and procedure involving DEAE-Cellulose and Sephadex G-100 chromatographic techniques. The purified enzyme was formed from a monomeric protein with molecular masses of 39 and 36 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 8.0 and the optimum temperature at pH 8.0 was 40 °C. The activity of purified keratinase with respect to pH, temperature and salt concentration was optimized by Box–Behnken design experiment. It was shown that a second-order polynominal regression model could properly interpret the experimental data with an R2-value of 0.9957 and an F-value of 178.32, based on the maximum enzyme activity examined. Calculated optimum conditions were predicted to confer a 100% yield of keratinase activity with 5 mM CaCl2, pH 8.0 and at a temperature of 40 °C. The enzyme was strongly inhibited by PMSF, which suggests a serine residue at or near an active site. The purified keratinase was examined with its potential for dehairing the skin.  相似文献   

10.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

11.
《Process Biochemistry》2010,45(4):507-513
The extracellular laccase produced by the ascomycete Trichoderma atroviride was purified and characterized and its ability to transform phenolic compounds was determined. The purified laccase had activity towards typical substrates of laccases including 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS), dimethoxyphenol (2,6-DMP), syringaldazine and hydroquinone. The enzyme was a monomeric protein with an apparent molecular mass of 80 kDa and an isoelectric point of 3.5. The pH optima for the oxidation of ABTS and 2,6-DMP were 3 and 5, respectively, and the optimum temperature was 50 °C with 2,6-DMP. The laccase was stable at slightly acidic pH (4 and 5). It retained 80% of its activity after 4 h incubation at 40 °C. Under standard assay conditions, Km values of the enzyme were 2.5 and 1.6 mM towards ABTS and 2,6-DMP, respectively. This enzyme was able to oxidize aromatic compounds present in industrial and agricultural wastewater, as catechol and o-cresol, although the transformation of chlorinated phenols required the presence of ABTS as mediator.  相似文献   

12.
Phenoloxidase (PO) was purified from hemocytes of the scallop Chlamys farreri using native-PAGE and gel permeation column chromatography, and then substrate specificity and antibacterial activity generated from reaction products of purified PO were analyzed. The results showed purified PO had a molecular mass of 576 kDa in native-PAGE and 53 kDa in denatured PAGE, and could catalyze the substrates L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine, catechol and hydroquinone suggesting it is a type of p-diphenoloxidase. Using dopamine as a substrate, PO reaction products significantly inhibited the growth of Vibrio alginolyticus, Vibrio parahaemolyticus and Aeromonas salmonicida. No significant inhibition was found in Streptococcus dysgalactiae, Streptococcus iniae, Micrococcus lysodeikticus and Edwardsiella tarda. When L-DOPA was used as a substrate, significant inhibition occurred in A. salmonicida only.  相似文献   

13.
Endoglucanase production was carried out using in-house isolate Aspergillus terreus on rice straw under solid state fermentation. An increase of 1.25-fold endoglucanase production was obtained under optimized conditions using response surface methodology. The enzyme was purified to homogeneity by gel filtration chromatography. Its molecular weight was determined as 28.18 kDa by gel filtration and 29.13 kDa on SDS-PAGE. The enzyme displayed maximum activity at 50 °C and pH 4.8. It was stable for 240 min at 50 °C and 120 min at 60 °C but rapidly inactivated at 70 °C. The purified enzyme was specific towards carboxymethyl-cellulose but showed no activity for cellobiose or xylan. Maximum velocity (Vmax) and KM were 16.15 μmol min−1 mg−1 and 12.01 mg ml−1, respectively. AgNO3, KCl, NaCl, and MnSO4 were found to inhibit enzyme activity while CaCl2 and ZnSO4 activated the enzyme. Internal peptide mass fingerprinting analysis identified that the protein belongs to GH12 superfamily endoglucanases. External supplementation of the purified enzyme to the crude cellulase showed 38.7% increase in saccharification efficiency of the delignified rice straw compared to the crude cellulase alone. The results demonstrated that the addition of GH 12 family purified endoglucanase to the crude cellulase can efficiently convert lignocellulosic biomass to fermentable sugars.  相似文献   

