首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Plasmodium vivax blood-stage invasion into reticulocyte is critical for parasite development. Thus, validation of novel parasite invasion ligands is essential for malaria vaccine development. Recently, we demonstrated that EBP2, a Duffy binding protein (DBP) paralog, is antigenically distinct from DBP and could not be functionally inhibited by anti-DBP antibodies. Here, we took advantage of a small outbreak of P.vivax malaria, located in a non-malarious area of Brazil, to investigate for the first time IgM/IgG antibodies against EBP2 and DEKnull-2 (an engineering DBPII vaccine) among individuals who had their first and brief exposure to P.vivax (16 cases and 22 non-cases). Our experimental approach included 4 cross sectional surveys at 3-month interval (12-month follow-up). The results demonstrated that while a brief initial P.vivax infection was not efficient to induce IgM/ IgG antibodies to either EBP2 or DEKnull-2, IgG antibodies against DEKnull-2 (but not EBP2) were boosted by recurrent blood-stage infections following treatment. Of interest, in most recurrent P. vivax infections (4 out of 6 patients) DEKnull-2 IgG antibodies were sustained for 6 to 12 months. Polymorphisms in the ebp2 gene does not seem to explain EBP2 low immunogenicity as the ebp2 allele associated with the P.vivax outbreak presented high identity to the original EBP2 isolate used as recombinant protein. Although EBP2 antibodies were barely detectable after a primary episode of P.vivax infection, EBP2 was highly recognized by serum IgG from long-term malaria-exposed Amazonians (range from 35 to 92% according to previous malaria episodes). Taken together, the results showed that individuals with a single and brief exposure to P.vivax infection develop very low anti-EBP2 antibodies, which tend to increase after long-term malaria exposure. Finally, the findings highlighted the potential of DEKnull-2 as a vaccine candidate, as in non-immune individuals anti-DEKnull-2 IgG antibodies were boosted even after a brief exposure to P.vivax blood stages.  相似文献   

2.
3.
Individuals with asymptomatic infection due to Plasmodium vivax are posited to be important reservoirs of malaria transmission in endemic regions. Here we studied a cohort of P. vivax malaria patients in a suburban area in the Brazilian Amazon. Overall 1,120 individuals were screened for P. vivax infection and 108 (9.6%) had parasitemia detected by qPCR but not by microscopy. Asymptomatic individuals had higher levels of antibodies against P. vivax and similar hematological and biochemical parameters compared to uninfected controls. Blood from asymptomatic individuals with very low parasitemia transmitted P. vivax to the main local vector, Nyssorhynchus darlingi. Lower mosquito infectivity rates were observed when blood from asymptomatic individuals was used in the membrane feeding assay. While blood from symptomatic patients infected 43.4% (199/458) of the mosquitoes, blood from asymptomatic infected 2.5% (43/1,719). However, several asymptomatic individuals maintained parasitemia for several weeks indicating their potential role as an infectious reservoir. These results suggest that asymptomatic individuals are an important source of malaria parasites and Science and Technology for Vaccines granted by Conselho Nacional de may contribute to the transmission of P. vivax in low-endemicity areas of malaria.  相似文献   

4.
Malaria affects 300 million people worldwide every year and is endemic in 22 countries in the Americas where transmission occurs mainly in the Amazon Region. Most malaria cases in the Americas are caused by Plasmodium vivax, a parasite that is almost impossible to cultivate in vitro, and Anopheles aquasalis is an important malaria vector. Understanding the interactions between this vector and its parasite will provide important information for development of disease control strategies. To this end, we performed mRNA subtraction experiments using A. aquasalis 2 and 24 hours after feeding on blood and blood from malaria patients infected with P. vivax to identify changes in the mosquito vector gene induction that could be important during the initial steps of infection. A total of 2,138 clones of differentially expressed genes were sequenced and 496 high quality unique sequences were obtained. Annotation revealed 36% of sequences unrelated to genes in any database, suggesting that they were specific to A. aquasalis. A high number of sequences (59%) with no matches in any databases were found 24 h after infection. Genes related to embryogenesis were down-regulated in insects infected by P. vivax. Only a handful of genes related to immune responses were detected in our subtraction experiment. This apparent weak immune response of A. aquasalis to P. vivax infection could be related to the susceptibility of this vector to this important human malaria parasite. Analysis of some genes by real time PCR corroborated and expanded the subtraction results. Taken together, these data provide important new information about this poorly studied American malaria vector by revealing differences between the responses of A. aquasalis to P. vivax infection, in relation to better studied mosquito-Plasmodium pairs. These differences may be important for the development of malaria transmission-blocking strategies in the Americas.  相似文献   

