首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spread of β-lactamases that hydrolyze penicillins, cephalosporins and carbapenems among Gram-negative bacteria has limited options for treating bacterial infections. Initially, Klebsiella pneumoniae carbapenemase-2 (KPC-2) emerged as a widespread carbapenem hydrolyzing β-lactamase that also hydrolyzes penicillins and cephalosporins but not cephamycins and ceftazidime. In recent years, single and double amino acid substitution variants of KPC-2 have emerged among clinical isolates that show increased resistance to ceftazidime. Because it confers multi-drug resistance, KPC β-lactamase is a threat to public health. In this study, the evolution of KPC-2 function was determined in nine clinically isolated variants by examining the effects of the substitutions on enzyme kinetic parameters, protein stability and antibiotic resistance profile. The results indicate that the amino acid substitutions associated with KPC-2 natural variants lead to increased catalytic efficiency for ceftazidime hydrolysis and a consequent increase in ceftazidime resistance. Single substitutions lead to modest increases in catalytic activity while the double mutants exhibit significantly increased ceftazidime hydrolysis and resistance levels. The P104R, V240G and H274Y substitutions in single and double mutant combinations lead to the largest increases in ceftazidime hydrolysis and resistance. Molecular modeling suggests that the P104R and H274Y mutations could facilitate ceftazidime hydrolysis through increased hydrogen bonding interactions with the substrate while the V240G substitution may enhance backbone flexibility so that larger substrates might be accommodated in the active site. Additionally, we observed a strong correlation between gain of catalytic function for ceftazidime hydrolysis and loss of enzyme stability, which is in agreement with the ‘stability-function tradeoff’ phenomenon. The high Tm of KPC-2 (66.5°C) provides an evolutionary advantage as compared to other class A enzymes such as TEM (51.5°C) and CTX-M (51°C) in that it can acquire multiple destabilizing substitutions without losing the ability to fold into a functional enzyme.  相似文献   

2.
Beta-lactamases inactivate beta-lactam antibiotics and are a major cause of antibiotic resistance. The recent outbreaks of Klebsiella pneumoniae carbapenem resistant (KPC) infections mediated by KPC type beta-lactamases are creating a serious threat to our "last resort" antibiotics, the carbapenems. KPC beta-lactamases are serine carbapenemases and are a subclass of class A beta-lactamases that have evolved to efficiently hydrolyze carbapenems and cephamycins which contain substitutions at the alpha-position proximal to the carbonyl group that normally render these beta-lactams resistant to hydrolysis. To investigate the molecular basis of this carbapenemase activity, we have determined the structure of KPC-2 at 1.85 A resolution. The active site of KPC-2 reveals the presence of a bicine buffer molecule which interacts via its carboxyl group with conserved active site residues S130, K234, T235, and T237; these likely resemble the interactions the beta-lactam carboxyl moiety makes in the Michaelis-Menten complex. Comparison of the KPC-2 structure with non-carbapenemases and previously determined NMC-A and SME-1 carbapenemase structures shows several active site alterations that are unique among carbapenemases. An outward shift of the catalytic S70 residue renders the active sites of the carbapenemases more shallow, likely allowing easier access of the bulkier substrates. Further space for the alpha-substituents is potentially provided by shifts in N132 and N170 in addition to concerted movements in the postulated carboxyl binding pocket that might allow the substrates to bind at a slightly different angle to accommodate these alpha-substituents. The structure of KPC-2 provides key insights into the carbapenemase activity of emerging class A beta-lactamases.  相似文献   

3.
Klebsiella pneumoniae carbapenemase (KPC) is a carbapenemase increasingly reported worldwide in Enterobacteriaceae. The aim of this study was to analyze the virulence of several KPC-2-producing K. pneumoniae isolates. The studied strains were (i) five KPC-2 clinical strains from different geographical origins, belonging to different ST-types and possessing plasmids of different incompatibility groups; (ii) seven transformants obtained after electroporation of either these natural KPC plasmids or a recombinant plasmid harboring only the bla KPC-2 gene into reference strains K. pneumoniae ATCC10031/CIP53153; and (iii) five clinical strains cured of plasmids. The virulence of K. pneumoniae isolates was evaluated in the Caenorhabditis elegans model. The clinical KPC producers and transformants were significantly less virulent (LT50: 5.5 days) than K. pneumoniae reference strain (LT50: 4.3 days) (p<0.01). However, the worldwide spread KPC-2 positive K. pneumoniae ST258 strains and reference strains containing plasmids extracted from K. pneumoniae ST258 strains had a higher virulence than KPC-2 strains belonging to other ST types (LT50: 5 days vs. 6 days, p<0.01). The increased virulence observed in cured strains confirmed this trend. The bla KPC-2 gene itself was not associated to increased virulence.  相似文献   

