首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sugarcane is a significant crop for production of sugar and ethanol in the world. In present perspective, drought is one of the frequently occurring abiotic stresses hampering the productivity of sugarcane causing heavy losses in sugar recovery. Post-harvest sugarcane deterioration attains more importance. Measures have been recommended in harvested canes to prevent these losses in general and under drought conditions but application of chemical formulation has not yet been tested over drought effected ones. Thus, we tried to investigate the efficacy of chemical formulation [Benzalkonium chloride (BKC) + Sodium metasilicate (SMS)] on sucrose losses occurring in harvested canes grown under drought and normal conditions. Results showed that application of chemical formulation had higher effect on drought canes in comparison to normal grown canes. Loss in cane weight was reduced to 8.25% and 11% in drought treated and normal treated grown canes, respectively, after 240 h of harvest in comparison to their respective control. In sucrose content and Commercial cane sugars %, drought treated canes showed an effect of BKC + SMS by reducing the losses to 1.26 units and 1.42 units, respectively, whereas in normal ones, reduction was of 0.38 units and 0.10 units, respectively. Biochemical analysis revealed that in reducing sugars, reduction in increase were of 44.51% and 25.50% in drought and normal grown canes, respectively, after 240 h of harvest. Dextran and soluble acid invertase estimations revealed that after application of BKC + SMS, reduction of dextran and invertase activity were of 49.74%, 66.84%, respectively, and 33.92%, 42.75%, respectively, in drought and normal grown canes, respectively. Total microbial load, showed effectiveness of 25.01% in drought grown canes while 14.41% in normal grown ones after 240 h of harvest. Our study was planned to use the anti-bacterial efficiency of both the chemicals over harvested canes so that the major sucrose losses occurring due to microbial deterioration could be inhibited. The use of this chemical formulation proves to be an effective one over post-harvest sucrose losses, particularly in drought grown canes.  相似文献   

2.
Yellow leaf (YL) of sugarcane caused by Sugarcane yellow leaf virus (ScYLV, a Polerovirus of the Luteoviridae family) is a serious disease affecting the crop production and productivity in India. Although impact of the disease on cane growth is observed, no systematic study has been done so far from the tropical Asian region to establish its impact on various physiological parameters, cane yield and juice quality. We have assessed physiological parameters in symptomatic and asymptomatic plants of ten different cultivars and a genotype. In addition, similar comparisons were made between virus-infected and virus-free plants derived through meristem culture. Our studies established that among several physiological parameters, photosynthetic rate (A), stomatal conductance (g s) and SPAD metre values were significantly reduced in cultivars severely infected with ScYLV. Virus-infected cultivars exhibited significant reduction in growth/yield parameters, viz. stalk height, stalk thickness and number of internodes. Plant growth reductions were found to be 42.9, 42.3 and 38.9 % in susceptible cultivars CoPant 84211, Co 86032 and CoC 671, respectively. In addition to reduction in stalk weight, height and girth, YL disease also reduced juice yield in the affected canes up to 34.15 %. Similarly, comparison of diseased (virus-infected) and virus-free plants derived through meristem culture also revealed a drastic reduction in cane growth/physiological parameters and juice yield due to virus infection. The present study is the first comprehensive report demonstrating that YL disease caused by ScYLV seriously affects cane and juice yield in major sugarcane varieties under tropical climatic conditions (India). Consequently, this situation warrants a massive programme to provide healthy seed material and initiate breeding for YL resistance in sugarcane.  相似文献   