5.
Plasmodium vivax infection has been gaining attention because of its re-emergence in several parts of the world. Southeastern Turkey is one of the places in which persistent focal malaria caused exclusively by P. vivax parasites occurs. Although control and elimination studies have been underway for many years, no detailed study has been conducted to understand the mechanisms underlying the ineffective control of malaria in this region. Here, for the first time, using serologic markers we try to extract as much information as possible in this region to get a glimpse of P. vivax transmission. We conducted a sero-immunological study, evaluating antibody responses of individuals living in Sanliurfa to four different P. vivax antigens; three blood-stage antigens (PvMSP119, PvAMA1-ecto, and PvSERA4) and one pre-erythrocytic stage antigen (PvCSP). The results suggest that a prior history of malaria infection and age can be determining factors for the levels and sustainability of naturally acquired antibodies. Significantly higher antibody responses to all the studied antigens were observed in blood smear-negative individuals with a prior history of malaria infection. Moreover, these individuals were significantly older than blood smear-negative individuals with no prior history of infection. These data from an area of sole P. vivax-endemic region may have important implications for the global malaria control/elimination programs and vaccine design.  相似文献   

6.
The unique biology of Plasmodium vivax, with its ability to form latent hypnozoites in the liver stage and the early appearance of gametocytes during blood stage infection, makes it difficult to target for elimination with standard malaria control tools. Here, we use modelling studies to demonstrate that vaccines that target different stages of P. vivax could greatly assist efforts to eliminate P. vivax. Combination of vaccines that target different P. vivax life cycle stages may be required to achieve high efficacy. Our simulations demonstrate that repeated rounds of mass vaccination with multi-stage vaccines can help achieve pre-elimination levels of P. vivax in both low and high transmission settings. We review the status of global efforts to develop vaccines for P. vivax malaria. We describe the status of the leading P. vivax vaccine candidates and share some thoughts on the prospects for availability of an effective vaccine for P. vivax malaria.  相似文献   

7.
BackgroundEstimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic.Methodology/Principal findingsFrom 2014–2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley’s K-function and Kulldorff’s spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens.Conclusions/SignificanceFrom school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.  相似文献   

8.
Rhoptry-associated membrane antigen (RAMA) is an abundant glycophosphatidylinositol (GPI)-anchored protein that is embedded within the lipid bilayer and is implicated in parasite invasion. Antibody responses against rhoptry proteins are produced by individuals living in a malaria-endemic area, suggesting the immunogenicity of Plasmodium vivax RAMA (PvRAMA) for induction of immune responses during P. vivax infection. To determine whether PvRAMA contributes to the acquisition of immunity to malaria and could be a rational candidate for a vaccine, the presence of memory T cells and the stability of the antibody response against PvRAMA were evaluated in P. vivax-exposed individuals. The immunogenicity of PvRAMA for the induction of T cell responses was evaluated by in vitro stimulation of peripheral blood mononuclear cells (PBMCs). High levels of interferon (IFN)-γ and interleukin (IL)-10 cytokines were detected in the culture supernatant of PBMCs, and the CD4+ T cells predominantly produced IL-10 cytokine. The levels of total anti-PvRAMA immunoglobulin G (IgG) antibody were significantly elevated, and these antibodies persisted over the 12 months of the study. Interestingly, IgG1, IgG2 and IgG3 were the major antibody subtypes in the response to PvRAMA. The frequency of IgG3 in specific to PvRAMA antigen maintained over 12 months. These data could explain the immunogenicity of PvRAMA antigen in induction of both cell-mediated and antibody-mediated immunity in natural P. vivax infection, in which IFN-γ helps antibody class switching toward the IgG1, IgG2 and IgG3 isotypes and IL-10 supports PvRAMA-specific antibody production.  相似文献   

9.
J. Kevin Baird and colleagues, examine and discuss the estimated global burden of vivax malaria and it’s biological, clinical, and public health complexity.

