首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus populations were compared between coral reefs open or closed (no‐take marine reserves) to fishing and among four geographic regions of the Great Barrier Reef (GBR), Australia. The specific reproductive metrics investigated were the sex ratio, the proportion of vitellogenic females and the spawning fraction of local populations. Sex ratios became increasingly male biased with length and age, as expected for a protogyne, but were more male biased in southern regions of the GBR (Mackay and Storm Cay) than in northern regions (Lizard Island and Townsville) across all lengths and ages. The proportion of vitellogenic females also increased with length and age. Female P. leopardus were capable of daily spawning during the spawning season, but on average spawned every 4·3 days. Mature females spawned most frequently on Townsville reserve reefs (every 2·3 days) and Lizard Island fished reefs (every 3·2 days). Females on Mackay reefs open to fishing showed no evidence of spawning over 4 years of sampling, while females on reserve reefs spawned only once every 2–3 months. No effect of length on spawning frequency was detected. Spawning frequency increased with age on Lizard Island fished reefs, declined with age on Storm Cay fished reefs, and declined with age on reserve reefs in all regions. It is hypothesized that the variation in P. leopardus sex ratios and spawning frequency among GBR regions is primarily driven by water temperature, while no‐take management zones influence spawning frequency depending on the region in which the reserve is located. Male bias and lack of spawning activity on southern GBR, where densities of adult P. leopardus are highest, suggest that recruits may be supplied from central or northern GBR. Significant regional variation in reproductive traits suggests that a regional approach to management of P. leopardus is appropriate and highlights the need for considering spatial variation in reproduction where reserves are used as fishery or conservation management tools.  相似文献   

2.
Evidence is presented that at least 60% of the 184 species of scleractinian corals found on reefs surrounding the Houtman Abrolhos Islands (Western Australia) participate in a late summer mass spawning. These populations are thus reproductively active, despite most species being at the extreme southern limit of their latitudinal range (28° 29°S). In the present study, coral mass spawning occurred in the same month on both temperate (Houtman-Abrolhos) and tropical (Ningaloo) reefs of Western Australia, despite more than two months difference in the timing of seasonal temperture minima between the two regions. This concurrence in the month of spawning suggests that temperature does not operate as a simple direct proximate cue for seasonal spawning synchrony in these populations. Seasonal variation in photoperiod may provide a similar and more reliable signal in the two regions, and thus might be more likely to synchronize the seasonal reproductive rhythms of these corals. Also there is overlap in the nights of mass spawning on the Houtman Abrolhos and tropical reefs of Western Australia, despite significant differences in tidal phase and amplitude between the two regions. This indicates that tidal cycle does not synchronize with the night(s) of spawning on these reefs. Spawning is more likely to be synchronised by lunar cycles. The co-occurrence of the mass spawning with spring tides in Houtman Abrolhos coral populations may be evidence of a genetic legacy inherited from northern, tropical ancestors. Micro-tidal regimes in the Houtman Abrolhos region may have exerted insufficient selective pressure to counteract this legacy.  相似文献   

3.
Multi-species synchronous spawning was first described on reefs off the east and west coast of Australia. In contrast, locally abundant species in the northern Red Sea and the central Pacific have little overlap in the time of reproduction. Consequently, the idea developed that high levels of spawning synchrony both within and among species was largely confined to Australian reefs. Here, we show that gamete maturity in colonies of the genus Acropora was highly synchronous in the Red Sea. In early April 2008, at two locations separated by 300 km, 13 of 24 species sampled had mature colonies, and a further 9 species had immature colonies. In late April–early May 2008, all colonies sampled had no oocytes, indicating colonies had spawned a few days after the full moon of 20 April 2008. Similarly, in 2009, 99% of colonies from 17 species at Hurghada were mature in late April, and all were empty in early May. Spawn slicks suggested many of these colonies had released gametes three night prior to the full moon on 8 May 2009. This level of synchrony in gamete maturity is among the highest ever recorded and similar to that typically recorded in Acropora assemblages on Australian reefs. While further work is required to document the night of gamete release, these data strongly suggest that high levels of spawning synchrony are a regular feature of these Red Sea coral assemblages and that multi-species spawning occurs on or around the full moon in April and/or May.  相似文献   