3.
Sugarcane accumulates high amount of sucrose, thus making it one of the important cash crops worldwide. The final destination of sucrose accumulation in sugarcane is sink tissue, i.e., stalk, supplied by the source, i.e., leaf, to fulfill the need of plant growth, respiration, storage, and other metabolic activities. Signals between sink and source tissues regulate sucrose accumulation in sink and possibly the negative feedback from the sink restrains further accumulation in the stalk. However, perturbation of this negative feedback may help to improve sugar yield. This can be achieved by the application of GA3 (Gibberellic acid), a plant growth regulator, known to excite physiological responses and modify the source–sink metabolism through their effect on photosynthesis, which in turn improves sink strength by redistribution of the photoassimilates. In the present study, GA3 applied canes showed prominent increase in invertase activity, at early stage of the application, to provide hexoses. This in turn helped increase the internodal length and cane capacity for additional accumulation of sucrose, thereby increasing sink strength. At maturity, sucrose% and brix% were found higher in middle and top portions of the GA3-applied canes. Expression analysis of various sucrose metabolising genes viz., sucrose phosphate synthase (SPS), sucrose synthase (SuSy), soluble acid invertase, neutral invertase, and cell wall invertase (CWI) was carried out at different growth stages, using quantitative RT-PCR. CWI, which plays key role in phloem unloading in sink tissues, exhibited higher expression in GA3 samples at the elongation stage which decreased with maturity, whereas both SuSy and SPS, involved in regulation of sucrose accumulation, showed a variable level of expression. Thus, GA3 application on cane may improve the sucrose content in stalk and thus assuage maneuvering source–sink dynamics in sugarcane.  相似文献   

4.

Background and aims

Soil amendment with silicon (Si) can significantly increase resistance of susceptible sugarcane cultivars grown in pots to stalk borer Eldana saccharina (Lepidoptera: Pyralidae). This study tested the hypothesis that a single application of silicate can increase resistance to E. saccharina and increase yield in field-grown sugarcane.

Methods

Two Si materials (Calmasil® and Slagment® at 4 and 8 t/ha) were applied at planting to a field trial extending over three successive crops and incorporating three sugarcane cultivars varying in borer susceptibility.

Results

Both materials, especially Slagment, significantly increased soil, leaf and stalk Si content, but leaf Si levels seldom exceeded 0.5 %. Silicon treatment significantly reduced percent stalks bored in all three crops and stalk length bored in the second ratoon crop, but did not affect borer numbers per 100 stalks (E/100) or increase cane or sucrose yield. Borer damage and E/100 were significantly and consistently reduced in the resistant cultivar.

Conclusions

We argue that if leaf Si% in field sugarcane can be elevated to or exceed 0.8 %, using materials that release Si slowly, substantial reductions in stalk damage and sucrose loss could be achieved in susceptible cultivars in low-Si soils.  相似文献   

5.
Physiological growth of late planted sugarcane crop is restricted by high temperature and a short growth period. This causes considerable reduction in crop and sucrose yields. Improving physiological growth within the short period is, therefore, highly desirable. Two field experiments were undertaken to determine the effect of exogenous applications of Ethrel and gibberellic acid (GA3) on sprouting, shoot population and physiological growth. Sugarcane setts were soaked overnight in Ethrel before planting. Foliar application of GA3 was performed at 90, 120 and 150 days after planting (DAP). Ethrel soaking led to 100% sprouting and high settling population at 20 DAP, due to a significant increase in bud moisture and activities of acid invertase (AI), indole acetic acid oxidase (IAAO), adenosine triphosphatase (ATPase), superoxide dismutase (SOD) and nitrate reductase (NR) activity in vivo. Early sprouting increased the growth period to 245 days compared to 220 days in the unsoaked setts. The applications increased leaf area (57%), leaf area index (76%), leaf area ratio (71%), leaf area duration (48%), biomass duration (52%) and net assimilation rate (69.64%) at the grand growth stage. The changes led to increased shoot numbers (26.3%), internodal numbers stalk?1 (40.74%), internodal length (40%), internodal girth (46.15%) and stalk length (42%) at the harvest stage. The stimulated physiological growth augmented dry matter content, oBrix and purity of cane juice by 24.2, 3 and 0.3%, respectively. The study demonstrates that the induction of higher shoot numbers together with increased leaf area index (LAI) and stalk elongation within a short growth period through Ethrel soaking and gibberellic acid applications is positively associated with enhanced dry matter and sucrose contents.  相似文献   

