首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naturally occurring cancers in non-laboratory species have great potential in helping to decipher the often complex causes of neoplasia. Wild animal models could add substantially to our understanding of carcinogenesis, particularly of genetic and environmental interactions, but they are currently underutilized. Studying neoplasia in wild animals is difficult and especially challenging in marine mammals owing to their inaccessibility, lack of exposure history, and ethical, logistical and legal limits on experimentation. Despite this, California sea lions (Zalophus californianus) offer an opportunity to investigate risk factors for neoplasia development that have implications for terrestrial mammals and humans who share much of their environment and diet. A relatively accessible California sea lion population on the west coast of the USA has a high prevalence of urogenital carcinoma and is regularly sampled during veterinary care in wildlife rehabilitation centres. Collaborative studies have revealed that genotype, persistent organic pollutants and a herpesvirus are all associated with this cancer. This paper reviews research to date on the epidemiology and pathogenesis of urogenital carcinoma in this species, and presents the California sea lion as an important and currently underexploited wild animal model of carcinogenesis.  相似文献   

2.
Powdery mildew (PM) is a serious disease in many legume species, including the common bean (Phaseolus vulgaris L.). This study investigated the genetic control behind resistance reaction to PM in the bean genotype, Cornell 49242. The results revealed evidence supporting a qualitative mode of inheritance for resistance and the involvement of two independent genes in the resistance reaction. The location of these resistance genes was investigated in a linkage genetic map developed for the XC RIL population. Contingency tests revealed significant associations for 28 loci out of a total of 329 mapped loci. Fifteen were isolated or formed groups with less than two loci. The thirteen remaining loci were located at three regions in linkage groups Pv04, Pv09, and Pv11. The involvement of Pv09 was discarded due to the observed segregation in the subpopulation obtained from the Xana genotype for the loci located in this region. In contrast, the two subpopulations obtained from the Xana genotype for the BM161 locus, linked to the Co-3/9 anthracnose resistance gene (Pv04), and from the Xana genotype for the SCAReoli locus, linked to the Co-2 anthracnose resistance gene (Pv11), exhibited monogenic segregations, suggesting that both regions were involved in the genetic control of resistance. A genetic dissection was carried out to verify the involvement of both regions in the reaction to PM. Two resistant recombinant lines were selected, according to their genotypes, for the block of loci included in the Co-2 and Co-3/9 regions, and they were crossed with the susceptible parent, Xana. Linkage analysis in the respective F2 populations supported the hypothesis that a dominant gene (Pm1) was located in the linkage group Pv11 and another gene (Pm2) was located in the linkage group Pv04. This is the first report showing the localization of resistance genes against powdery mildew in Phaseolus vulgaris and the results offer the opportunity to increase the efficiency of breeding programs by means of marker-assisted selection.  相似文献   

3.
HPSE (heparanase) is the predominant enzyme in mammals capable of cleaving heparan sulfate, an activity highly implicated in cellular invasion and tumor metastasis. HPSE expression is induced in many types of cancer and increased HPSE levels are most often associated with increased tumor metastasis and reduced patient survival post operation. In addition, HPSE induction is associated with progression of the primary tumors but the mechanism(s) underlying tumor expansion by HPSE have not been sufficiently resolved. Our results establish a role for heparanase in modulating autophagy in normal and malignant cells, thereby conferring growth advantages as well as resistance to chemotherapy.  相似文献   

4.

Objectives

The role of heparanase (HPSE) gene in cancers including hepatocellular carcinoma (HCC) is currently controversial. This study was aimed at investigating the impact of genetic alteration and expression change of HPSE on the progression and prognosis of HCC.

Methods

The HPSE gene was studied in three different aspects: (1) loss of heterozygosity (LOH) by a custom SNP microarray and DNA copy number by real-time PCR; (2) mRNA level by qRT-PCR; and (3) protein expression by immunohistochemistry. The clinical significances of allele loss and expression change of HPSE were analyzed.