4.
Lai  Tzu-Yu  Denis  Vianney  Nozawa  Yoko 《Coral reefs (Online)》2022,41(5):1379-1387

Final oocyte maturation is a gametogenic process that occurs at the end of oogenesis, which includes germinal vesicle migration (GVM) and germinal vesicle breakdown (GVBD). This process is essential for oocytes to become competent for fertilization and occurs just before spawning. Timing of GVM and GVBD has been extensively studied to understand reproductive timing in various marine organisms. For corals, however, such information remains scarce. Here, we examined the timing of GVM and GVBD in broadcast-spawning corals: two Acropora and six merulinid species, from around the full moon until spawning day(s), at Lyudao, Taiwan in 2019 and 2020. The proportion of oocytes that had completed GVM around the full moon varied among species (14–64%), while the proportion increased to > 80% by 6–7 d after the full moon when many sampled colonies spawned. By contrast, although data are limited, the timing of GVBD indicated a more uniform pattern among species, and the onset of GVBD in the majority of oocytes occurred within 3–10 h before spawning. As GVM and GVBD are prerequisites for fertilization, and probably the spawning itself, the interspecific variation in the timing of GVM likely reflects an interspecies variation in spawning timing. This hypothesis may partially explain the different spawning timing (days) among coral species observed at the study location. Further research is needed to test such a hypothesis, given the limitation of our study with regard to the number of observations, annual variation, and examined coral taxa.

  相似文献   

5.
Miller  M. W.  Williams  D. E.  Fisch  J. 《Coral reefs (Online)》2016,35(4):1393-1398

The broadcast spawning elkhorn coral, Acropora palmata, requires outcrossing among different genets for effective fertilization. Hence, a low density of genets in parts of its range emphasizes the need for precise synchrony among neighboring genets as sperm concentration dilutes rapidly in open-ocean conditions. We documented the genet-specific nightly occurrence of spawning of A. palmata over 8 yr in a depauperate population in the Florida Keys to better understand this potential reproductive hurdle. The observed population failed to spawn within the predicted monthly window (nights 2–6 after the full moon in August) in three of the 8 yr of observation; negligible spawning was observed in a fourth year. Moreover, genet-specific patterns are evident in that (1) certain genets have significantly greater odds of spawning overall and (2) certain genets predictably spawn on the earlier and others on the later lunar nights within the predicted window. Given the already low genet density in this population, this pattern implies a substantial degree of wasted reproductive effort and supports the hypothesis that depensatory factors are impairing recovery in this species.

  相似文献   

6.
Abstract

At high latitudes (>25°), sexual reproduction and the maintenance of coral populations can be impaired by marginal environmental conditions. However, little is known about sexual reproduction of many coral species at high latitude on the northern-most extension of the Florida Reef Tract. This study aimed to histologically characterize the reproductive ecology of Siderastrea siderea, near Fort Lauderdale, Florida (26°N). Tissue samples of S. siderea were collected semi-monthly to multi-weekly from August to November in 2007 and 2008. Spawning was inferred from gametogenesis and oocyte resorption was observed in detail. Environmental variables including temperature and lunar cycle were examined for relationship with potential spawning times. Based on the histological evidence, we infer that spawning likely occurred primarily in October. Gametogenesis in this species is likely mediated by seasonal temperature variation, whereas lunar cycle could act as finer scale environmental cue for coordination of spawning. Our findings highlight that S. siderea spawning occurs later in the year compared to other populations of this species throughout the Caribbean and to other coral species near Fort Lauderdale. For the first time, oocyte resorption stages are described and constitute a baseline for future projects that aim to understand this process in corals.  相似文献   

7.
This study aimed to evaluate potential differences in coral spawning behavior between a fringing coastal reef and an offshore reef in the southern Caribbean. For this, scleractinian and gorgonian colonies (N = 324) of 21 species were mapped along eight transects, each 10-m long, at two study sites located in Morrocoy and Los Roques National Parks, Venezuela. Observations were made between 19:30 and 23:00 from August 23 to 30 and from September 26 to 30, 2002. Ninety one colonies belonging to six hard coral and seven octocoral species spawned or planulated during this period. We were unable to observe any signs of reproductive activity in 95 colonies of nine species different from those that reproduced. Despite the differences in environmental conditions between the two sites, we observed high synchrony in the spawning behavior of seven coral species common to both reefs. The most striking result was the ability of colonies of Montastraea faveolata and Eusmilia fastigiata to split spawn up to three times, either in consecutive nights or in different months.  相似文献   