4.
The emergence of carbapenemase-producing Klebsiella pneumoniae (CPKP) has become a great concern worldwide. In this study, 994 non-duplicate, carbapenem non-susceptible Klebsiella pneumonia isolates were collected in Taiwan from 2011 to 2013 for detection of the carbapenemase genes, assessment of antimicrobial susceptibility and molecular epidemiology studies. Of these 994 isolates, 183 (18.4%) had carbapenemase genes: 157 (15.8%) KPC (145 KPC-2 and 12 KPC-17), 16 (1.6%) IMP-8, 9 (0.9%) VIM-1, and 1 (0.1%) NDM-1. KPC had the highest prevalence rate among the carbapenemases and represented a major epidemic clone circulating in Taiwan. The ST512 and ST258 KPC-2 KPs were first identified in Taiwan and were grouped into a small cluster in the PFGE profile. In addition, the genetic structure encompassing the bla KPC gene of the ST512 and ST258 isolates showed a different pattern from that of other KPC isolates. ST11 may be a major sequence type circulating in Taiwan, although a specific minor clone has begun to be observed. This is the first report of ST258 and ST512 KPC-2 KP isolates in Taiwan, whether ST258 and ST512 will become the next endemic problems in Taiwan should be closely monitored.  相似文献   

5.
目的了解碳青霉烯类耐药肺炎克雷伯菌及耐药机制。方法对2012-2013年临床分离的耐碳青霉烯类肺炎克雷伯菌共计12株进行分析,药敏采用MIC方法检测,用WHONET 5.6软件进行分析,KPC表型检测采用改良Hodge试验,基因检测采用PCR方法。结果 12株碳青霉烯类耐药肺炎克雷伯菌改良Hodge试验阴性,基因测序为KPC-2型。结论 KPC-2基因是引起本院肺炎克雷伯菌耐药的主要原因。  相似文献   

6.
Abstract

Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative bacterium, which is a leading causal agent for nosocomial infections. Penicillin, cephalosporin and carbapenems along with the inhibitors such as tazobactam, sulbactam and clavulanic acid are prescribed for the treatment of K. pneumoniae infections. Prolonged exposure to β-lactam antibiotics leads to the development of resistance. The major reason for the β-lactam resistance in K. pneumoniae is the secretion of the enzyme K. pneumoniae carbapenemase (KPC). Secretion of KPC-2 and its variant KPC-3 by the K. pneumoniae strains causes resistance to both the substrate imipenem and the β-lactamase inhibitors. Hence, molecular docking and dynamics studies were carried out to analyze the resistance mechanism of KPC-2–imipenem and KPC-3–imipenem at the structural level. It reveals that KPC-3-imipenem has the highest c-score value of 4.03 with greater stability than the KPC-2–imipenem c-score value of 2.36. Greater the interaction between the substrate and the β-lactamase enzyme, higher the chances of hydrolysis of the substrate. Presently available β-lactamase inhibitors are also ineffective against KPC-3-expressing strains. This situation necessitates the need for development of novel and effective inhibitors for KPC-3. We have carried out the virtual screening process to identify more effective inhibitors for KPC-3, and this has resulted in ZINC48682523, ZINC50209041 and ZINC50420049 as the best binding energy compounds, having greater binding affinity and stability than KPC-3–tazobactam interactions. Our study provides a clear understanding of the mechanism of drug resistance and provides valuable inputs for the development of inhibitors against KPC-3 expressing K. pneumoniae.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
In the study on antibiotic resistance 1383 strains of El Tor Vibrio cholerae isolated from surface water reservoirs in 12 administrative territories of the Siberia and Far East within a period of 15 years were tested. The following antibiotics were used: ampicillin, streptomycin, monomycin, polymyxin, tetracycline, chloramphenicol, rifampicin and nalidixic acid. The resistance was unstable and its pattern was wave-like according to annual changes in the biological cycle. It was especially evident in regard to ampicillin, streptomycin, monomycin and polymyxin. The highest numbers of the strains were resistant to polymyxin, ampicillin and streptomycin (up to 100 per cent in some years). The lowest numbers of the strains were resistant to chloramphenicol (0.4 per cent) and tetracycline (1.9 per cent). No strains resistant to rifampicin and nalidixic acid were isolated. In some cases the antibiotic resistance level depended on the geographical zone where the strain was isolated. A direct quantitative dependence of the resistance level on the MIC was observed: the lower the MIC of the drug was, the lower the number of the strains resistant to it was. Within the 15-year period there was no general tendency to increase the resistance in V. cholerae to the antibiotics used.  相似文献   

