首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chung U  Mack L  Yun JI  Kim SH 《PloS one》2011,6(11):e27439
Cherry blossoms, an icon of spring, are celebrated in many cultures of the temperate region. For its sensitivity to winter and early spring temperatures, the timing of cherry blossoms is an ideal indicator of the impacts of climate change on tree phenology. Here, we applied a process-based phenology model for temperate deciduous trees to predict peak bloom dates (PBD) of flowering cherry trees (Prunus×yedoensis ‘Yoshino’ and Prunus serrulata ‘Kwanzan’) in the Tidal Basin, Washington, DC and the surrounding Mid-Atlantic States in response to climate change. We parameterized the model with observed PBD data from 1991 to 2010. The calibrated model was tested against independent datasets of the past PBD data from 1951 to 1970 in the Tidal Basin and more recent PBD data from other locations (e.g., Seattle, WA). The model performance against these independent data was satisfactory (Yoshino: r2 = 0.57, RMSE = 6.6 days, bias = 0.9 days and Kwanzan: r2 = 0.76, RMSE = 5.5 days, bias = −2.0 days). We then applied the model to forecast future PBD for the region using downscaled climate projections based on IPCC''s A1B and A2 emissions scenarios. Our results indicate that PBD at the Tidal Basin are likely to be accelerated by an average of five days by 2050 s and 10 days by 2080 s for these cultivars under a mid-range (A1B) emissions scenario projected by ECHAM5 general circulation model. The acceleration is likely to be much greater (13 days for 2050 s and 29 days for 2080s ) under a higher (A2) emissions scenario projected by CGCM2 general circulation model. Our results demonstrate the potential impacts of climate change on the timing of cherry blossoms and illustrate the utility of a simple process-based phenology model for developing adaptation strategies to climate change in horticulture, conservation planning, restoration and other related disciplines.  相似文献   

2.
Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.  相似文献   

3.
Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake‐specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989–2014) and future (2040–2064 and 2065–2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake‐specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33–75% of lakes where recruitment is currently supported and a 27–60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid‐century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up to 85 resilient lakes predicted to continue to support natural walleye recruitment. Management resources could target preserving these resilient walleye populations.  相似文献   

4.
Synopsis Behavioral responses which allow largemouth bass, Micropterus salmoides, and bluegill, Lepomis macrochirus, to survive under unusually high temperature conditions were examined. Distribution of fish was ascertained by angling. Body temperatures of 4 fish were obtained using radio transmitters. Temperatures of other fish were measured after fish were captured by angling. Both species were restricted in range by lethal water temperatures and therefore inhabited a greater portion of a thermally altered reservoir in winter than in summer. Under unheated conditions (during reactor shutdown), bass occupied shallow areas with an abundance of submerged logs and stumps, a deep area with springs, and a cove where the effluent canal entered the reservoir. Commencement of reactor operation resulted in an increase in water temperature to more than 50°C in summer. Bass and bluegill retreated to three refuges and remained there until the reactor shut down and the reservoir cooled. In the refuges, bass experienced a wide variety of temperatures, but adults generally avoided temperatures above 31°C. Large adult bass (>40 cm) occupied particular positions in a refuge cove, medium size bass (15–40 cm) swam in the open water, and small bass (相似文献   

5.
Spring phenologies are advancing in many ecosystems associated with climate warming causing unpredictable changes in ecosystem functioning. Here we establish a phenological model for Daphnia, an aquatic keystone herbivore based on decadal data on water temperatures and the timing of Daphnia population maxima from Lake Constance, a large European lake. We tested this model with long-term time-series data from two lakes (Müggelsee, Germany; Lake Washington, USA), and with observations from a diverse set of 49 lakes/sites distributed widely across the Northern Hemisphere (NH). The model successfully captured the observed temporal variation of Daphnia phenology in the two case study sites (r2 = 0.25 and 0.39 for Müggelsee and Lake Washington, respectively) and large-scale spatial variation in the NH (R2 = 0.57). These results suggest that Daphnia phenology follows a uniform temperature dependency in NH lakes. Our approach – based on temperature phenologies – has large potential to study and predict phenologies of animal and plant populations across large latitudinal gradients in other ecosystems.  相似文献   