8.
Spawning sites used by one or more species were located by intensively searching nearshore coral reefs of Kimbe Bay (New Britain, Papua New Guinea). Once identified, the spawning sites were surveyed repeatedly within fixed 5 m radius circular areas, for > 2000 h of observations ranging from before dawn to after dusk spanning 190 days between July 2001 and May 2004. A total of 38 spawning sites were identified on the seven study reefs distributed at an average of one site every 60 m of reef edge. Pelagic spawning was observed in 41 fish species from six families. On three intensively studied reefs, all 17 spawning sites identified were used by at least three species, with a maximum of 30 different species observed spawning at a single site. Spawning was observed during every month of the study, on all days of the lunar month, at all states of the tide and at most hours of the day studied. Nevertheless, the majority of species were observed spawning on proportionately more days from December to April, on more days around the new moon and in association with higher tides. The strongest temporal association, however, was with species‐specific diel spawning times spanning < 3 h for most species. While dawn spawning, afternoon spawning and dusk spawning species were differentiated, the time of spawning for the striated surgeonfish Ctenochaetus striatus also differed significantly among sites. The large number of species spawning at the same restricted locations during predictable times suggests that these sites are extremely important on this low‐latitude coral reef.  相似文献   

9.

Knowledge on the early life history, ecology, and biology of marine species is crucial for future projections of the resilience of coral reef ecosystems and for adequate management strategies. A fundamental component of population dynamics is the recruitment of new individuals, and in some marine populations, this may be a limiting factor. Recruitment peaks of coral reef fishes commonly occur during the warmer months of the year in many subtropical and temperate locations worldwide. In the Red Sea, very little is known about the influence of temperature on reproductive patterns of coral reef fishes and studies on recruitment are missing. The Red Sea is one of the hottest and most isolated tropical seas in the world. We hypothesized that sea surface temperatures (SSTs) during the Red Sea’s hottest season may exceed the optimum for successful recruitment of some coral reef fishes, which therefore has to occur during other, cooler seasons, unlike recruitment among coral reef ecosystems around the world. We identified taxa among fish recruits by matching mitochondrial DNA sequences (using COI, commonly known as “barcoding”) and assessed potential biological and environmental drivers of recruitment. We studied three reefs located along a cross-shelf gradient for 12 consecutive months in the central Red Sea to capture seasonal changes in biotic and abiotic parameters along this gradient. Our results indicated that recruitment peaks did not occur during the hottest SSTs for most taxa, especially at the hottest inshore and mid-shelf reefs, and identified fish recruitment to be mainly and strongly correlated with the biomass of planktonic invertebrates. Moreover, temporal patterns of fish recruitment differed within and among taxonomic families among the reefs.

  相似文献   

10.
Despite extensive research on coral reproduction from numerous geographic locations, there remains limited knowledge within the Persian Gulf. Given that corals in the Persian Gulf exist in one of the most stressful environments for reef corals, with annual variations in sea surface temperature (SST) of 12°C and maximum summer mean SSTs of 36°C, understanding coral reproductive biology in the Gulf may provide clues as to how corals may cope with global warming. In this study, we examined six locally common coral species on two shallow reef sites in Dubai, United Arab Emirates (UAE), in 2008 and 2009 to investigate the patterns of reproduction, in particular the timing and synchrony of spawning. In total, 71% colonies in April 2008 and 63% colonies in April 2009 contained mature oocytes. However, the presence of mature gametes in May indicated that spawning was potentially split between April and May in all species. These results demonstrate that coral reproduction patterns within this region are highly seasonal and that multi-species spawning synchrony is highly probable. Acropora downingi, Cyphastrea microphthalma and Platygyra daedalea were all hermaphroditic broadcast spawners with a single annual gametogenic cycle. Furthermore, fecundity and mature oocyte sizes were comparable to those in other regions. We conclude that the reproductive biology of corals in the southern Persian Gulf is similar to other regions, indicating that these species have adapted to the extreme environmental conditions in the southern Persian Gulf.  相似文献   