8.
目的了解摩根摩根菌临床分离株产超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC)、金属酶(MBLs)、碳青霉烯酶(KPC)情况,并分析其对17种常见抗菌药物的耐药性。方法 ESBLs和AmpC及MBLs采用三维试验检测,碳青霉烯酶采用改良Hodge试验进行检测,并以K-B法测定17种常见抗菌药物的耐药性。结果 102株摩根摩根菌单产ESBLs 15株,检出率为14.71%;单产AmpC 8株,检出率为7.84%;单产金属β-内酰胺酶(MBLs)3株,检出率为2.94%;所有菌株中未检出碳青霉烯酶(KPC);同产ESBLs及AmpC 6株,检出率为5.88%;未发现其他双产酶菌株。摩根摩根菌非产酶分离株对17种抗生素的耐药率均低于50.0%;摩根摩根菌产酶分离株对亚胺培南、美罗培南培南的耐药率低于15.0%,与非产酶菌株相比,差异无统计学意义(P〉0.05);对其余抗生素的耐药率均明显高于非产酶菌株(P〈0.05)。同产ESBLs+AmpC与耐亚胺培南摩根摩根菌分离株呈多重耐药。结论我院摩根摩根菌分离株产生多种β-内酰胺酶,且对常用抗生素耐药性比较严重,建议临床医师合理使用抗生素,以免耐药菌株的产生。  相似文献   

9.
Klebsiella pneumoniae strains can produce different virulence factors, such as fimbrial adhesins and siderophores, which are important in the colonization and development of the infection. The aims of this study were to determine the occurrence of fimH, mrkD, and irp2 virulence genes in 22 KPC-2-producing K. pneumoniae isolates as well as 22 not producing-KPC isolates, from patients from different hospitals in Recife-PE, Brazil, and also to analyze the clonal relationship of the isolates by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The genes were detected by PCR and DNA sequencing. The bla KPC-2 gene was identified in 22 KPC-positive isolates. On analyzing the antimicrobial susceptibility profile of the isolates, it was detected that polymyxin and amikacin were the antimicrobials of best activity against K. pneumoniae. On the other hand, five isolates exhibited resistance to polymyxin. In the KPC-positive group, was observed a high rate of resistance to cephalosporins, followed by carbapenems. Molecular typing by ERIC-PCR detected 38 genetic profiles, demonstrating a multiclonal spread of the isolates analyzed. It was observed that the virulence genes irp2, mrkD, and fimH were seen to have together a higher frequency in the KPC-positive group. The accumulation of virulence genes of KPC-positive K. pneumoniae isolates, observed in this study, along with the multi-resistance impose significant therapeutic limitations on the treatment of infections caused by K. pneumoniae.  相似文献   

10.
Global spread of KPC poses to be a serious threat complicating treatment options in hospital settings. The present study investigates the genetic environment of bla KPC-2 among clinical isolates of Pseudomonas aeruginosa from a tertiary referral hospital of India. The study isolates were collected from different wards and clinics of Silchar Medical College and Hospital, India, from 2012–2013. The presence of bla KPC was confirmed by genotypic characterization followed by sequencing. Cloning of the bla KPC-2 gene was performed and the genetic environment of this gene was characterized as well. Transferability of the resistance gene was determined by transformation assay and Southern hybridization. Additionally, restriction mapping was also carried out. Two isolates of P. aeruginosa were found to harbor bla KPC-2, were resistant towards aminoglycosides, quinolone and β-lactam-β-lactamase inhibitor combination. In both the isolates, the resistance determinant was associated with class 1 integron and horizontally transferable. Both the isolates were co-harboring bla NDM-1. The first detection of this integron mediated bla KPC-2 coexisting with bla NDM-1 in P. aeruginosa from India is worrisome, and further investigation is required to track the gene cassette mediated bla KPC-2 in terms of infection control and to prevent the spread of this gene in hospitals as well as in the community.  相似文献   