6.
There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales.  相似文献   

7.
Synopsis Young-of-the-year (YOY) smallmouth bass, Micropterus dolomieu, spend their first summer in littoral areas near their nests. Evidence indicates that nests of smallmouth bass in Lake Opeongo, Ontario, Canada are more abundant in downwind locations than in upwind areas. We hypothesize that wind-induced lower water temperatures and food availability in upwind nesting areas lead to lower growth rates of YOY bass in upwind than in downwind nesting areas. We show that water temperatures were 0.6–1.3 °C higher in downwind than upwind littoral areas during the period from mid-June to mid-July, when the YOY bass were on or near their nests. Although quite variable, zooplankton concentrations were also higher at downwind sites. In addition, bioenergetic simulations based on time series of field-measured temperatures predicted higher growth rates of YOY bass in the downwind sites. Growth rates based on sequential sampling of bass fry from their nests did not, however, differ statistically between upwind and downwind sites, although fry consistently weighed more downwind than upwind in the basin with the longer fetch possibly due to earlier spring warming. Our hypothesis is thus only partially supported and we call for further research on effects of spatial gradients on smallmouth bass life history.  相似文献   

8.
Summary Photosynthesis and respiratory carbon losses of freshly collected Antarctic phytoplankton were measured in incubators at 5 temperatures between-2° C and +8°C. The results were used to predict daily growth rates and to define temperature and daylength boundary conditions under which the net balance between photosynthesis and respiration would be positive and allow increases in standing stock. Whereas the Q10 of photosynthesis was 1.4–2.2, the Q10 of respiratory losses exhibited a wide range and higher maxima (2.3–12). Model calculations sugest that under ample light energy supply during long summer days, potential daily growth rates are not severely affected by the low temperatures prevailing in the Southern Ocean. If energy supply is restricted by short days and deep water column mixing, substantially reduced respiration rates at low temperatures may allow the algae to survive.  相似文献   

9.
Black sea bass (Centropristis striata) migrations are believed to play a role in overwinter survival and connectivity between juvenile and adult populations. This study investigated oceanographic drivers of winter habitat choice and regional differences between populations of juvenile and adult black sea bass. Trends in cohort strength, as a result of juvenile survival, were also identified. Oceanographic and fisheries survey data were analyzed using generalized additive models. Among the oceanographic variables investigated, salinity was the main driver in habitat selection with an optimal range of 33–35 practical salinity units (PSU) for both juveniles and adults. Preferred temperature ranges varied between juveniles and adults, but held a similar minimum preference of >8°C. Salinity and temperature ranges also differed by regions north and south of Hudson Canyon. Shelf water volume had less of an effect than temperature or salinity, but showed an overall negative relationship with survey catch. The effect of winter conditions on juvenile abundance was also observed across state and federal survey index trends. A lack of correlation observed among surveys in the fall paired with a strong correlation in the spring identifies the winter period as a factor determining year-class strength of new recruits to the population. A rank order analysis of spring indices identified three of the largest year classes occurring during years with reduced shelf water volumes, warmer winter shelf waters, and a 34 PSU isohaline aligned farther inshore. While greater catches of black sea bass in the northwest Atlantic Ocean remain south of Hudson Canyon, the species’ range has expanded north in recent years.  相似文献   

10.
Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean  = 533 km) with eight of these sharks returning to the study site. During migration, individuals exhibited rates of movement between 2 and 59 km.d−1 (mean  = 17.58 km.d−1) and were recorded travelling annual distances of between 450 and 3760 km (mean  = 1163 km). Migration towards lower latitudes primarily took place in austral spring and winter and there was a significant negative correlation between residency and mean monthly sea temperature at the study site. This suggested that seasonal change is the primary driver behind migration events but further investigation is required to assess how foraging and reproductive activity may influence residency patterns and migration. Results from this study highlight the need for further understanding of bull shark migration dynamics and suggest that effective conservation strategies for this vulnerable species necessitate the incorporation of congruent trans-boundary policies over large spatial scales.  相似文献   