Summary points
  • Estimates of the global burdens of morbidity attributable to acute attacks of Plasmodium falciparum malaria typically dwarf those of Plasmodium vivax, i.e., hundreds of millions versus tens of millions of cases.
  • Global burden estimates take no account of latent and subpatent reservoirs of infections carrying more subtle burdens of illness and death in impoverished settings of malnutrition, coendemic infections, and limited access to quality healthcare. Impacts of chronic malaria on human health may be substantial and are excluded from estimates of burdens of acute malaria.
  • Compartments of human infection by P. vivax beyond vascular patency—vascular subpatency, extravascular subpatency, sexual latency, and hepatic latency—obscure endemic transmission and burdens of infection and illness.
  • Long thought to be absent from most of sub-Saharan Africa due to the high prevalence of the Duffy-negative phenotype among residents, recent investigations suggest that widespread reservoirs of transmission may occur across that region.
  • Human glucose-6-phosphate dehydrogenase (G6PD) deficiency may also affect susceptibility to infection and directly impact access to effective antirelapse therapy of P. vivax using 8-aminoquinolines that are dangerous to those patients. Natural polymorphisms of the human cytochrome P-450 2D6 gene impact parasite susceptibility to primaquine antirelapse therapy at population levels.
  • All these factors impose great complexity in considering estimates of burdens of P. vivax and access to effective mitigation of the harm caused. The conventional diagnostics underpinning epidemiological and clinical understanding of vivax malaria may be inadequate to the biology of this parasite.
  相似文献   

10.
Human reticulocytes are one of the fundamental components needed to study the in vitro invasion processes of the human malaria parasite Plasmodium vivax. Additionally examinations of reticulocytes and their binding proteins are difficult in areas of the world that do not have access to advanced equipment or stem cell lines. These issues are particularly relevant to malaria vaccine candidate studies that are directed against surface proteins that the parasites use to gain entry into erythrocytes. Described here is a simple and inexpensive method to increase the reticulocyte count of cord blood samples. Exposure of cord blood to hypotonic saline (0.2%) for 5 min selectively lyses the non-reticulocytes resulting in an average 3.6-fold increase in reticulocyte count. Our studies show that this enrichment process does not damage the hemoglobin of the remaining erythrocytes which are still capable of supporting Plasmodium falciparum invasion and growth. This economical and rapid method of enrichment could facilitate studies of in vitro laboratory culturing of other malaria parasite species which preferentially invade reticulocytes such as P. vivax.  相似文献   

11.
Plasmodium vivax is the most geographically widespread human malaria parasite. Global malaria efforts have been less successful at reducing the burden of P. vivax compared to P. falciparum, owing to the unique biology and related treatment complexity of P. vivax. As a result, P. vivax is now the dominant malaria parasite throughout the Asia-Pacific and South America causing up to 14 million clinical cases every year and is considered a major obstacle to malaria elimination. Key features circumventing existing malaria control tools are the transmissibility of asymptomatic, low-density circulating infections and reservoirs of persistent dormant liver stages (hypnozoites) that are undetectable but reactivate to cause relapsing infections and sustain transmission. In this review we summarise the new knowledge shaping our understanding of the global epidemiology of P. vivax infections, highlighting the challenges for elimination and the tools that will be required achieve this.  相似文献   

12.
Plasmodium vivax infects a hundred million people annually and endangers 40% of the world''s population. Unlike Plasmodium falciparum, P. vivax parasites can persist as a dormant stage in the liver, known as the hypnozoite, and these dormant forms can cause malaria relapses months or years after the initial mosquito bite. Here we analyze whole genome sequencing data from parasites in the blood of a patient who experienced consecutive P. vivax relapses over 33 months in a non-endemic country. By analyzing patterns of identity, read coverage, and the presence or absence of minor alleles in the initial polyclonal and subsequent monoclonal infections, we show that the parasites in the three infections are likely meiotic siblings. We infer that these siblings are descended from a single tetrad-like form that developed in the infecting mosquito midgut shortly after fertilization. In this natural cross we find the recombination rate for P. vivax to be 10 kb per centimorgan and we further observe areas of disequilibrium surrounding major drug resistance genes. Our data provide new strategies for studying multiclonal infections, which are common in all types of infectious diseases, and for distinguishing P. vivax relapses from reinfections in malaria endemic regions. This work provides a theoretical foundation for studies that aim to determine if new or existing drugs can provide a radical cure of P. vivax malaria.  相似文献   