11.
目的研究23株鲍曼不动杆菌对碳青霉烯类抗生素的耐药情况及对耐药基因分析,为临床用药提供依据。方法用珠海迪尔DL-96鉴定系统进行细菌鉴定及K-B法进行药敏试验,用碳青霉烯酶4种基因的特异性引物对其进行聚合酶链反应(PCR)扩增和基因型分析,并通过网上GenBank进行比对以确定编码酶基因的类型。结果 23株鲍曼不动杆菌对哌拉西林/他唑巴坦、左旋氧氟沙星、丁胺卡那霉素、多黏菌素B的耐药率分别为80%、45%、30%、10%,对其他抗生素的耐药率均在90%以上。携带D类碳青霉烯酶OXA-23基因有18株(78%),携带OXA-51基因有15株(65%),OXA-24、OXA-58基因引物PCR扩增为阴性,随机各抽取3株OXA-23基因阳性株进行测序后通过在网上GenBank比对与OXA-23标准株99%同源,OXA-51基因阳性株与OXA-51标准株98%同源。结论耐碳青霉烯类抗生素的鲍曼不动杆菌对多黏菌素的耐药率最低,其次是丁胺卡那霉素,其中以携带OXA-23型碳青霉烯酶基因为主,应引起临床高度关注,防止在院内广泛传播。  相似文献   

12.
The isolated outer membrane from cells of a Pseudomonas aeruginosa strain exhibiting adaptive resistance to polymyxin was not affected by polymyxin treatment, as monitored by electron microscopy of negatively stained preparations. This was in sharp contrast with extensive disruption by polymyxin of the outer membranes of the parent polymyxin-sensitive strain and the resistant strain following reversion to greater polymyxin sensitivity. The isolated cytoplasmic membrane of the polymyxin-resistant strain, on the other hand, remained sensitive to the disruptive effects of polymyxin treatment. The permeability characteristics of the resistant strains appear to be altered, as indicated by differences in minimal inhibitory concentrations for a variety of antibiotics between the polymyxin-sensitive and polymyxin-resistant strains. No evidence was found for a polymyxin-inactivating enzyme in osmotic shock fluid from the polymyxin-resistant strain. No evidence for a cytoplasmic membrane repair mechanism was found in the polymyxin-resistant strain. These observations suggest that the mechanism of adaptive polymyxin resistance in this model system is the alteration of the outer membrane so that it excludes polymyxin from reaching the still sensitive cytoplasmic membrane.  相似文献   

13.
It is well established that Pseudomonas aeruginosa cells grown in Mg2+-deficient medium acquire nonmutational resistance to the chelator ethylenediaminetetraacetate and to the cationic antibiotic polymyxin B; this type of resistance can be reversed by transferring the cells to Mg2+-sufficient medium for a few generations. Stable mutants resistant to polymyxin B were isolated and shown to have also gained ethylenediaminetetraacetate resistance. Both the mutants and strains grown on Mg2+-deficient medium had greatly enhanced levels of outer membrane protein H1 when compared with the wild-type strain or with revertants grown in Mg2+-sufficient medium. It was determined that in all strains and at all medium Mg2+ concentrations, the cell envelope Mg2+ concentration varied inversely with the amount of protein H1. In addition, the increase in protein H1 in the mutants was associated with an increase in resistance to another group of cationic antibiotics, the aminoglycosides, e.g., gentamicin. We propose that protein H1 acts by replacing Mg2+ at a site on the lipopolysaccharide which can otherwise be attacked by the cationic antibiotics or ethylenediaminetetraacetate.  相似文献   

