共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
I. B. Baums M. K. Devlin-Durante N. R. Polato D. Xu S. Giri N. S. Altman D. Ruiz J. E. Parkinson J. N. Boulay 《Coral reefs (Online)》2013,32(3):703-717
The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5–56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures. 相似文献
4.
Elizabeth J. Gomez Emmeline A. Jamodiong Elizaldy A. Maboloc Charlon A. Ligson Tracy D. Tabalanza Ronald D. Villanueva 《Invertebrate reproduction & development.》2013,57(4):202-208
ABSTRACTCoral populations continue to decline in many regions because of natural and anthropogenic disturbances; and the persistence of coral populations mainly relies on natural recruitment through coral reproduction. However, studies on the reproduction of many important reef-building coral species in one of the most biodiverse region, the Coral Triangle, are very limited. Here, we investigated the reproductive biology of the coral Acropora millepora in Bolinao-Anda Reef Complex, northwestern Philippines from February 2014 to March 2015, through in situ assessment of gamete maturity, histological examination of gamete development and ex situ spawning observations. Results showed that A. millepora exhibited an annual gametogenic cycle. Formation of oocytes took place within 8 months, whereas spermatocytes developed in 3 months before the gamete release. Abundance and size of eggs in A. millepora were greatest during the months nearest to the spawning period, which coincides with the rapid increase in sea surface temperature. Ex situ broadcast spawning occurred around the months of February–March, which suggests an extended spawning pattern. Results provide additional information on coral reproduction in the region and reveal the potential of A. millepora in providing coral propagules for the replenishment and recovery of degraded coral populations. 相似文献
5.
6.
Ramon J. Rhine 《American journal of primatology》1995,36(3):201-212
Synchrony among reproductive or other states is a widespread phenomenon of significance in evolutionary theory. A model is presented for use in the measurement of the degree of synchrony in any set of behavioral or biological states, such as menstrual cycling, pregnancy, or lactation. At a given time, maximum group synchrony occurs when all members of a group are in a single state, minimum synchrony occurs when equal numbers are in all states, and intermediate values of synchrony occur for other proportional representations of the states. The model yields group synchrony scores ranging from 0 to 100 by standardizing the average of the absolute deviations among frequencies of occurrence in pairs of states. In addition, individual synchrony is characterized by the proportion of others who share an individual's state at a specified set of times. Properties of the model are discussed, simplified calculation procedures are presented, and the method's usefulness for comparative purposes is illustrated. © 1995 Wiley-Liss, Inc. 相似文献
7.
Embryogenesis in the reef building corals Acropora intermedia, A. solitaryensis, A. hyacinthus, A. digitifera, and A. tenuis was studied in detail at the morphological level, and the relationships among the animal pole, blastopore, and mouth were investigated for the first time in corals. These species showed essentially the same sequence of development. The embryo undergoes spiral-like holoblastic cleavage despite the presence of a dense isolecithal yolk. After the morula stage, the embryo enters the "prawn-chip" stage, which consists of an irregularly shaped cellular bilayer. The embryo begins to roll inward to form the bowl stage; the round shape observed during this stage suggests that it may be the beginning of gastrulation. However, the blastopore closes and the stomodeum (mouth and pharynx) is formed via invagination at a site near the closed blastopore. During the planula stage, a concavity forms in the aboral region in conjunction with numerous spirocysts, suggesting that spirocysts are used to attach to the substrate before the onset of metamorphosis. 相似文献
8.
The processes underlying the distributional limits of both corals and coral reefs can be elucidated by examining coral communities at high latitudes. Coral-dominated communities in eastern Australia cover a latitudinal range of >2,500 km, from the northern Great Barrier Reef (11°S) to South West Rocks (31.5°S). Patterns of coral species richness from 11 locations showed a clear separation between the Great Barrier Reef and subtropical sites, with a further abrupt change at around 31°S. Differences in community structure between the Great Barrier Reef and more southern sites were mainly attributable to higher cover of massive corals, branching Acropora, dead coral and coralline algae on the Great Barrier Reef, and higher cover of macroalgae and bare rock at more southern sites. The absence of some major reef-building taxa (i.e., staghorn Acropora and massive Porites) from most subtropical sites coincided with the loss of reef accretion capacity. Despite high cover of hard corals in communities at up to 31°S, only Lord Howe Island contained areas of reef accretion south of the Great Barrier Reef. Factors that have been hypothesized to account for latitudinal changes in coral community structure include water temperature, aragonite saturation, light availability, currents and larval dispersal, competition between corals and other biota including macroalgae, reduced coral growth rates, and failure of coral reproduction or recruitment. These factors do not operate independently of each other, and they interact in complex ways. 相似文献
9.