11.
Synopsis Counts of pre-metamorphic and post-metamorphic daily increments in the sagittae of settled juvenilePagrus auratus were used to determine duration of the larval period and to back-calculate spawning dates. The duration of the larval period was 18–32 days, and was longer for snapper spawned early in the spawning season, when water temperatures were low, than for snapper spawned later in the season when temperatures were high. Sagitta size at metamorphosis was unrelated to duration of the larval period or temperature, and mean increment width during the larval period increased with temperature. These results suggest that metamorphosis is size- rather than age-dependent. Back-calculated spawning dates ranged from September to March, and peaked in November-January. Maximum spawning season duration was five months. Spawning onset was earlier when spring water temperature was higher than normal, and first spawning occurred at 14.8–15.6 °C over three seasons, indicating that spawning onset is temperature-dependent.  相似文献   

12.
B. W. Webb  F. Nobilis 《Hydrobiologia》1994,291(2):105-113
Monthly mean water temperatures in the River Danube at Linz, Austria during the period 1901–1990 have been investigated in relation to equivalent information on air temperature and river discharge. Statistical analysis revealed a significant increase in monthly mean water temperatures of 0.8 °C and showed strongest rises in mean values for autumn and early winter months. No statistically significant trends were evident for air temperature or river discharge, and rising water temperatures are likely to reflect increasing human modification of the river system. A strong overall correlation between monthly mean water and air temperatures at Linz was made up of a series of more scattered and less steep water/air temperature relationships for individual months, while the influence of snowmelt runoff depressed average water temperatures in the spring and early summer period by 1.5 °C. Multiple regression relationships developed for individual months from data on air temperature, river discharge and time trend during the study period were able to predict monthly mean water temperatures in 1991 and 1992 with a root mean square error of 0.5 °C. These regression equations, when combined with scenarios of future changes in air temperature and river flow as a consequence of global warming, suggest that only modest rises in monthly mean water temperature will be experienced in the River Danube by the end of the present century, but that increases of > 1 °C for all months, and > 2 °C for the autumn period of low flows, can be anticipated by the year 2030.  相似文献   

13.
Quinolone has the disadvantage of easily acquired drug resistance. It is important to prescribe it wisely for a high eradication rate. The current study aimed to determine the clinical and bacteriological factors for optimal levofloxacin-containing triple therapies in second-line H. pylori eradication. We enrolled a total of 158 H. pylori-infected patients who failed H. pylori eradication using the 7-day standard triple therapy (proton-pump inhibitor [PPI] twice daily, 500 mg clarithromycin twice daily, and 1 g amoxicillin twice daily). They were prescribed with either a 10-day (group A) or 14-day (group B) levofloxacin-containing triple therapy group (levofloxacin 500 mg once daily, amoxicillin 1 g twice daily, and esomeprazole 40 mg twice daily for 10 days) by their clinicians. Follow-up studies to assess treatment responses were carried out 8 weeks later. The eradication rates attained by groups A and B were 73.6% (95% confidence interval [CI] = 63.9–85.3%) and 90.5% (95% CI = 84.5–98.1%), respectively in the per protocol analysis (P = 0.008 in the per protocol analysis) and 67.1% (95% CI = 56.6–78.5%) and 84.8% (95% CI = 76.8–93.4%), respectively, in the intention-to-treat analysis (P = 0.009). The subgroup analysis revealed that H. pylori eradication rates for group A patients with levofloxacin-susceptible strains were 92.9% (13/14) but it dropped to 12.5% (1/8) when levofloxacin-resistant strains existed. H. pylori was eradicated among all the group B patients with levofloxacin-susceptible strains, but only half of patients with levofloxacin-resistant strains were successfully eradicated. In conclusion, this study confirms the effectiveness of 14-day treatment. Importantly, the results imply that 10-day treatment duration should be optimal if a culture can be performed to confirm the existence of susceptible strains. The duration of H. pylori eradication and levofloxacin resistance were the influencing factors for successful treatment. This study suggests that tailored levofloxacin-containing therapy should be administered only for patients with susceptible strains because it can achieve >90% success rates.  相似文献   

14.
Preferred deep body temperatures of adult bass were determined in the laboratory using a horizontal temperature gradient and telemetry. The method used allowed continuous monitoring of body temperatures of adult bass in the gradient. The preferred temperature of adults (range = 27–32°C) was similar to preferenda reported earlier for sub-adults.  相似文献   