14.
Though phenoloxidase (PO) activity has been used as an important index in immunological research of crustaceans, methods for the determination of PO activity are not consistent even for the same species. Plasma, the major location of PO activity, should be the most reasonable sample, instead of hemocytes or serum, for the determination of PO activity of shrimp. The current study provided a thorough characterization and reconsideration for PO activity assay in the plasma of Litopenaeus vannamei. Results show that the final concentration of l-dihydroxyphenylalanine (l-DOPA) for PO activity assay should be no less than 1.5 mg ml?1, and pH 6.6 should be used to maintain the stability of l-DOPA solution. This study provides direct evidence that PO activity is significantly inhibited by EDTA, and it is suggested to use EDTA-free anticoagulant in separating plasma for PO activity assay in future studies. Repeated measurements indicated that the assayed PO activities are significantly affected by preservation conditions, and plasma is quite unstable with spontaneous activation when put in ice or stored at ?20 °C. Thus samples need to be measured immediately or preserved at ?80 °C with assay as soon as possible after it is thawed, and should not be preserved for a second time for measuring PO activity.  相似文献   

15.
An extracellular polygalacturonase (PGase) from Mucor rouxii NRRL 1894 was purified to homogeneity by two chromatographic steps using CM-Sepharose and Superdex 75. The purified enzyme was a monomer with a molecular weight of 43100 Da and a pI of 6. The PGase was optimally active at 35 °C and at pH 4.5. It was stable up to 30 °C and stability of PGase decrease rapidly above 60 °C. The extent of hydrolysis of different pectins was decreased with increasing of degrees of esterification. Except Mn2+, all the examined metal cations showed inhibitory effects on the enzyme activity. The apparent Km and Vmax values for hydrolyze of polygalacturonic acid (PGA) were 1.88 mg/ml and 0.045 μmol/ml/min, respectively. The enzyme released a series of oligogalacturonates from polygalacturonic acid indicating that it had an endo-action. Its N-terminal sequence showed homologies with the endopolygalacturonase from the psychrophilic fungus Mucor flavus.  相似文献   

16.
The kinetic parameters of partially purified phenoloxidase (PO, EC. 1.14.18.1) from the 5th instar larvae of Pieris rapae (Lepidoptera) were determined, using L‐3, 4‐dihydroxyphenylalanine (L‐DOPA) as substrate. The optimal pH and temperature of the enzyme for the oxidation of L‐DOPA were determined to be at pH 7.0 and at 42°C, respectively. The enzyme was stable between pH 6.5 and 7.4 and at temperatures lower than 37°C. At pH 6.8 and 37°C, the Michaelis constant (Km) and maximal velocity (Vm) of the enzyme for the oxidation of L‐DOPA were determined to be 0.80 μmol/L and 1.84 μmol/ L/min, respectively. Tetra‐hexylresorcinol and 4‐dodecylresorcinol effectively inhibited activity of phenoloxidase and this inhibition was reversible and competitive, with the IC50 of 1.50 and 1.12 μmol/L, respectively. The inhibition constants were estimated to be 0.50 and 0.47 μmol/L, respectively.  相似文献   

17.
《Process Biochemistry》2010,45(1):88-93
A fibrinolytic protease (FP84) was purified from Streptomyces sp. CS684, with the aim of isolating economically viable enzyme from a microbial source. SDS-PAGE and fibrin zymography of the purified enzyme showed a single protein band of approximately 35 kDa. Maximal activity was at 45 °C and pH 7–8, and the enzyme was stable between pH 6 and 9 and below 40 °C. It exhibited fibrinolytic activity, which is stronger than that of plasmin. FP84 hydrolyzed Bβ-chains of fibrinogen, but did not cleave Aα- and γ-chains. Km, Vmax and Kcat values for azocasein were 4.2 mg ml−1, 305.8 μg min−1 mg−1 and 188.7 s−1, respectively. The activity was suppressed by Co2+, Zn2+, Cu2+ and Fe2+, but slightly enhanced by Ca2+ and Mg+2. Additionally, the activity was slightly inhibited by aprotinin and PMSF, but significantly inhibited by pefabloc, EDTA and EGTA. The first 15 amino acids of N-terminal sequence were GTQENPPSSGLDDID. They are highly similar to those of serine proteases from various Streptomyces strains, but different with known fibrinolytic enzymes. These results suggest that FP84 is a novel serine metalloprotease with potential application in thrombolytic therapy.  相似文献   