Results

Microarray analysis showed that the average LOH frequency for 10 SNPs located within HPSE gene was 31.6%, three of which were significantly correlated with tumor grade, serum HBV-DNA level, and AFP concentration. In agreement with SNP LOH data, DNA copy number loss of HPSE was observed in 38.74% (43/111) of HCC cases. HPSE mRNA level was notably reduced in 74.1% (83/112) of tumor tissues compared with non-tumor liver tissues, which was significantly associated with DNA copy number loss, increased tumor size, and post-operative metastasis. HPSE protein level was also remarkably reduced in 66.3% (53/80) of tumor tissues, which was correlated with tumor grade. Patients with lower expression level of HPSE mRNA or protein had a significantly lower survival rate than those with higher expression. Cox regression analysis suggested that HPSE protein was an independent predictor of overall survival in HCC patients.

Conclusions

The results in this study demonstrate that genetic alteration and reduction of HPSE expression are associated with tumor progression and poor prognosis of HCCs, suggesting that HPSE behaves like a tumor suppressor gene and is a potential prognostic marker for HCC patients.  相似文献   

5.
Dong J  Kukula AK  Toyoshima M  Nakajima M 《Gene》2000,253(2):171-178
Heparanase (HPSE), which we have recently isolated, is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate and has been implicated in inflammation and tumor angiogenesis and metastasis. In this report, the genomic organization and chromosome localization of the human heparanase gene is described. Polymerase chain reaction, subcloning and DNA sequencing analysis of a bacterial artificial chromosome (BAC) clone revealed that the 3.7 kb human heparanase cDNA is spread over about 50 kb and contains 14 exons and 13 introns. The heparanase gene is expressed as two mRNA species containing the same open reading frame, HPSE 1a (5 kb) (GenBank Data Library under accession number: AF155510); and HPSE 1b (1.7 kb) (GenBank Data Library under accession number: AF144325), generated by alternative splicing. The HPSE 1a-form contains all 14 exons, whereas in the HPSE 1b-form the first and fourteenth exons (5'- and 3'-untranslated region) have been spliced out. All splice sites conform to the GT-AG rule, except for the splice donor site of intron 13 (which is GA instead of GT), and the splice acceptor of intron 13 (which is GG instead of AG). Fluorescence in situ hybridization and radiation hybrid mapping suggest that the heparanase gene is located on human chromosome 4q22. This report regarding the structure of the human heparanase gene will aid in understanding the genetic contribution of this gene to normal physiology as well as to disease states. A possible involvement of heparanase in neuronal degeneration is discussed.  相似文献   

6.
Heparan sulfate (HS), which consists of repeating disaccharide units, plays an essential role in inflammation and viral infections. Heparanase (encoded by the HPSE gene) can cleave the HS chains of heparan sulfate proteoglycans (HSPGs), which are known to be important participants in immune responses. HPSE2 (heparanase 2) is a homologous gene of HPSE. To investigate the functions of HS, which is the primary receptor of the porcine reproductive and respiratory syndrome virus (PRRSV), the two genes involved in the metabolic process of HS were studied. Here, we present a study of tissue expression profiles, polymorphisms of the HPSE and HPSE2 genes, and the changes of their mRNA levels in porcine alveolar macrophages (PAMs) induced by PRRSV. Both genes are preferentially expressed in porcine immune or immune-related organs under normal conditions, e.g., in the lung, spleen, and lymph node. Moreover, a synonymous mutation c.750A>G located in exon5 of the HPSE gene was detected, and was significantly associated with the white blood cell (WBC) count, red blood cell (RBC) count, hemoglobin (HGB), and hematocrit (HCT) in the peripheral blood (p?<?0.05). A single nucleotide polymorphism (SNP) c.2073A>G was found in the HPSE2 gene and association analysis showed that it was significantly associated with the WBC content in the blood (p?<?0.05). Upon stimulation in healthy piglets with PRRSV, the HPSE mRNA was obviously up-regulated, while the HPSE2 mRNA did not induce a prominent change in PAMs.  相似文献   

7.