6.
Environmental stresses (soil compaction, drought, waterlogging) cause changes in plants’ root system structure, also affecting the growth of above-ground parts. The aim of this study was to estimate phenotypic variation among maize and triticale genotypes in root penetration ability through petrolatum-wax-layer (RPA). Also, the effect of shortage or excess of soil water on dry matter of shoots and roots and morphological changes in root system structure in sensitive and resistant maize and triticale genotypes grown in low or high soil compaction level was evaluated. To estimate RPA index, the petrolatum-wax-layer method (PWL) was used. The strength of three petrolatum-wax concentrations 60, 50 and 40 % was 0.52, 1.07 and 1.58 MPa, respectively. High coefficients of variation (CV) were observed in 0.52 and 1.07 MPa and for maize were 19.2 and 21.7 %, and for triticale, 12.5 and 18.3 %, respectively. The data indicate that the use of PWL technique is an effective screening method, and makes it possible to divide the genotypes into resistant and sensitive groups. The second part of this study investigated a multistress effect of soil compaction combined with drought or waterlogging on root and shoot growth and morphological changes in root system structure of maize and triticale genotypes differing in susceptibility to environmental stresses. Seedlings were grown for 4 weeks in root-boxes under conditions of low (LSC 1.1 g cm?3) or severe (SSC 1.6 g cm?3) soil compaction. Drought or waterlogging stresses were applied for 2 weeks from 14th to 28th day. In comparison to LSC treatment, in SSC treatment the decrease in dry matter of shoots and roots was greater for sensitive genotypes of maize and triticale (Ancora, CHD-147). Soil drought or waterlogging caused greater decrease of dry matter of shoots and roots in seedlings grown in SSC in comparison to LSC. The root penetration index (RPI) was estimated as a ratio of root dry matter in 15–40 cm root-box layer to total root dry matter. On the basis of RPI it was possible to group the genotypes according to their ability to distribute roots in soil profile. In comparison to LSC, SSC exerted a strong influence on the length of seminal and seminal adventitious roots, as well as the number and length of L- and S-type lateral roots developed on seminal and nodal roots. In both species the restriction effect of soil compaction on number and length of roots was more severe in sensitive (Ankora, CHD-147) than in resistant (Tina, CHD-247) genotypes. The restriction in roots propagation was greater in triticale than in maize. Exposure to drought or waterlogging in the case of genotypes grown in LSC and SSC treatments caused a decrease in number and length of particular components of root system structure. In both species the decrease of root number and length in plants grown under waterlogging was greater than under drought. The observed changes in root system were greater in sensitive (Ankora, CHD147) than in resistant (Tina, CHD-247) genotypes. Statistically significant correlations were found between RPA and RPI and also between these indexes and soil compaction, drought and waterlogging susceptibility indexes. This indicates that genotypes resistant to soil compaction were resistant to drought or waterlogging and also that genotypes resistant to drought were resistant to waterlogging.  相似文献   

7.
Seedlings of Lotus glaberMill., were grown in a native saline-sodic soil in a greenhouse for 50 days and then subjected to waterlogging for an additional period of 40 days. The effect of soil waterlogging was evaluated by measuring plant growth allocation, mineral nutrition and soil chemical properties. Rhizobiumnodules and mycorrhizal colonisation in L. glaberroots were measured before and after waterlogging. Compared to control plants, waterlogged plants had decreased root/shoot ratio, lower number of stems per plant, lower specific root length and less allocation of P and N to roots. Waterlogged plants showed increased N and P concentrations in plant tissues, larger root crown diameter and longer internodes. Available N and P and organic P, pH and amorphous iron increased in waterlogged soil, but total N, EC and exchangeable sodium were not changed. Soil waterlogging decreased root length colonised by arbuscular mycorrhizal (AM) fungi, arbuscular colonisation and number of entry points per unit of root length colonised. Waterlogging also increased vesicle colonisation and Rhizobium nodules on roots. AM fungal spore density was lower at the end of the experiment in non-waterlogged soil but was not reduced under waterlogging. The results indicate that L. glaber can grow, become nodulated by Rhizobium and colonised by mycorrhizas under waterlogged condition. The responses of L. glaber may be related its ability to form aerenchyma.  相似文献   