Latitudinal patterns in European ant assemblages: variation in species richness and body size 总被引:6,自引:0,他引:6
Using published distributions of 65 species from the British Isles and northern Europe, we show that ant assemblages change with latitude in two ways. First, as commonly found for many types of organisms, the number of ant species decreased significantly with increasing latitude. For Ireland and Great Britain, species richness also increased significantly with region area. Second, although rarely demonstrated for ectotherms, the body size of ant species, as measured by worker length, increased significantly with increasing latitude. We found that this body-size pattern existed in the subfamily Formicinae and, to a lesser extent, in the Myrmicinae, which together comprised 95% of the ant species in our study area. There was a trend for formicines to increase in size with latitude faster than myrmicines. We also show that the pattern of increasing body size was due primarily to the ranges of ant species shifting to higher latitudes as their body sizes increased, with larger formicines becoming less represented at southerly latitudes and larger myrmicines becoming more represented at northerly latitudes. We conclude by discussing five potential mechanisms for generating the observed body-size patterns: the heat-conservation hypothesis, two hypotheses concerning phylogenetic history, the migration-ability hypothesis, and the starvation-resistance hypothesis. 相似文献
10.
The high biodiversity of coral reefs is attributable to the many invertebrate groups which live in symbiotic relationships
with other reef organisms, particularly those which associate with the living coral habitat. However, few studies have examined
the diversity and community structure of coral-dwelling invertebrates and how they vary among coral species. This study quantified
the species richness and composition of animals associated with four common species of branching corals (Acropora nasuta, A. millepora, Pocillopora damicornis, and Seriatopora hystrix) at Lizard Island in the northern Great Barrier Reef. One hundred and seventy-eight nominal species from 12 different phyla
were extracted across 50 replicate colonies of each coral host. A single coral colony, approximately 20 cm in diameter, harbored
as many as 73 individuals and 24 species. There were substantial differences in invertebrate species composition among coral
hosts of different families as well as genera. Twenty-seven species (15% of all taxa collected) were found on only one of
the four different coral species, which may potentially indicate some level of specialization among coral hosts. The distinct
assemblages on different coral species, and the presence of potential specialists, suggests invertebrate communities will
be sensitive to the differential loss of branching coral species resulting from coral reef degradation. 相似文献
11.
Stat M Bird CE Pochon X Chasqui L Chauka LJ Concepcion GT Logan D Takabayashi M Toonen RJ Gates RD 《PloS one》2011,6(1):e15854
Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the environmental tolerance of the symbiosis. Surprisingly, the question of how Symbiodinium diversity partitions within a species across spatial scales of meters to kilometers has received little attention, but is important to understanding the intrinsic biological scope of a given coral population and adaptations to the local environment. Here we address this gap by describing the Symbiodinium ITS2 sequence assemblages recovered from colonies of the reef building coral Montipora capitata sampled across Kāne'ohe Bay, Hawai'i. A total of 52 corals were sampled in a nested design of Coral Colony(Site(Region)) reflecting spatial scales of meters to kilometers. A diversity of Symbiodinium ITS2 sequences was recovered with the majority of variance partitioning at the level of the Coral Colony. To confirm this result, the Symbiodinium ITS2 sequence diversity in six M. capitata colonies were analyzed in much greater depth with 35 to 55 clones per colony. The ITS2 sequences and quantitative composition recovered from these colonies varied significantly, indicating that each coral hosted a different assemblage of Symbiodinium. The diversity of Symbiodinium ITS2 sequence assemblages retrieved from individual colonies of M. capitata here highlights the problems inherent in interpreting multi-copy and intra-genomically variable molecular markers, and serves as a context for discussing the utility and biological relevance of assigning species names based on Symbiodinium ITS2 genotyping. 相似文献
12.
We assessed the distribution and prevalence of growth anomalies (GAs) in Acropora from French Frigate Shoals (Hawaii, USA), Johnston Atoll and Tutuila (American Samoa), developed a nomenclature for gross morphology, characterized GAs at the cellular level and obtained preliminary indices of their spatial patterns and progression within coral colonies. Acropora GAs were found in all 3 regions, but the distribution, variety and prevalence of Acropora GAs was highest in American Samoa. GAs were grouped into 7 gross morphologies (exophytic, bosselated, crateriform, nodular, vermiform, fimbriate or annular). On histology, GAs consisted of hyperplastic basal body wall (calicodermis, mesoglea and gastrodermis apposed to skeleton) with 3 distinct patterns of necrosis. There was no evidence of anaplasia or mitotic figures (common but not necessarily required morphologic indicators of neoplasia). Compared to normal tissues, GAs had significantly fewer polyps, zooxanthellae within the gastrodermis of the coenenchyme, mesenterial filaments and gonads but significantly more necrosis. On 2 colonies with GAs monitored at 2 points over 11 mo, numbers of GAs per colony increased from 0.9 to 3 times the original number seen, and significant clustering of GAs occurred within colonies. The evidence of GAs being true neoplasias (tumors) is mixed, so a cautionary approach is urged in use of morphologic terminology. 相似文献
13.
Aeby GS Williams GJ Franklin EC Haapkyla J Harvell CD Neale S Page CA Raymundo L Vargas-Ángel B Willis BL Work TM Davy SK 《PloS one》2011,6(2):e16887
Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment. 相似文献
14.