Background

Stem cell-fate is highly regulated by stem cell niche, which is composed of a distinct microenvironment, including neighboring cells, signals and extracellular matrix. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells and are potentially applicable in wide variety of pathological conditions. However, the niche microenvironment for BM-MSCs maintenance has not been clearly characterized. Accumulating evidence indicated that heparan sulfate glycosaminoglycans (HS-GAGs) modulate the self-renewal and differentiation of BM-MSCs, while overexpression of heparanase (HPSE1) resulted in the change of histological profile of bone marrow. Here, we inhibited the enzymatic activity of cell-autonomous HPSE1 in BM-MSCs to clarify the physiological role of HPSE1 in BM-MSCs.

Results

Isolated mouse BM-MSCs express HPSE1 as indicated by the existence of its mRNA and protein, which includes latent form and enzymatically active HPSE1. During in vitro osteo-differentiations, although the expression levels of Hpse1 fluctuated, enzymatic inhibition did not affect osteogenic differentiation, which might due to increased expression level of matrix metalloproteinase 9 (Mmp9). However, cell proliferation and colony formation efficiency were decreased when HPSE1 was enzymatically inhibited. HPSE1 inhibition potentiated SDF-1/CXCR4 signaling axis and in turn augmented the migratory/anchoring behavior of BM-MSCs. We further demonstrated that inhibition of HPSE1 decreased the accumulation of acetylation marks on histone H4 lysine residues suggesting that HPSE1 also modulates the chromatin remodeling.

Conclusions

Our findings indicated cell-autonomous HPSE1 modulates clonogenicity, proliferative potential and migration of BM-MSCs and suggested the HS-GAGs may contribute to the niche microenvironment of BM-MSCs.  相似文献   

8.

Aims

The aim of this study was to investigate the antimetastatic effect of multiple antigenic polypeptide (MAP) vaccine based on B-cell epitopes of heparanase (HPSE) on human hepatocellular carcinoma (HCC) in vivo.

Methods

The antiserum against B-cell epitopes of HPSE was isolated, purified and characterized after immunizing white-hair-black-eye (WHBY) rabbit with freshly synthesized MAP vaccine. Tumor-bearing murine models of orthotopic implants using HCC-97H cell line were built in BALB/c nude mice. Anti-MAP polyclonal antibodies induced by MAP vaccine were administrated to the models. The impact on metastasis was assessed, the expressions of VEGF/bFGF in hepatoma tissues and in murine sera were evaluated, and the micro-vessel density (MVD) was counted as well. In addition, the possible impairments of the HPSE MAP vaccine on certain HPSE positive normal organs and blood cells were investigated.

Results

The antiserum was harvested, purified and identified. The antibodies induced by MAP vaccine could specifically react with the dominant epitopes of both precursor protein and large subunit monomer of HPSE, markedly decrease HPSE activity, suppress the expressions of both VEGF and bFGF, and reduce the MVD. Pulmonary metastasis was also attenuated significantly by the anti-MAP polyclonal antibodies. In addition, no obvious impairment could be observed in certain HPSE positive organs and cells.

Conclusion

MAP vaccine based on B-cell epitopes of HPSE is capable of alleviating HCC metastasis in vivo, mainly through inhibiting the HPSE activity and tumor associated angiogenesis, by virtue of the specific anti-MAP polyclonal antibodies. Furthermore, these HPSE-specific antibodies do not cause obvious abnormalities on certain HPSE positive blood cells and organs. Our study provides theoretical evidences for the clinical use of the synthesized MAP vaccine based on B-cell epitopes of HPSE in preventing HCC metastasis.  相似文献   