8.
Genetic control of yield related stalk traits in sugarcane   总被引:1,自引:0,他引:1  
A major focus of sugarcane variety improvement programs is to increase sugar yield, which can be accomplished by either increasing the sugar content of the cane or by increasing cane yield, as the correlation between these traits is low. We used a cross between an Australian sugarcane variety Q165, and a Saccharum officinarum accession, IJ76-514, to dissect the inheritance of yield-related traits in the complex polyploid sugarcane. A population of 227 individuals was grown in a replicated field trial and evaluated over 3 years for stalk weight, stalk diameter, stalk number, stalk length and total biomass. Over 1,000 AFLP and SSR markers were scored across the population and used to identify quantitative trait loci (QTL). In total, 27 regions were found that were significant at the 5% threshold using permutation tests with at least one trait; individually, they explained from 4 to 10% of the phenotypic variation and up to 46% were consistent across years. With the inclusion of digeneic interactions, from 28 to 60% of the variation was explained for these traits. The 27 genomic regions were located on 22 linkage groups (LGs) in six of the eight homology groups (HGs) indicating that a number of alleles or quantitative trait alleles (QTA) at each QTL contribute to the trait; from one to three alleles had an effect on the traits for each QTL identified. Alleles of a candidate gene, TEOSINTE BRANCHED 1 (TB1), the major gene controlling branching in maize, were mapped in this population using either an SSR or SNP markers. Two alleles showed some association with stalk number, but unlike maize, TB1 is not a major gene controlling branching in sugarcane but only has a minor and variable effect.  相似文献   

9.
为探究甘蔗-大豆间作对甘蔗产量、品质及经济效益的影响,在施用尿素150 kg·hm-2条件下,选择3个甘蔗品种(B8、ROC22及GT21)进行了甘蔗单作、甘蔗-大豆间作两种种植模式的试验.结果表明: 甘蔗-大豆间作对甘蔗的有效茎数、茎径以及原料蔗、蔗糖产量均有显著影响,而对原料蔗品质影响不大;与单作相比,间作大豆处理的宿根蔗茎径大小、有效茎数、蔗茎产量和糖产量分别提高5.1%~8.7%、7.9%~31.0%、9.0%~40.5%和5.6%~39.5%;每公顷原料蔗+大豆、糖+大豆可分别增收5.89~7.93万元和5.83~7.72万元;3个品种中,ROC22间作大豆的经济收益最高,而宿根蔗B8和GT21的产量均高于ROC22.表明甘蔗-大豆间作是减少氮肥施用、提高经济收入的有效栽培措施.  相似文献   

10.
Summary Winter oats were grown outdoors in lysimeters containing monoliths of a sandy loam soil. The soil was either freely-drained throughout the experiment or waterlogged to the soil surface from mid-January until mid-April. After the start of waterlogging the oxygen flux density decreased most rapidly nearer the soil surface and in the upper 50 cm declined to zero. At 80 cm depth the oxygen flux density at the end of the waterlogging still had not diminished to zero. While the soil was waterlogged root growth was negligible in the 20–50 cm zone of the soil profile, whereas below that depth root growth continued, reaching 95 cm by the end of the treatment. During the latter part of the waterlogging period root growth resumed in the upper 10 cm, and in the upper 2.5 cm was greater than in the freelydrained treatment.At the end of the waterlogging period, the total root length and shoot dry weights were 77 and 60% of those in the freely-drained treatment, tillering was restricted and leaf area index diminished. However, by anthesis, root length and shoot weights of the plants that had been waterlogged were only 10 and 12% less respectively than for the freely-drained plants. At harvest, total dry matter and grain yields were only 9% less, the latter largely through fewer grains per panicle.  相似文献   

11.
Summary The effects of winter waterlogging and a subsequent drought on the growth of winter barley and winter wheat have been examined. We used lysimeters containing soil monoliths with facilities to control the water table and a mobile shelter to control rainfall. Winter wheat was grown on a clay and on a sandy loam, but winter barley only on the clay soil. Lysimeters were either freely-drained during the winter or waterlogged with the water table 10 cm below the soil surface from 2 December until 31 March (that could occur by rainfall with a return period of 2 to 3 years). The lysimeters then were either irrigated so that the soil moisture deficit did not exceed 84 mm, or subjected to drought by limiting rainfall (equivalent to a 1 in 10 dry year in the driest area of England) so that the deficits reached maximum values of 150 mm in the clay and 159 mm in the sandy loam by harvest.Winter waterlogging restricted tillering and restricted the number of ears for all crops; grain yield of the winter barley was decreased by 219 g/m2 (30%), and that of winter wheat by 170 g/m2 (24%) and 153 g/m2 (21% on the clay and sandy loam respectively.The drought treatment reduced the straw weight of winter barley by 75 g/m2 (12%) but did not significantly depress the grain yield. For winter wheat on the clay, where the soil was freely-drained during the winter, drought depressed total shoot weight by 344 g/m2 (17%) and grain weight by 137 g/m2 (17%), but after winter waterlogging, drought did not further depress total or grain weight. In contrast, the winter wheat on the sandy loam was not significantly affected by drought.From these results, which are discussed in relation to other experiments in the United Kingdom, it seems that winter waterlogging is likely to cause more variation in the yield of winter barley and winter wheat than drought.  相似文献   