15.
Multiple comprehensive in situ bio-optical investigations were conducted from 2005 to 2010 and covered a large variability of total suspended matter (TSM) in Lake Taihu to calibrate and validate a TSM concentration estimation model based on Medium Resolution Imaging Spectrometer (MERIS) data. The estimation model of the TSM concentration in Lake Taihu was developed using top-of-atmosphere (TOA) radiance of MERIS image data at band 9 in combination with a regional empirical atmospheric correction model, which was strongly correlated with the in situ TSM concentration (r 2 = 0.720, p<0.001, and n = 73). The relative root mean square error (RRMSE) and mean relative error (MRE) were 36.9% and 31.6%, respectively, based on an independent validation dataset that produced reliable estimations of the TSM concentration. The developed algorithm was applied to 50 MERIS images from 2003 to 2011 to obtain a high spatial and temporal heterogeneity of TSM concentrations in Lake Taihu. Seasonally, the highest and lowest TSM concentrations were found in spring and autumn, respectively. Spatially, TSM concentrations were high in the southern part and center of the lake and low in Xukou Bay, East Lake Taihu. The lake topography, including the water depth and distance from the shore, had a significant effect on the TSM spatial distribution. A significant correlation was found between the daily average wind speed and TSM concentration (r 2 = 0.685, p<0.001, and n = 50), suggesting a critical role of wind speed in the TSM variations in Lake Taihu. In addition, a low TSM concentration was linked to the appearance of submerged aquatic vegetation (SAV). Therefore, TSM dynamics were controlled by the lake topography, wind-driven sediment resuspension and SAV distribution.  相似文献   

16.

Background

Evaluating the influence of climate variability on enteric disease incidence may improve our ability to predict how climate change may affect these diseases.

Objectives

To examine the associations between regional climate variability and enteric disease incidence in New Zealand.

Methods

Associations between monthly climate and enteric diseases (campylobacteriosis, salmonellosis, cryptosporidiosis, giardiasis) were investigated using Seasonal Auto Regressive Integrated Moving Average (SARIMA) models.

Results

No climatic factors were significantly associated with campylobacteriosis and giardiasis, with similar predictive power for univariate and multivariate models. Cryptosporidiosis was positively associated with average temperature of the previous month (β =  0.130, SE =  0.060, p <0.01) and inversely related to the Southern Oscillation Index (SOI) two months previously (β =  −0.008, SE =  0.004, p <0.05). By contrast, salmonellosis was positively associated with temperature (β  = 0.110, SE = 0.020, p<0.001) of the current month and SOI of the current (β  = 0.005, SE = 0.002, p<0.050) and previous month (β  = 0.005, SE = 0.002, p<0.05). Forecasting accuracy of the multivariate models for cryptosporidiosis and salmonellosis were significantly higher.

Conclusions

Although spatial heterogeneity in the observed patterns could not be assessed, these results suggest that temporally lagged relationships between climate variables and national communicable disease incidence data can contribute to disease prediction models and early warning systems.  相似文献   

17.
Maple syrup production is an important economic activity in north-eastern North-America. The beginning and length of the production season is linked to daily variation in temperature. There are increasing concerns about the potential impact of climatic change on this industry. Here, we used weekly data of syrup yield for the 1999–2011 period from 121 maple stands in 11 regions of Québec (Canada) to predict how the period of production may be impacted by climate warming. The date at which the production begins is highly variable between years with an average range of 36 days among the regions. However, the average start date for a given region, which ranged from Julian day 65 to 83, was highly predictable (r2 = 0.88) using the average temperature from January to April (TJ-A). A logistic model predicting the weekly presence or absence of production was also developed. Using the inputs of 77 future climate scenarios issued from global models, projections of future production timing were made based on average TJ-A and on the logistic model. The projections of both approaches were in very good agreement and suggest that the sap season will be displaced to occur 15–19 days earlier on average in the 2080–2100 period. The data also show that the displacement in time will not be accompanied by a greater between years variability in the beginning of the season. However, in the southern part of Québec, very short periods of syrup production due to unfavourable conditions in the spring will occur more frequently in the future although their absolute frequencies will remain low.  相似文献   