9.
Aim: To construct short hairpin RNAs (shRNAs) and miR30-based shRNAs against heparanase (HPSE) to compare their safety and their effects on HPSE down-modulation in vitro and in vivo to develop a more ideal therapeutic RNA interference (RNAi) vector targeting HPSE.Methods: First, we constructed shRNAs and miR30-based shRNAs against HPSE (HPSE-shRNAs and HPSE-miRNAs) and packed them into lentiviral vectors. Next, we observed the effects of the shRNAs on knockdown for HPSE expression, adhesion, migration and invasion abilities in human malignant melanoma A375 cells in vitro. Furthermore, we compared the effects of the shRNAs on melanoma growth, metastasis and safety in xenograft models.Results: Our data showed that these artificial miRNAs targeting HPSE could be effective RNAi agents mediated by Pol II promoters in vitro and in vivo, although these miRNAs were not more potent than the HPSE-shRNAs. It was noted that obvious lung injuries, rarely revealed previously, as well as hepatotoxicity could be caused by lentivirus-mediated shRNAs (LV shRNAs) rather than lentivirus-mediated miRNAs (LV miRNAs) in vivo. Furthermore, enhanced expression of pro-inflammatory cytokines IL-6 and TGF-β1 and endogenous mmu-miR-21a-5p were detected in lung tissues of shRNAs groups, whereas the expression of mmu-let-7a-5p, mmu-let-7b-5p and mmu-let-7c-5p were down-regulated.Conclusion: These findings suggest that artificial miRNAs display an improved safety profile of lowered lung injury or hepatotoxicity relative to shRNAs in vivo. The mechanism of lung injuries caused by shRNAs may be correlated with changes of endogenous miRNAs in the lung. Our data here increase the flexibility of a miRNA-based RNAi system for functional genomic and gene therapy applications.  相似文献   

10.
11.
12.
Heparanase activity is highly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. Heparanase expression is induced in many hematological and solid tumors, associated with poor prognosis. Heparanase homolog, termed heparanase 2 (Hpa2), was cloned based on sequence homology. Detailed characterization of Hpa2 at the biochemical, cellular, and clinical levels has not been so far reported, and its role in normal physiology and pathological disorders is obscure. We provide evidence that unlike heparanase, Hpa2 is not subjected to proteolytic processing and exhibits no enzymatic activity typical of heparanase. Notably, the full-length Hpa2c protein inhibits heparanase enzymatic activity, likely due to its high affinity to heparin and heparan sulfate and its ability to associate physically with heparanase. Hpa2 expression was markedly elevated in head and neck carcinoma patients, correlating with prolonged time to disease recurrence (follow-up to failure; p = 0.006) and inversely correlating with tumor cell dissemination to regional lymph nodes (N-stage; p = 0.03). Hpa2 appears to restrain tumor metastasis, likely by attenuating heparanase enzymatic activity, conferring a favorable outcome of head and neck cancer patients.  相似文献   

13.
Approaches using microsatellite markers are considered the gold standard for modern population genetic studies. However, although they have found application in research into various platyhelminth taxa, they remained substantially underutilized in the study of monogeneans. In the present study, a newly developed set of 24 microsatellite markers was used to investigate the genetic diversity of the generalist monogenean species Dactylogyrus vistulae. The analyzed parasite specimens were collected from 13 cyprinoid species from 11 sites in the Apennine and Balkan peninsulas. A total of 159 specimens were genotyped at each of the loci and the number of alleles per locus ranged from 2 to 16, with a mean number of 6.958 alleles per locus. Exceptionally high genetic diversity was observed among D. vistulae individuals in the southern Balkans (mean N A per locus = 3.917), suggesting that generalist D. vistulae expanded from the south to the north in the Balkans and later into central Europe. The initial clustering analysis divided all investigated specimens into three major clusters; however, the results of the subsequent analyses revealed the existence of various subpopulations, suggesting that the population structure of D. vistulae is associated with the diversification of their cyprinoid hosts. In addition, the partition of the parasite population was observed in regions of the sympatric occurrence of two host species, indicating that these hosts may represent a barrier for gene flow, even for generalist parasite species.  相似文献   

14.
The Pilosocereus aurisetus group contains eight cactus species restricted to xeric habitats in eastern and central Brazil that have an archipelago-like distribution. In this study, 5–11 microsatellite markers previously designed for Pilosocereus machrisii were evaluated for cross-amplification and polymorphisms in ten populations from six species of the P. aurisetus group. The genotypic information was subsequently used to investigate the genetic relationships between the individuals, populations, and species analyzed. Only the Pmac101 locus failed to amplify in all of the six analyzed species, resulting in an 88?% success rate. The number of alleles per polymorphic locus ranged from 2 to 12, and the most successfully amplified loci showed at least one population with a larger number of alleles than were reported in the source species. The population relationships revealed clear genetic clustering in a neighbor-joining tree that was partially incongruent with the taxonomic limits between the P. aurisetus and P. machrisii species, a fact which parallels the problematic taxonomy of the P. aurisetus group. A Bayesian clustering analysis of the individual genotypes confirmed the observed taxonomic incongruence. These microsatellite markers provide a valuable resource for facilitating large-scale genetic studies on population structures, systematics and evolutionary history in this group.  相似文献   