12.
Of approximately 18,200 ha planted to sugarcane in south Texas, only approximately 80 ha (<0.5%) are treated with insecticides because this type of control is widely regarded as ineffective against stalkboring pyralids, the key pests of sugarcane. Therefore, nonchemical control measures, such as resistant varieties and biological controls, must be evaluated to mitigate the losses caused by stalkborers. We performed laboratory and field evaluations on the use of Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina: Hyphomycetes) (strain GHA) against the Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Pyralidae), which causes damage in south Texas estimated at between 10 and 20 million dollars annually. We also performed bioassays against the sugarcane borer, Diatraea saccharalis (F.) (Pyralidae), the key pest in other sugarcane growing areas. In the bioassays, E. loftini was substantially more susceptible to B. bassiana than D. saccharalis, based on both 5-d LD50 values and survival times. A commercial oil-based formulation of B. bassiana was evaluated in the field using the following treatments: oil alone (control), B. bassiana + oil, and B. bassiana + Silwet L-77 carrier at an application rate of 5 x 10(13) spores per hectare. Neither numbers of E. loftini per stalk, nor stalk damage (approximately 20% bored internodes) were significantly affected by treatment. The application of B. bassiana + Silwet significantly affected the numbers of internodes showing high damage, but not those with low or medium damage. Analysis of yield data and juice quality showed no significant treatment effects. We conclude that the application of Beauveria + Silwet offers the best chances for reducing damage caused by E. loftini of those treatments tested. However, reductions in insect incidence or damage did not result in measurable increases in yield or sugar quality, probably because of insufficient coverage. Effective control of stalkboring pyralids in sugarcane using B. bassiana will likely require improvements in delivery technology.  相似文献   

13.
DAS-ELISA studies were conducted on detection of sugarcane yellow leaf virus (SCYLV) causing yellow leaf syndrome (YLS) of sugarcane in leaf and juice antigens. Among the two types of antigen sources used for the virus detection, juice antigen showed high titre for the virus as compared to leaf antigen. Assay with juice samples recorded more number of varieties positive to the virus. Further DAS-ELISA studies revealed that plants raised from disease-infected planting materials recorded high titre for SCYLV as compared to those raised from symptom-free seed canes. Similarly, assaying SCYLV titre in plant and ratoon crop in the field showed that SCYLV infection was partial in plant crop and in the subsequent ratoon crop, all the samples were positive to the virus. ELISA studies also indicated that 33 of 41 cane varieties showing YLS were positive to the virus.  相似文献   

14.
Spatial patterns of incidence of Phomopsis cane and leaf spot were examined using 57 data sets obtained from a statewide survey of grape vineyards in Ohio from 2002–2004. To characterize small‐scale patterns at the vine scale or below, discrete‐distributional analyses were used to quantify the heterogeneity of disease incidence within vineyards. The number of diseased leaves and internodes (out of 15) per sampling unit was better fitted by the beta‐binomial than the binomial distribution in 67% and 91% of the cases, respectively. The index of aggregation was significantly >1 for 78% and 98% of the cases for diseased leaves and internodes, respectively. These results indicated aggregation of this disease at an individual vine scale (or lower). Conversely, there was little evidence of aggregation at scales larger than a vine (e.g. disease foci extending beyond individual vines) for most vineyards based on Spatial Analysis by Distance IndicEs (SADIE). SADIE analysis suggested a random pattern of the count of diseased leaves and internodes in the majority (>86%) of the cases. Based on SADIE, there was significant (P 0.05) evidence of association between leaf and internode disease counts per vineyard in 75% of cases, indicating that the dispersal of inoculum from the previously infected wood tissues (canes) affected both leaf and internode in the same manner. In contrast, association of disease counts from one year to the next was only significant in approximately 15% of the cases, indicating the difficulty in predicting the level of disease in a section of a vineyard based on the previous year’s observations alone.  相似文献   