13.
《Cytokine》2015,75(2):273-278
BackgroundSeveral studies have recently demonstrated that the immune responses against malaria is governed by different factors, including the genetic components of the host. The IL-4 gene appears to be a strong candidate factor because of its role in the regulation of the Th2 response. The present study investigated the role of IL-4 polymorphisms in the development of IgG antibodies against PvAMA-1 and the IL-4 levels in individuals infected with Plasmodium vivax in a malaria endemic area in the Brazilian Amazon.MethodsThe study sample included 83 patients who were diagnosed with P. vivax infection using thick smear and confirmed by nested-PCR. The IL-4590 C>T and IL-433 C>T polymorphisms were genotyped by PCR–RFLP, and the intron 3 VNTR was genotyped by PCR. A standardised ELISA protocol was used to measure the total IgG against PvAMA-1. The cytokine/chemokine levels were measured using a Milliplex multiplex assay (Millipore). All of the subjects were genotyped with 48 ancestry informative markers to determine the proportions of African, European and Amerindian ancestry using STRUCTURE software.ResultsOf the 83 patients, 60 (73%) produced IgG antibodies against PvAMA-1. A significant decrease in the percentage of respondents was observed among the primo-infected individuals. No significant differences were observed in the frequencies of genotypes and haplotypes among individuals who were positive or negative for IgG antibodies against PvAMA-1. Furthermore, no significant correlation was observed between the IL-4 polymorphisms, antibody levels, IL-4 levels, and parasitemia.ConclusionsThis study indicated that the polymorphisms identified in the IL-4 gene are not likely to play a role in the regulation of the antibody response against PvAMA-1 and IL-4 production in vivax malaria.  相似文献   

14.
The malaria parasite Plasmodium vivax is known to be majorly endemic to Asian and Latin American countries with no or very few reports of Africans infected with this parasite. Since the human Duffy antigens act as receptors for P. vivax to invade human RBCs and Africans are generally Duffy-negative, non-endemicity of P. vivax in Africa has been attributed to this fact. However, recent reports describing P. vivax infections in Duffy-negative Africans from West and Central parts of Africa have been surfaced including a recent report on P. vivax infection in native Cameroonians. In order to know if Cameroonians living in the southern regions are also susceptible to P. vivax infection, we collected finger-prick blood samples from 485 malarial symptomatic patients in five locations and followed PCR diagnostic assays with DNA sequencing of the 18S ribosomal RNA gene. Out of the 201 malaria positive cases detected, 193 were pure P. falciparum, six pure P. vivax and two mixed parasite infections (P. falciparum + P. vivax). The eight P. vivax infected samples (six single + two mixed) were further subjected to DNA sequencing of the P. vivax multidrug resistance 1 (pvmdr1) and the P.vivax circumsporozoite (pvcsp) genes. Alignment of the eight Cameroonian pvmdr1 sequences with the reference sequence showed high sequence similarities, reconfirming P. vivax infection in all the eight patients. DNA sequencing of the pvcsp gene indicated all the eight P. vivax to be of VK247 type. Interestingly, DNA sequencing of a part of the human Duffy gene covering the promoter region in the eight P. vivax-infected Cameroonians to identify the T-33C mutation revealed all these patients as Duffy-negative. The results provide evidence of single P. vivax as well as mixed malaria parasite infection in native Cameroonians and add knowledge to the growing evidences of P. vivax infection in Duffy-negative Africans.  相似文献   

15.
An estimated 229 million cases of malaria occurred worldwide in 2019. Both, Plasmodium falciparum and P. vivax are responsible for most of the malaria disease burden in the world. Despite difficulties in obtaining an accurate number, the global estimates of cases in 2019 are approximately 229 million of which 2.8% are due to P. vivax, and the total number of malaria deaths are approximately 409 million. Regional elimination or global eradication of malaria will be a difficult task, particularly for P. vivax due to the particular biological features related to the hypnozoite, leading to relapse. Countries that have shown successful episodes of a decrease in P. falciparum malaria, are left with remaining P. vivax malaria cases. This is caused by the mechanism that the parasite has evolved to remain dormant in the liver forming hypnozoites. Furthermore, while clinical trials of vaccines against P. falciparum are making fast progress, a very different picture is seen with P. vivax, where only few candidates are currently active in clinical trials. We discuss the challenge that represent the hypnozoite for P. vivax vaccine development, the potential of Controlled Human Malaria Challenges (CHMI) and the leading vaccine candidates assessed in clinical trials.  相似文献   