11.
Mesophotic coral ecosystems (below 30–40 m depth) host a large diversity of zooxanthellate coral communities and may play an important role in the ecology and conservation of coral reefs. Investigating the reproductive biology of mesophotic corals is important to understand their life history traits. Despite an increase in research on mesophotic corals in the last decade, their reproductive biology is still poorly understood. Here, gametogenesis and fecundity of the Indo-Pacific mesophotic coral, Acropora tenella, were examined in an upper mesophotic reef (40 m depth) in Okinawa, Japan for the first time. Acropora tenella is a hermaphrodite with a single annual gametogenic cycle, and both oogenesis and spermatogenesis occurring for 11–12 and 5–6 months, respectively. Timing of spawning of this species was similar to other shallow Acropora spp. in the region. However, colonies had longer gametogenic cycles and less synchronous gamete maturation compared to shallow acroporids with spawning extended over consecutive months. Both the polyp fecundity (number of eggs per polyp) and gonad index (defined as the number of eggs per square centimeter) of A. tenella were lower than most acroporids. Our findings contribute to understanding of the life history of corals on mesophotic reefs and suggest that the reproductive biology of upper mesophotic corals is similar to that of shallow-water corals.  相似文献   

12.
Many wrasses on coral reefs exhibit daily spawning that peaks around daytime high tides. In this study, we examined tidal-related ovarian development in the threespot wrasse, Halichoeres trimaculatus, a species common on coral reefs in the Indo-Pacific Ocean. When the fish were collected in the morning at different tidal phases, the gonadosomatic index (GSI) and ovarian histology changed; concomitant with increases in GSI towards high tide, a clutch of the most advanced oocytes developed from vitellogenic to maturation stages. Ovulated eggs and post-ovulated follicles (POF) existed in most ovaries around high tide, but only POF remained around ebb tide, suggesting that spawning occurred during or after high tide. We noticed that tidal-related spawning was considerable in the morning and that most ovaries collected on the afternoon high tide exhibited post-spawning features. This suggests that certain labrid species possess plasticity with regard to their spawning time and utilize potent environmental cues to ensure their reproductive success. When pieces of ovary were incubated with precursor steroids, high conversion of testosterone to 17beta-estradiol occurred during high and ebb tides, while that of 17alpha-hydroxyprogesterone to 17alpha,20beta-dihydroxy-4-pregnen-3-one and 17alpha,20beta,21-trihydroxy-4-pregnen-3-one was observed during low and flood tides. Incubation of pieces of ovary with human chorionic gonadotropin resulted in similar fluctuations in the steroid hormones with tidal phase. Production of these steroid hormones correlated with oocyte development in the ovaries and was probably regulated by gonadotropin. These results demonstrate that the daily cycle is fundamental for oocyte development, and that the tidal cycle is superimposed on this process.  相似文献   

13.
The octocoral Heliopora coerulea is a gonochoric surface brooder. Although the species is common on shallow Indo-Pacific coral reefs, information on its reproductive biology is limited and spawning timings have only been reported from four locations. We report the first observations of surface brooding in H. coerulea on a sedimented equatorial reef. In April 2014, 46 and 26 brooding colonies were recorded, respectively, from reefs fringing the islands of Kusu and Lazarus in Singapore. The brooded coral larvae were tightly bound to inflated coral polyps, forming a dense white mat which blanketed the brown coral tissue. The inflated polyps also protruded from layers of sediment, which accumulated in colony crevices, such that the brooded larvae were elevated above the settled sediment. Our observations supplement existing knowledge on the reproductive timing of H. coerulea and highlight the adaptations that improve survival of this species on sediment-impacted reefs.  相似文献   

14.
We studied the diel timing of spawning in the demersally spawning Hawaiian damselfish, Dascyllus albisella, from mid-June to late-September 1997 at two small patch reefs in Hawaii. Our objectives were to elucidate daily timing of spawning in relation to water temperature, diel timing of hatching, and short-period spawning synchrony. Spawning occurred every 5–7 days at both reefs, with all spawning on a reef concluded either within a single day (1-day spawning) or within two successive days (2-day spawning). Spawning began in early morning and continued for most of the day. There was a significant, positive linear relationship between mean daily average water temperature (= daily average temperature averaged over the period starting from the day following the last spawning day of the preceding nest cycle till the day before the first spawning day of the current cycle) and peak spawning hour of day, for 1-day spawning, and the first and second days of 2-day spawning at both reefs. The relationship between mean daily average water temperature and peak spawning hour of day was comparable among all spawning-day classes and reefs. Hatching occurred on the fourth day of development throughout the study despite the 26.5–29.1°C change in water temperature during the study period, and hatching was restricted to within two hours after sunset. We propose that D. albisella's peak spawning time is positively correlated with increased water temperature because it maintains the benefits of synchronous spawning within two constraints: the narrow daily period of hatching, and the inverse relationship between water temperature and embryo developmental time.  相似文献   