15.
干旱与渍涝对砂姜黑土玉米根系干重变化及其分布的影响   总被引:15,自引:3,他引:12  
砂姜黑土主要分布于黄淮海平原的南部(淮北平原、沂河平原和胶莱平原等)和南阳盆地,面积约4×106ha,其中河南省125×106ha[1],是面积较大的中低产田。其低产的主要原因可归结为“旱、涝、僵、薄”,根本原因在于其不良的水分物理特性[2~4]。而关于旱、涝灾害对作物根系的影响还未见报道。砂姜黑土区地势平坦,土层深厚,光、热、水等自然资源比较丰富,具有适宜作物生长发育的有利条件。因而,充分了解和掌握旱、涝灾害对作物根系的影响,因时制宜灌溉、排涝和耕作,对提高该区粮食产量具有重要意义。为此,于1997~1998年探讨了干旱与渍涝对砂…  相似文献   

16.
Representative shoot segments of the grass speciesArundinariatéctaconsisting of one intact internode and its subtendingnode and clasping leaf sheath were tested to determine the mechanicalinfluence of the leaf sheath on the ability of stems to resistbending and twisting forces. These segments were also used tomeasure shoot morphometry and composite tissue Young's and shearmoduli (EandG,respectively) to simulate the global deformationpatterns attending bending and twisting by means of finite elementanalyses. On average, leaf sheaths contributed 33% of the overallbending stiffness and 43% of the overall torsional stiffnessof stem segments. Comparisons betweenEandGof isolated internodesand leaf sheaths indicated that sheaths were composed of stiffertissues measured either in bending or twisting. Thus, leaf sheathscould act as an external cylindrical brace composed of stiffermaterials than those of the internodes they enveloped. The magnitudesof internodalEandGwere correlated with internodal shape suchthat the ability of internodes to resist twisting relative tothe ability to resist bending forces decreased as internodesbecame more slender or developed thinner walls (both of whichoccur in an acropetal direction from the base to the tip ofshoots). Finite element simulations predicted that, in bending,the leaf sheath laterally braces internodal walls as they tendto ovalize in cross section and push against its inner surfacewhich ovalizes to a lesser extent in the plane normal to thecurvature of shoot flexure. In twisting, the successive ovalizedtransections of internodal walls assumed a helical pattern alongthe length of shoot segments. This helical deformation patternwas attended by an inner lateral contraction of internodal wallsthat was less developed in the leaf sheath that thus provideddecreasing mechanical support to the internode as the lateralcontraction of internodal walls amplified. The twisting of internodesand sheaths was also predicted to concentrate tensile and shearstrains in the nodal diaphragm. Here stress intensities sufficientto produce tissue shear failure were concentrated at two opposingpoints on the surface of the diaphragm. Finite element analysesthus identified a potential weak point in the mechanical constructionof hollow, septate shoots that are, nevertheless, more thanadequately stiff to support their own weight, yet sufficientlyflexible to twist without irreparable damage in normal winds.Copyright1998 Annals of Botany Company Plant stems; nodes; internodes; leaf sheaths; elastic moduli; wind lodging; biomechanics.  相似文献   

17.
防雨池栽条件下,设置渍水、干旱和对照3个土壤水分处理,每水分处理下再设置两个施氮水平,研究了花后渍水和干旱逆境下氮素水平对两个蛋白质含量不同的小麦品种光合特性和籽粒淀粉积累的影响.结果表明,与对照相比,花后渍水和干旱处理显著降低小麦旗叶净光合速率和SPAD值,干物质积累量下降.干旱处理下,增施氮肥提高旗叶光合速率和SPAD值,渍水处理下则相反.水分逆境明显降低籽粒可溶性总糖含量,且渍水处理下增施氮肥降低小麦叶片和籽粒可溶性总糖含量,干旱状态下规律相反.渍水处理下增施氮肥降低淀粉积累速率.水分逆境明显降低小麦粒重、产量和淀粉产量,且干旱处理下增施氮肥有利于籽粒重、产量和淀粉产量的提高,而渍水下增施氮肥使粒重和产量进一步降低.试验结果表明,花后渍水和干旱逆境下施用氮肥对小麦旗叶光合速率和籽粒淀粉积累有明显的调节效应.  相似文献   