18.
Orange-spotted grouper Epinephelus coioides held at 27 °C were then further cultured at 19, 27 (control), and 35 °C, and were examined for innate cellular and humoral responses after 3–96 h. The total leucocyte count, respiratory burst, and phagocytic activity significantly decreased 3, 48, and 96 h after fish were transferred to 19 and 35 °C. Both the alternative complement pathway (ACH50) and the lysozyme activity significantly decreased at 3–96 h after fish were transferred to 19 and 35 °C. In another experiment, groupers reared at 27 °C at 34‰ salinity were injected with Vibrio alginolyticus grown in tryptic soy broth (TSB) at a dose of 2.3 × 109 colony-forming units (cfu) fish?1, and then further reared in water temperatures of 19, 27 (control), and 35 °C. The cumulative mortalities of V. alginolyticus-injected fish held in 19 and 35 °C were significantly higher than that of injected fish held in 27 °C. Resistance had decreased after 12 h for the challenged grouper held at 35 °C. All injected fish held in 19 °C had died after 72 h. It was concluded that at 12 h after transfer of grouper from 27 to 19 and 35 °C, immunity was suppressed and resistance against V. alginolyticus had decreased.  相似文献   

19.
Carboxylesterases are hydrolases which catalyze the hydrolysis of various types of esters. Carboxylesterase from the seeds of Jatropha curcas has been purified to homogeneity using ammonium sulfate fractionation, CM-cellulose chromatography, Sephadex G-100 chromatography and preparative polyacrylamide gel electrophoresis (PAGE). The homogeneity of the purified enzyme was confirmed by PAGE, iso-electrofocusing and SDS-PAGE. The molecular weight of the purified enzyme was determined by both gel-permeation chromatography on Sephadex G-150 and SDS-PAGE. The molecular weight determined by Sephadex G-150 chromatography and SDS-PAGE both in the presence and absence of 2-mercaptoethanol was 31 kDa. The isoelectric point of the purified enzyme was found to be 8.9. JCSE-I (J. curcas seed esterase-I) was classified as carboxylesterase on the basis of substrate and inhibitor specificity. The Km of JCSE-I with 1-naphthyl acetate, 1-naphthyl propionate, 1-naphthyl butyrate and 2-naphthyl acetate as substrates were found to be 0.0,794, 0.0,658, 0.0,567 and 0.1 mM, respectively. The enzyme exhibited an optimum temperature of 45 °C and an optimum pH of 6.5. The enzyme was stable up to 15 min at 65 °C. The enzyme was resistant towards carbamates (carbaryl and eserine sulfate) and sulphydryl inhibitors (p-chloromercuricbenzoate, PCMB) and inhibited by organophosphates (dichlorvos, parathion and phosphamidon).  相似文献   

20.
A novel β-glucuronidase from filamentous fungus Penicillium purpurogenum Li-3 was purified to electrophoretic homogeneity by ultrafiltration, ammonium sulfate precipitation, DEAE-cellulose ion exchange chromatography, and Sephadex G-100 gel filtration with an 80.7-fold increase in specific activity. The purified β-glucuronidase is a dimeric protein with an apparent molecular mass of 69.72 kDa (m/z = 69,717), determined by MALDI/TOF-MS. The optimal temperature and pH of the purified enzyme are 40 °C and 6.0, respectively. The enzyme is stable within pH 5.0–8.0, and the temperature up to 45 °C. Mg2+ ions enhanced the activity of the enzyme, Ca2+ and Al3+ showed no effect, while Mn2+, Zn2+, Hg2+ and Cu2+ substantially inhibited the enzymatic activity. The Km and Vmax values of the purified enzyme for glycyrrhizin (GL) were evaluated as 0.33 mM and 59.0 mmol mg?1 min?1, respectively. The purified enzyme displayed a highly selective glycyrrhizin-hydrolyzing property and converted GL directly to glycyrrhetic acid mono-glucuronide (GAMG), without producing byproduct glycyrrhetic acid (GA). The results suggest that the purified enzyme may have potential applications in bio-pharmaceutical and biotechnological industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号