Eclosion rhythm parameters of D. ananassae strains originating between 8 degrees-34 degrees N were highly variable and latitude dependent. In the field under naturally fluctuating light intensity, temperature and R.H., the amplitude of the rhythm was high and the eclosion gate was narrow; however, under the naturally fluctuating light intensity but at constant temperature and R.H., the amplitude of the rhythm was lowered and the width of eclosion gate was widened. The eclosion rhythm entrained to light-dark (LD) cycles ranging from LD 6:18 to LD 18:6, the width of the eclosion gate was decreased and increased in the short and long photoperiods respectively. Among the strains, both the phase angle difference (psi, the time from lights-off in a 24 hr LD cycle to the eclosion median) and the period of free-running rhythm (tau) in constant darkness varied by about 3 hr and the amplitude of the rhythmicity (Amp) by about 10%. Lower latitude was correlated with late psi (r = -0.69), long tau (r = -0.88) and high Amp value (r = -0.95). 相似文献
15.
16.
Latitudinal and elevational variation in fruiting phenology among western European bird-dispersed plants 总被引:2,自引:0,他引:2
Marcelino Fuentes 《Ecography》1992,15(2):177-183
I try to test the prediction that bird-dispersed plants should produce fruits when fruit-eating birds are most abundant by reviewing some phenological data of fleshy fruit production in western Europe The prediction that fruit ripening dates in populations of the same species should occur later at lower latitudes and elevations, to coincide with the maximum abundance of fruit-eating birds, is not supported by the data The patterns of seasonal variation in the total number and biomass of fruits, but not in the proportion of species in fruit, in communities at different latitudes and elevations do coincide with patterns of seasonal abundances of avian frugivores 1 suggest that this coincidence is due to the greater relative abundance (and contribution to total fruit production) in each locality of species that fruit at times of the year when birds are most abundant These species may have achieved a demographic advantage by getting more seeds dispersed than species that ripen fruits in other seasons 相似文献
17.
The vivid coloration of corals depends on fluorescent proteins that include cyan (CFP), green (GFP) and red (RFP) fluorescent proteins, and a non-fluorescent blue/purple chromoprotein. We examined how many genes encoding fluorescent proteins are present in the recently sequenced genome of the coral Acropora digitifera. Based on molecular phylogenetic analysis, we found one, five, one, and three candidate genes for CFP, GFP, RFP, and chromoprotein, respectively. The CFP and GFP genes are clustered in a ~80-kb-long genomic region, suggesting that they originated from an ancestral gene by tandem duplication. Since CFP and GFP possess the same chromophore, the gene clustering may provide the first genomic evidence for a common origin of the two proteins. Comparison between the fluorescent protein genes of closely related coral species suggests an expansion of chromoprotein genes in the A. digitifera genome, and of RFP genes in the A. millepora genome. The A. digitifera fluorescent protein genes are expressed during embryonic and larval developmental stages and in adults, suggesting that the genes play a variety of roles in coral physiology. 相似文献
18.
19.
Theories of species coexistence have played a central role in ecology and evolutionary studies of the origin and maintenance of biodiversity in highly diverse communities. The concept of niche and associated theories predict that competition for available ecological space leads to a ceiling in species richness that influences further diversification patterns. By contrast, the neutral theory supports that speciation is stochastic and diversity independent. We examined the phylogenetic community structure and diversification rates in three families and 14 sites within coral reef fish communities from the Indian and Pacific oceans. Using the phylogenetic relationships among 157 species estimated with 2300 bp of mitochondrial DNA, we tested predictions in terms of species coexistence from the neutral and niche theories. At the regional scale, our findings suggest that phylogenetic community structure shifts during community assembly to a pattern of dispersion as a consequence of allopatric speciation in recent times but overall, variations in diversification rates did not relate with sea level changes. At the local scale, the phylogenetic community structure is consistent with a neutral model of community assembly since no departure from a random sorting of species was observed. The present results support a neutral model of community assembly as a consequence of the stochastic and unpredictable nature of coral reefs favoring generalist and sedentary species competing for living space rather than trophic resources. As a consequence, the observed decrease in diversification rates may be seen as the result of a limited supply of living space as expected in a finite island model. 相似文献
20.
We reveal the existence of a cryptic species of Acropora solitaryensis ( Veron and Wallace, 1984 ), a dominant species in high-latitude coral communities. Although some morphs, such as arborescent table (AR), solid plate (PL), and intermediate (IM) forms, had been known in this species, it was unclear whether these are reproductively isolated from one another. Here, potential reproductive exchange between two representative morphs, AR and PL, were examined using genetic and reproductive methods. Molecular phylogenetic analyses using both mitochondrial and nuclear molecular markers (mitochondrial control region and mini-collagen intron, respectively) indicated that AR is clearly distinct from PL, suggesting that gene flow between the morphs is absent. In cross-fertilization experiments, gametic compatibility between AR and PL was extremely low, suggesting prezygotic isolation of these morphs. These results strongly suggest that AR and IM forms are variations of A. solitaryensis, whereas PL form may be an undescribed species. In addition, AR was closely related genetically to A. pruinosa, which is a high-latitude species with arborescent form, and AR and A. pruinosa were able to hybridize, although with lower fertilities than observed in intra-specific crosses. The two species are thus likely to have speciated not in tropical regions, but in non-reef regions due to habitat segregation. 相似文献