15.
IntroductionThe search for a specific marker that could help to distinguish between differentiated thyroid carcinoma and benign lesions remains elusive in clinical practice. Heparanase (HPSE) is an endo-beta-glucoronidase implicated in the process of tumor invasion, and the heparanase-2 (HPSE2) modulates HPSE activity. The aim of this study was to evaluate the role of heparanases in the development and differential diagnosis of follicular pattern thyroid lesions.MethodsHPSE and HPSE2 expression by qRT-PCR, immunohistochemistry evaluation, western blot analysis and HPSE enzymatic activity were evaluated.ResultsThe expression of heparanases by qRT-PCR showed an increase of HPSE2 in thyroid carcinoma (P = 0.001). HPSE activity was found to be higher in the malignant neoplasms than in the benign tumors (P<0.0001). On Western blot analysis, HPSE2 isoforms were detected only in malignant tumors. The immunohistochemical assay allowed us to establish a distinct pattern for malignant and benign tumors. Carcinomas showed a typical combination of positive labeling for neoplastic cells and negative immunostaining in colloid, when compared to benign tumors (P<0.0001). The proposed diagnostic test presents sensitivity and negative predictive value of around 100%, showing itself to be an accurate test for distinguishing between malignant and benign lesions.ConclusionsThis study shows, for the first time, a distinct profile of HPSE expression in thyroid carcinoma suggesting its role in carcinogenesis.  相似文献   

16.
To know the involvement of glycosaminoglycans (GAGs) in the metastasis of mouse FBJ osteosarcoma cells, N α -lauroyl-O-(β-d-xylopyranosyl)-l-serinamide (Xyl-Ser-C12), which initiates elongation of GAG chains using the glycan biosynthesis system in cells, was administered to FBJ cells with different metastatic capacities. Production of glycosylated products derived from Xyl-Ser-C12, especially heparan sulfate (HS) GAG-type oligosaccharides such as GalNAc-GlcA-GlcNAc-GlcA-Gal-Gal-Xyl-Ser-C12, was indicated in poorly metastatic FBJ-S1 cells more than in highly metastatic FBJ-LL cells by LC–MS. The results of RT-PCR revealed that HS synthases, Ext1 and Ext2, were expressed in FBJ-S1 cells more than in FBJ-LL cells. Furthermore, siRNA against Ext1 suppressed the expression of HS and enhanced the motility of FBJ-S1 cells. In addition, the expression of heparanase (HPSE) was enhanced in Ext-1-knockdown FBJ-S1 cells, and responsible for the increase in cell motility caused by the down-regulation of Ext1 expression. Our data provide the first evidence that Ext1 regulates the expression of HPSE and also indicated that levels of Ext1 and HPSE influenced the motility of FBJ cells.  相似文献   

17.
The incidence of human infection with Campylobacter jejuni is increasing in most developed countries and the reason for this is largely unknown. Although poultry meat is considered to be a major source, it is evident that other reservoirs exist, possibly common to humans and poultry. Environmental sources are believed to be important reservoirs of Campylobacter infection in broiler chicken flocks. We investigated the potential importance of wildlife as a source of infection in commercial poultry flocks and in humans by comparing the serotype distributions, fla types, and macrorestriction profiles (MRPs) of C. jejuni isolates from different sources. The serotype distribution in wildlife was significantly different from the known distributions in broilers and humans. Considerable sero- and genotype diversity was found within the wildlife collection, although two major groups of isolates within serotype O:12 and the O:4 complex were found. Common clonal lines among wildlife, chicken, and/or human isolates were identified within serotype O:2 and the O:4 complex. However, MRPs of O:12 and O:38 strains isolated from wildlife and other sources indicated that some clonal lines propagated in a wide selection of animal species but were not detected in humans or broilers in this study. The applied typing methods successfully identified different clonal groups within a strain collection showing large genomic diversity. However, the relatively low number of wildlife strains with an inferred clonal relationship to human and chicken strains suggests that the importance of wildlife as a reservoir of infection is limited.  相似文献   