14.
The molecular basis of resistance to β‐lactams and β‐lactam‐β‐lactamase inhibitor combinations in the KPC family of class A enzymes is of extreme importance to the future design of effective β‐lactam therapy. Recent crystal structures of KPC‐2 and other class A β‐lactamases suggest that Ambler position Trp105 may be of importance in binding β‐lactam compounds. Based on this notion, we explored the role of residue Trp105 in KPC‐2 by conducting site‐saturation mutagenesis at this position. Escherichia coli DH10B cells expressing the Trp105Phe, ‐Tyr, ‐Asn, and ‐His KPC‐2 variants possessed minimal inhibitory concentrations (MICs) similar to E. coli cells expressing wild type (WT) KPC‐2. Interestingly, most of the variants showed increased MICs to ampicillin‐clavulanic acid but not to ampicillin‐sulbactam or piperacillin‐tazobactam. To explain the biochemical basis of this behavior, four variants (Trp105Phe, ‐Asn, ‐Leu, and ‐Val) were studied in detail. Consistent with the MIC data, the Trp105Phe β‐lactamase displayed improved catalytic efficiencies, kcat/Km, toward piperacillin, cephalothin, and nitrocefin, but slightly decreased kcat/Km toward cefotaxime and imipenem when compared to WT β‐lactamase. The Trp105Asn variant exhibited increased Kms for all substrates. In contrast, the Trp105Leu and ‐Val substituted enzymes demonstrated notably decreased catalytic efficiencies (kcat/Km) for all substrates. With respect to clavulanic acid, the Kis and partition ratios were increased for the Trp105Phe, ‐Asn, and ‐Val variants. We conclude that interactions between Trp105 of KPC‐2 and the β‐lactam are essential for hydrolysis of substrates. Taken together, kinetic and molecular modeling studies define the role of Trp105 in β‐lactam and β‐lactamase inhibitor discrimination.  相似文献   

15.
Carbapenemase-producing Gram-negative bacteria peak clinical interest due to their ability to hydrolyze most β-lactams, including carbapenems; moreover, their genes spread through bacterial populations by horizontal transfer. Bacteria with acquired carbapenemase have sporadically been reported in the Czech Republic, so far only in Enterobacteriaceae and Pseudomonas aeruginosa. In this study, we described the first finding of a KPC-2-producing strain of Klebsiella pneumoniae, which was isolated from a surgical wound swab, decubitus ulcer, and urine of a patient previously hospitalized in Greece. The patient underwent various antibiotic therapies including a colistin treatment. However, after approximately 20 days of the colistin therapy, the strain developed a high-level resistance to this drug. All the isolates were indistinguishable by pulsed field gel electrophoretic analysis and belonged to the international clone ST258, which is typical of KPC-producing K. pneumoniae isolates. The bla KPC-2 gene was located on a Tn4401a transposon variant. The OmpK35 and OmpK36 genes analysis performed due to the high resistance level of the strains to β-lactams exhibited no changes in their sequence or in their expression when compared with carbapenem-susceptible isolates.  相似文献   

16.
目的 测定铜绿假单胞菌对22种药物的敏感性,帮助临床选择用药。并对分离株进行质粒图谱分析以了解耐药菌株的流行情况。方法 药物敏感性实验采用纸片琼脂扩散法,质粒指纹图谱分析采用碱变性法提取质粒DNA,限制性内切酶切割后进行凝胶电泳分析。结果 铜绿假单胞菌对头胞哌酮、氧派酸、丁胺卡那霉素、壮观霉素、多粘菌毒和头孢三嗪的敏感率在84%-100%之间。所有菌株对其他16种抗性素均有不同程度的耐药。质粒DNA图谱分析显示,12株被检测菌株中有11株含有质粒DNA,其中8株含有23kb质粒DNA。结论 铜绿假单胞菌对头胞哌铜、氟派酸、丁胺卡那霉素、壮观霉素、多粘菌素敏感;多数耐药菌株含23kb质粒DNA。  相似文献   

17.