18.
To investigate a novel route for providing analgesia to processed piglets via transmammary drug delivery, meloxicam was administered orally to sows after farrowing. The objectives of the study were to demonstrate meloxicam transfer from sows to piglets via milk and to describe the analgesic effects in piglets after processing through assessment of pain biomarkers and infrared thermography (IRT). Ten sows received either meloxicam (30 mg/kg) (n = 5) or whey protein (placebo) (n = 5) in their daily feedings, starting four days after farrowing and continuing for three consecutive days. During this period, blood and milk samples were collected at 12-hour intervals. On Day 5 after farrowing, three boars and three gilts from each litter were castrated or sham castrated, tail docked, and administered an iron injection. Piglet blood samples were collected immediately before processing and at predetermined times over an 84-hour period. IRT images were captured at each piglet blood collection point. Plasma was tested to confirm meloxicam concentrations using a validated high-performance liquid chromatography-mass spectrometry method. Meloxicam was detected in all piglets nursing on medicated sows at each time point, and the mean (± standard error of the mean) meloxicam concentration at castration was 568.9±105.8 ng/mL. Furthermore, ex-vivo prostaglandin E2 (PGE2) synthesis inhibition was greater in piglets from treated sows compared to controls (p = 0.0059). There was a time-by-treatment interaction for plasma cortisol (p = 0.0009), with meloxicam-treated piglets demonstrating lower cortisol concentrations than control piglets for 10 hours after castration. No differences in mean plasma substance P concentrations between treatment groups were observed (p = 0.67). Lower cranial skin temperatures on IRT were observed in placebo compared to meloxicam-treated piglets (p = 0.015). This study demonstrates the successful transfer of meloxicam from sows to piglets through milk and corresponding analgesia after processing, as evidenced by a decrease in cortisol and PGE2 levels and maintenance of cranial skin temperature.  相似文献   

19.
The heat dissipation limit (HDL) hypothesis suggests that the capacity of endotherms to dissipate body heat may impose constraints on their energy expenditure. Specifically, this hypothesis predicts that endotherms should avoid the detrimental consequences of hyperthermia by lowering their energy expenditure and reducing their activity in response to high ambient temperatures (Ta). We used an extensive data set on the daily energy expenditure (DEE, n = 27) and the daily activity time (AT, n = 48) of male weasels (Mustela nivalis) during the spring and summer breeding season to test these predictions. We found that Ta was related in a “hump-shaped” (i.e. convex) manner to AT, DEE, resting metabolic rate (RMR) and metabolic scope (the ratio of DEE to RMR). These results support the HDL hypothesis because in response to warm Tas male weasels reduced their AT, DEE, and RMR. Although the activity and energy expenditure of large endotherms are most likely to be constrained in response to warm Tas because they are less able to dissipate heat, our results suggest that small endotherms may also experience constraints consistent with the HDL hypothesis.  相似文献   

20.
The Arctic is undergoing dramatic environmental change with rapidly rising surface temperatures, accelerating sea ice decline and changing snow regimes, all of which influence tundra plant phenology. Despite these changes, no globally consistent direction of trends in spring phenology has been reported across the Arctic. While spring has advanced at some sites, spring has delayed or not changed at other sites, highlighting substantial unexplained variation. Here, we test the relative importance of local temperatures, local snow melt date and regional spring drop in sea ice extent as controls of variation in spring phenology across different sites and species. Trends in long‐term time series of spring leaf‐out and flowering (average span: 18 years) were highly variable for the 14 tundra species monitored at our four study sites on the Arctic coasts of Alaska, Canada and Greenland, ranging from advances of 10.06 days per decade to delays of 1.67 days per decade. Spring temperatures and the day of spring drop in sea ice extent advanced at all sites (average 1°C per decade and 21 days per decade, respectively), but only those sites with advances in snow melt (average 5 days advance per decade) also had advancing phenology. Variation in spring plant phenology was best explained by snow melt date (mean effect: 0.45 days advance in phenology per day advance snow melt) and, to a lesser extent, by mean spring temperature (mean effect: 2.39 days advance in phenology per °C). In contrast to previous studies examining sea ice and phenology at different spatial scales, regional spring drop in sea ice extent did not predict spring phenology for any species or site in our analysis. Our findings highlight that tundra vegetation responses to global change are more complex than a direct response to warming and emphasize the importance of snow melt as a local driver of tundra spring phenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号