18.
陈泓  李力  王琪  张玮  姚德生 《生物磁学》2009,(20):3836-3840
目的:构建乙酰肝素酶重组慢病毒转基因和siRNA干扰质粒,为探讨HPSE在在肿瘤浸润转移过程中的分子机理奠定基础。方法:乙酰肝素酶cDNA全长扩增和最佳siRNA干扰片段筛选分别采用PCR和Real-time PCR方法,慢病毒系统载体分别使用pWPI和siRNA pSico系统,采用限制性内切酶快速连接方法联接目的基因和最佳最佳siRNA干扰片段,表达载体鉴定均采用核苷酸序列测定,HPSE重组慢病毒表达质粒和siRNA片段细胞转染采用脂质体转染法。结果:成功扩增乙酰肝素酶全长并连接入pWPI载体构建成重组表达载体HPSE-pWPI,重组质粒测序结果显与HPSE基因的同源性达99%。转染293T后有HPSE基因的表达。筛选出最佳siRNA干扰片段为HPSE-1222并成功插入pSico载体,构建成重组表达载体HPSE-siRNA pSico,重组载体测序显示与构建的shRNA结构序列完全一致。结论:成功采用慢病毒载体系统构建了乙酰肝素酶重组慢病毒转基因和siRNA干扰质粒,为探讨HPSE在在肿瘤浸润转移过程中的分子机理奠定基础。  相似文献   

19.
Microsatellite markers for Lycium ruthenicum (Solananeae)   总被引:2,自引:0,他引:2  
We developed microsatellite markers in Lycium ruthenicum, a desert plant widely distributed in northwestern China. In order to investigate its population genetic structure, genetic diversity, and its evolutionary history, we have isolated 11 novel microsatellite loci primers and characterized them in 24 individuals from 3 populations of L. ruthenicum using the combined biotin capture technique. For these microsatellites, one to seven alleles per locus were identified. The observed heterozygosities ranged from 0 to 0.958, meanwhile the expected heterozygosities ranged from 0 to 0.841. These microsatellite markers could be first useful for population level studies like genetic diversity and structure in this species.  相似文献   

20.
Infiltration of peripheral immune cells after blood-brain barrier dysfunction causes severe inflammation after a stroke. Although the endothelial glycocalyx, a network of membrane-bound glycoproteins and proteoglycans that covers the lumen of endothelial cells, functions as a barrier to circulating cells, the relationship between stroke severity and glycocalyx dysfunction remains unclear. In this study, glycosaminoglycans, a component of the endothelial glycocalyx, were studied in the context of ischemic stroke using a photochemically induced thrombosis mouse model. Decreased levels of heparan sulfate and chondroitin sulfate and increased activity of hyaluronidase 1 and heparanase (HPSE) were observed in ischemic brain tissues. HPSE expression in cerebral vessels increased after stroke onset and infarct volume greatly decreased after co-administration of N-acetylcysteine + glycosaminoglycan oligosaccharides as compared with N-acetylcysteine administration alone. These results suggest that the endothelial glycocalyx was injured after the onset of stroke. Interestingly, scission activity of proHPSE produced by immortalized endothelial cells and HEK293 cells transfected with hHPSE1 cDNA were activated by acrolein (ACR) exposure. We identified the ACR-modified amino acid residues of proHPSE using nano LC–MS/MS, suggesting that ACR modification of Lys139 (6-kDa linker), Lys107, and Lys161, located in the immediate vicinity of the 6-kDa linker, at least in part is attributed to the activation of proHPSE. Because proHPSE, but not HPSE, localizes outside cells by binding with heparan sulfate proteoglycans, ACR-modified proHPSE represents a promising target to protect the endothelial glycocalyx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号