The objective of this study was to determine clinical-epidemiological characteristics of the patients and the genetic characteristics of carbapenemase KPC-3-producing Klebsiella pneumoniae isolates belonging to sequence type ST258. The eligible study population was all patients with isolates detected between October 2015 and March 2017. Clinical–epidemiological and microbiological data were gathered on risk factors associated with infection by this clone. Antimicrobial susceptibility was determined using MicroScan system and diffusion in agar. Genes encoding carbapenemases were detected using PCR and Sanger sequencing. The sequence type was assigned by MLST, and the genetic relationship among clinical isolates was determined by pulsed field electrophoresis and by analysis of the genetic environment. The study included 23 individuals with isolates of KPC-3/ST258; the mean age was 77 year, and mean stay pre-isolation was 32 days; 81% received empirical antimicrobial treatment. Isolates were only susceptible to gentamicin (CIM?≤?2 mg/L), tigecycline (CIM?≤?1 mg/L), and colistin (CIM?≤?2 mg/L). The isolates belonged to ST258, with five pulse types or subgroups. All isolates showed amplification of KPC, which was identified as KPC-3 variant. Gene blaKPC-3 was flanked by insertion sequences Kpn6 and Kpn7 within Tn4401 transposon isoform a. We report, for the first time in Spain, an 18-month outbreak by KPC-3-producing ST258 K. pneumoniae. Its acquisition was associated with a history of antimicrobial therapy, with three treatment options, and with high mortality. The detection of different pulse types is attributable to different introductions of the clone in our setting, supporting the need for multi-resistant isolate surveillance studies.

  相似文献   

18.
β-Lactamase inhibition is an important clinical strategy in overcoming β-lactamase-mediated resistance to β-lactam antibiotics in Gram negative bacteria. A new β-lactamase inhibitor, avibactam, is entering the clinical arena and promising to be a major step forward in our antibiotic armamentarium. Avibactam has remarkable broad-spectrum activity in being able to inhibit classes A, C, and some class D β-lactamases. We present here structural investigations into class A β-lactamase inhibition by avibactam as we report the crystal structures of SHV-1, the chromosomal penicillinase of Klebsiella pneumoniae, and KPC-2, an acquired carbapenemase found in the same pathogen, complexed with avibactam. The 1.80 Å KPC-2 and 1.42 Å resolution SHV-1 β-lactamase avibactam complex structures reveal avibactam covalently bonded to the catalytic S70 residue. Analysis of the interactions and chair-shaped conformation of avibactam bound to the active sites of KPC-2 and SHV-1 provides structural insights into recently laboratory-generated amino acid substitutions that result in resistance to avibactam in KPC-2 and SHV-1. Furthermore, we observed several important differences in the interactions with amino acid residues, in particular that avibactam forms hydrogen bonds to S130 in KPC-2 but not in SHV-1, that can possibly explain some of the different kinetic constants of inhibition. Our observations provide a possible reason for the ability of KPC-2 β-lactamase to slowly desulfate avibactam with a potential role for the stereochemistry around the N1 atom of avibactam and/or the presence of an active site water molecule that could aid in avibactam desulfation, an unexpected consequence of novel inhibition chemistry.  相似文献   

19.
双歧杆菌的耐药性与质粒   总被引:7,自引:4,他引:7  
目的:研究双歧杆菌的耐药性与质粒的关系。方法 对17株5种来自微生态制剂的双歧杆菌进行抗生素药敏试验和质粒检测,利用溴化乙锭消除其质粒;比较质粒消除前后耐药性的改变。结果17株双歧杆菌对氨基糖式类和多肽类抗生素呈强抗性;除1株短型双歧杆菌B157存有2.7Kb和5.6Kb两种质粒外,其余菌株均未质粒,消除后持粒的B157株菌对抗生素的敏感性并未改变。结论 此17株双歧杆菌的耐药性与质粒无直接相关性  相似文献   

20.
The sensitivity of strains ofEscherichia coli, with and without the RP1 R-factor, to antibiotics and other antibacterial agents has been studied. RP1+ strains ofE. coli were resistant to kanamycin, carbenicillin, and tetracycline, resistance to the first two antibiotics being produced by destruction of the drugs. This resistance could be transferred to two strains ofPseudomonas aeruginosa. The parent strain ofE. coli UB 1005, its two mutant strains (DC2 and DC3), and two of the strains with the RP1 R-factor showed a similar order of sensitivity to phenylmercuric nitrate, chlorhexidine, thiomersal, and mercuric chloride.E. coli strains DC2 and DC2 (RP1+) were the most sensitive to benzalkonium chloride and cetrimide. RP1+ strains were more resistant than RP1 strains to lysozyme-ethylenediaminetetraacetic acid, but treatment of the former strains with acriflavine rendered the cells more sensitive to the lytic system. There was no evidence thatP. aeruginosa (RP1+) strains possessed increased resistance to polymyxin or to disinfectants, although they became somewhat less sensitive to lysozyme-ethylenediaminetetraacetic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号