15.
The reproductive behavior of Acanthurus nigrofuscus, a common surgeonfish of the Red Sea, is described for two overlapping populations inhabiting the coral reefs off Eilat, Israel (Gulf of Aqaba). The spectacular daily spawning activities, often involving aggregations of thousands of individuals, as well as the often long distance migrations to and from the spawning grounds by groups in highly organized formations are characterized in detail. Evidence is provided that the precise timing of these various phenomena is controlled by ambient light levels during the late afternoon. Less detailed information is also provided on comparable activities of two other surgeonfishes from the same reefs: Ctenochaetus striatus and Zebrasoma xanthurum. Finally, comparisons are made of reproduction and its associated environmental controls among populations of the same and related species of surgeonfishes at widely distributed locations in the Indo-Pacific.  相似文献   

16.
Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world’s most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m-2 yr-1) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March–May and September–November, coinciding with annual coral spawning periods (March–April and October), while the lowest settlement occurred from December–February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae <1%. Other, unidentifiable families represented 10% of the coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure (‘others’; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore’s reefs appears relatively constrained, which could lead to less resilient reefs.  相似文献   

17.
Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no‐take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef‐building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer‐shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef‐building genus Acropora for coral reef managers.  相似文献   

18.
Seasonal differences in the timing of multi-specific coral spawning between the east and west coasts of Australia may be the result of a genetic legacy or of adaptation to local conditions. Using estimates of the proportions of coral species that spawned in spring and autumn at Ashmore Reef (12°S) and Ningaloo Reef (23°S) in Western Australia, in combination with findings of previous surveys, I examined whether reproductive seasonality varied with latitude. A consistently high proportion of species spawned during the main reproductive season in autumn regardless of latitude. However, there was a clear decrease in the proportion of species spawning in spring, from an average of 49 % at Ashmore Reef (12°S) to 7 % at Ningaloo Reef (23°S). The results of this study suggest that seasonality of coral reproduction in Western Australia reflects environmental gradients and natural selection rather than an inherited genetic legacy.  相似文献   

19.
An experiment was conducted along the reefs off west Maui, Hawaii, during the summer of 2003 to monitor the spawning of the reef-building coral Montipora capitata and to determine the role of ocean currents in dispersing the larvae from the natal reef. Instruments documented the environmental forcing during the coral spawning season; drifters were deployed on three successive nights following direct observations of coral spawning. Both the timing and relative magnitude of the coral spawning were identifiable in acoustic backscatter data and correlated to plankton tow data. Each drifter track showed that the surface water containing coral eggs and planula larvae were transported rapidly offshore and not locally retained. Wind and current patterns during the previous year and during subsequent coral spawning events later in the summer were similar to those observed during the drifter releases. This suggests that the trajectories observed during the focused experiment are representative of the general pattern of larval dispersal off west Maui. These findings demonstrate the application of acoustic profilers for remotely imaging coral spawning and predicting their initial dispersal patterns.  相似文献   

20.
Synchrony of spawning in many hermatypic corals, typically a few nights after the full moon, is putatively dependent on solar and lunar light cycles in conjunction with other possible cues such as tides and temperature. We analyze here the contributions of separate components of light dynamics, because the effects of twilight and lunar skylight on coral spawning synchrony have previously been conflated and the alternative hypothesis that these components have differential contributions as proximate cues has not been tested. Moonlight-dependent changes in spectra during twilight, rates of decreasing twilight intensities, and changes in lunar photoperiod were experimentally decoupled using programmed light-emitting diodes and compared for their separate effects on spawning synchrony in Acropora humilis. Effects on synchrony under the control of synthetic lunar cues were greatest in response to changes in lunar photoperiod; changes in light intensities and spectra had lesser influence. No significant differences among treatment responses were found at the circa-diel time scale. We conclude that spawning synchrony on a particular lunar night and specific time of night is a threshold response to differential periods of darkness after twilight that is primarily influenced by lunar photoperiod and secondarily by discrete optical components of early nocturnal illumination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号