16.
BackgroundThe simultaneous infection of Plasmodium falciparum and Epstein-Barr virus (EBV) could promote the development of the aggressive endemic Burkitt’s Lymphoma (eBL) in children living in P. falciparum holoendemic areas. While it is well-established that eBL is not related to other human malaria parasites, the impact of EBV infection on the generation of human malaria immunity remains largely unexplored. Considering that this highly prevalent herpesvirus establishes a lifelong persistent infection on B-cells with possible influence on malaria immunity, we hypothesized that EBV co-infection could have impact on the naturally acquired antibody responses to P. vivax, the most widespread human malaria parasite.Methodology/Principal findingsThe study design involved three cross-sectional surveys at six-month intervals (baseline, 6 and 12 months) among long-term P. vivax exposed individuals living in the Amazon rainforest. The approach focused on a group of malaria-exposed individuals whose EBV-DNA (amplification of balf-5 gene) was persistently detected in the peripheral blood (PersVDNA, n = 27), and an age-matched malaria-exposed group whose EBV-DNA could never be detected during the follow-up (NegVDNA, n = 29). During the follow-up period, the serological detection of EBV antibodies to lytic/ latent viral antigens showed that IgG antibodies to viral capsid antigen (VCA-p18) were significantly different between groups (PersVDNA > NegVDNA). A panel of blood-stage P. vivax antigens covering a wide range of immunogenicity confirmed that in general PersVDNA group showed low levels of antibodies as compared with NegVDNA. Interestingly, more significant differences were observed to a novel DBPII immunogen, named DEKnull-2, which has been associated with long-term neutralizing antibody response. Differences between groups were less pronounced with blood-stage antigens (such as MSP1-19) whose levels can fluctuate according to malaria transmission.Conclusions/SignificanceIn a proof-of-concept study we provide evidence that a persistent detection of EBV-DNA in peripheral blood of adults in a P. vivax semi-immune population may impact the long-term immune response to major malaria vaccine candidates.  相似文献   

17.
Two hundred and fiftyeight Muria Gond subjects from Bastar district in Central India and 97 subjects from Delhi were typed for Duffy blood group determinants, and their blood examined for malaria antibodies as well as for presence of malarial parasites. We found the Duffy-negative phenotype in high prevalence among Muria Gonds, while in Delhi no subject was observed to be Duffy-negative. Frequencies of seropositivity for malaria antibodies (the test did not distinguish betweenP. falciparum andP. vivax) were not significantly different among subgroups of Muria Gond individuals with different Duffy blood group phenotypes. Examination of thin and thick blood films did not reveal infection withP. vivax in Duffy-negative individuals. Our results suggest that Duffy-negative individuals, though resistant to infection withP. vivax, are not resistant to infection withP. falcipanun.  相似文献   

18.
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.  相似文献   

19.
The newly identified GPI-anchored Plasmodium vivax merozoite surface protein 1 paralog (MSP1P) has a highly antigenic C-terminus that binds erythrocytes. To characterize the antigenicity and immunogenicity of two regions (PvMSP1P-19 and -33) of the highly conserved C-terminus of MSP1P relative to PvMSP1-19, 30 P. vivax malaria-infected patients and two groups of mice (immunized with PvMSP1P-19 or -33) were tested for IgG subclass antibodies against PvMSP1P-19 and -33 antigens. In the patients infected with P. vivax, IgG1 and IgG3 levels were significantly higher than those levels in healthy individuals, and were the predominant response to the two C-terminal fragments of PvMSP1P (p < 0.05). In mice immunized with PvMSP1P-19, IgG1 levels were the highest while IgG2b levels were similar to IgG1 levels. The levels of Th1 cytokines in mice immunized with PvMSP1P-19 or -33 were significantly higher than those in mice immunized with PvMSP1-19 (p < 0.05). Our results indicate that: (i) IgG1 and IgG3 (IgG2b in mice) are predominant IgG subclasses in both patients infected with P. vivax and mice immunized with PvMSP1P-19 or -33; (ii) the C-terminus of MSP1P induces a Th1-cytokine response. This immune profiling study provides evidence that MSP1P may be a potential candidate for vivax vaccine.  相似文献   

20.
In Plasmodium, the membrane of intracellular parasites is initially formed during invasion as an invagination of the red blood cell surface, which forms a barrier between the parasite and infected red blood cells in asexual blood stage parasites. The membrane proteins of intracellular parasites of Plasmodium species have been identified such as early-transcribed membrane proteins (ETRAMPs) and exported proteins (EXPs). However, there is little or no information regarding the intracellular parasite membrane in Plasmodium vivax. In the present study, recombinant PvETRAMP11.2 (PVX_003565) and PvEXP1 (PVX_091700) were expressed and evaluated antigenicity tests using sera from P. vivax-infected patients. A large proportion of infected individuals presented with IgG antibody responses against PvETRAMP11.2 (76.8%) and PvEXP1 (69.6%). Both of the recombinant proteins elicited high antibody titers capable of recognizing parasites of vivax malaria patients. PvETRAMP11.2 partially co-localized with PvEXP1 on the intracellular membranes of immature schizont. Moreover, they were also detected at the apical organelles of newly formed merozoites of mature schizont. We first proposed that these proteins might be synthesized in the preceding schizont stage, localized on the parasite membranes and apical organelles of infected erythrocytes, and induced high IgG antibody responses in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号