18.
Sucrose, glucose and fructose concentrations, and sucrolytic enzyme activities were measured in the developing shoots and internodes of sprouting sugarcane setts (Saccharum spp, variety N19). The most striking change during the sink-source transition of the internode and germination of the axillary bud is a more than five-fold induction of cell wall invertase in the germinating bud. In contrast, soluble acid invertase is the main sucrose hydrolytic activity induced in the internodal tissue. A cycle of breakdown and synthesis of sucrose was evident in both the internodes and the shoots. During shoot establishment, the sucrose content decreased and the hexose content increased in the internodal tissues while both sucrose and hexoses continuously accumulated in the shoots. Over the sprouting period internode, dry mass was reduced by 25 and 30 % in plants incubated in a dark/light cycle or total darkness, respectively. Sucrose accounted for 90 % of the dry mass loss. The most significant changes in SuSy activity are in the synthesis direction in the shoots resulting in a decrease in the breakdown/synthesis ratio. In contrast the SuSy activity in the internodal tissue decrease and more so in the synthesis activity resulting in an increase in the breakdown to synthesis ratio.  相似文献   

19.
The first flush of young canes of red raspberry (Rubus idaeus) was removed at different dates in spring, using the contact herbicide dinoseb. In comparison with untreated plots, cane removal increased fruit yield, controlled excessive cane vigour, and improved the health status of vegetative canes in a plantation infested by raspberry cane midge (Resseliella theobaldi). At the end of the growing season vegetative canes on treated plots were shorter and thinner, and sustained less physical injury than those on untreated plots. Access to the fruit at harvest was also improved. Reduced competition between fruiting and vegetative canes increased yield in the year of treatment by an average of 35%. Yield was not affected by date of cane removal, but growth of replacement cane was reduced below optimum when first flush cane was removed after mid-May. The later the canes were removed, the less was the incidence of pest and diseases. Cankers and lobate vascular lesions (‘patches’) resulting, respectively, from the feeding of first and second generation midge larvae (with associated fungi) affected fewer canes in treated than in untreated plots. Significantly fewer live larvae of R. theobaldi were recovered in the following winter from soil in plots treated on or after 11 May than from untreated plots. The main effect of vigour control on R. theobaldi and midge blight was that replacement canes provided fewer egg-laying sites (natural splits) than did the first flush canes on untreated plots. The incidence of spreading vascular lesions (‘stripes’) attributed to Leptosphaeria coniothyrium infecting either physical wounds (cane blight) or midge feeding wounds (midge blight) was substantially less in treated than untreated plots. Cane botrytis (Botrytis cinerea) and spur blight (Didymella applanata) were also less common in treated plots. Interactions between vigour control and pest and disease incidence are discussed in relation to the efficient management of cv. Glen Clova in eastern Scotland.  相似文献   

20.
Summary Tomato plants were grown at three constant temperatures (10, 20 and 28°C) with drained or waterlogged rootzones and were irrigated with saline solution (0.09M NaCl).Each increase in temperature resulted in an increase in leaf Na-ion and Cl-ion concentrations in plants grown with drained rootzones. However, with plants grown with waterlogged rootzones, maximum leaf concentrations of Na-ions and Cl-ions occurred at 20°C.At 10°C there were no differences between Na-ion and Cl-ion concentrations for drained or waterlogged treatments. At 20 and 28°C, waterlogging of the rootzone resulted in significantly higher concentrations of Na-ions and Cl-ions in leaf and stem tissues than occurred with drained rootzones.There were no differences in Na-ions and Cl-ions and Cl-ions in plant tops if plants were waterlogged with saline solution during the day or night.Transpiration increased significantly with each increase in temperature but showed no other treatment dependent responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号