首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The novel coronavirus 2019-nCoV has caused the pandemic of Wuhan pneumonia recently, posing a serious threat to global public health, and thus calling for the development of therapeutics and prophylactics. Here we showed that high titer anti-SARS-CoV spike protein serum cannot effectively neutralize 2019-nCoV infection. Based on our previous research, we developed SARS pseudovirus (SARS-PsV) and MERS pseudovirus (MERS-PsV) as immunogens to immunize mice. We found sera from mice treated with SARS-CoV S protein could potently cross-neutralize infection by SARS-CoV (50% neutralizing antibody titers, NT50 > 40, 000) and SARS-related coronavirus (NT50 > 7, 000), but weakly for 2019-nCoV infection NT50 < 100), implying that it may not be practical to treat 2019-nCoV infection with anti-SARS-CoV antibodies and that people with history of SARS-CoV infection many years ago may not be resistant to 2019-nCoV infection.  相似文献   

2.
Within the last 2 decades, severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2) have caused two major outbreaks; yet, for reasons not fully understood, the coronavirus disease 2019 pandemic caused by SARS-CoV-2 has been significantly more widespread than the 2003 SARS epidemic caused by SARS-CoV-1, despite striking similarities between these two viruses. The SARS-CoV-1 and SARS-CoV-2 spike proteins, both of which bind to host cell angiotensin-converting enzyme 2, have been implied to be a potential source of their differential transmissibility. However, the mechanistic details of prefusion spike protein binding to angiotensin-converting enzyme 2 remain elusive at the molecular level. Here, we performed an extensive set of equilibrium and nonequilibrium microsecond-level all-atom molecular dynamics simulations of SARS-CoV-1 and SARS-CoV-2 prefusion spike proteins to determine their differential dynamic behavior. Our results indicate that the active form of the SARS-CoV-2 spike protein is more stable than that of SARS-CoV-1 and the energy barrier associated with the activation is higher in SARS-CoV-2. These results suggest that not only the receptor-binding domain but also other domains such as the N-terminal domain could play a crucial role in the differential binding behavior of SARS-CoV-1 and SARS-CoV-2 spike proteins.  相似文献   

3.
2019新型冠状病毒的暴发持续至今,导致了世界各地数以百万计的感染个例,更夺去了数十万人的生命。世界卫生组织在2020年2月将此病毒引起的疾病定名为2019冠状病毒病(Coronavirus disease 2019,COVID-19),而国际病毒分类委员会也将此病毒命名为SARS-Co V-2。COVID-19的典型临床症状类似感冒,少数病人可发展为重症甚至死亡。21世纪以来,人类冠状病毒有3次大暴发,分别是2003年暴发的严重急性呼吸综合征(SARS)、2012年暴发的中东呼吸综合征(MERS)和本次的新型肺炎。自2003年以来,对SARS和MERS冠状病毒的研究从未间断,对其自然起源、致病机理、药物筛选及疫苗研发等已取得一定进展。鉴于SARS-Co V-2和SARS-Co V的基因组序列高度相似,以往对SARS-Co V的研究对深入探讨SARS-Co V-2生物学特性、诊断、治疗和防控有很强的借鉴性。文中通过回顾过往的研究进展,对比SARS-Co V和SARS-Co V-2的生物学特性,分析当前亟需的防控和诊疗措施,探讨疫苗研发所面对的一些难题,并展望疫情发展趋势及对本领域研究与开发的主要挑战,冀为我国和全世界有效控制COVID-19疫情提供参考。  相似文献   

4.
The hydrophobic force is one of the most dominant factors in protein folding. A protein becomes functional only when it achieves its three-dimensional structure and stability upon folding. For a better understanding of the hydrophobic effects and their function in protein folding, quantitative measurement of the hydrophobicity of amino acid side chains is crucial. Spike protein is the primary structural protein in SARS-CoV-2 and SARS-CoV. This study explores how protein sequences in SARS-CoV-2 and SARS-CoV spike proteins encode hydrophobic interactions. Computational tools/techniques have been utilized to investigate the protein sequences of the spike proteins of SARS-CoV-2 and SARS-CoV. Investigations provided an estimate of hydrophobic distribution and its relative strength, indicating a hydrophobic pattern. Analysis of the spike protein''s hydrophobic profile may help identify and treat the virus-caused disease; additionally, it can give an insight into the transmissibility and pathogenicity of the virus.Supplementary InformationThe online version contains supplementary material available at 10.1007/s10867-022-09615-x.  相似文献   

5.
6.
《Cell host & microbe》2020,27(5):841-848.e3
  1. Download : Download high-res image (163KB)
  2. Download : Download full-size image
  相似文献   

7.
《Cell host & microbe》2020,27(5):704-709.e2
  1. Download : Download high-res image (103KB)
  2. Download : Download full-size image
  相似文献   

8.
9.
章菲  王义兵  吴利东 《病毒学报》2021,37(2):422-427
2019年12月出现于湖北武汉的一种新型冠状病毒(SARS-CoV-2)感染所致肺炎疫情,给人类生命安全造成威胁。迄今为止,对2019年出现的SARS-CoV-2的研究仍处于起步阶段,本文就其相关研究进展进行综述,重点阐述了目前关于SARS-CoV-2的病原学与致病机制方面的研究成果,同时对其流行病学以及该病毒引发的肺炎临床特点加以总结,有助于读者及时了解SARS-CoV-2最新的研究动态,并为今后开展治疗药物及疫苗研发提供方向。  相似文献   

10.
Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) results in diverse outcomes. The symptoms appear to be more severe in males older than 65 and people with underlying health conditions; approximately one in five individuals could be at risk worldwide. The virus’s sequence was rapidly established days after the first cases were reported and identified an RNA virus from the Coronaviridae family closely related to a Betacoronavirus virus found in bats in China. SARS-CoV-2 is the seventh coronavirus known to infect humans, and with the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS), the only ones to cause severe diseases. Lessons from these two previous outbreaks guided the identification of critical therapeutic targets such as the spike viral proteins promoting the virus’s cellular entry through the angiotensin-converting enzyme 2 (ACE2) receptor expressed on the surface of multiple types of eukaryotic cells. Although several therapeutic agents are currently evaluated, none seems to provide a clear path for a cure. Also, various types of vaccines are developed in record time to address the urgency of efficient SARS-CoV-2 prevention. Currently, 58 vaccines are evaluated in clinical trials, including 11 in phase III, and 3 of them reported efficacy above 90 %. The results so far from the clinical trials suggest the availability of multiple effective vaccines within months.  相似文献   

11.
抗体药物以其独特的作用机制和靶向性强、特异性好等优点,在恶性肿瘤、自身免疫性疾病、感染类疾病的诊断和治疗中发挥着越来越重要的作用,成为国际创新药物研发的热点。新冠肺炎(COVID-19)疫情发生以来,国内外多家研究机构和企业正在加快推进新冠病毒(SARS-CoV-2)抗体药物的开发。在此情势下,认真分析抗体药物现状和趋势,梳理国内外新冠病毒抗体药物研究进展,明确我国当前抗体药物创新的机遇、挑战和建议,对加快我国药物自主创新研发具有重要意义。  相似文献   

12.
正Coronaviruses are large, enveloped, positive-strand RNA viruses. Several coronaviruses are pathogenic in humans,including severe acute respiratory syndrome coronavirus(SARS-CoV), Middle East respiratory syndrome coronavirus(MERS-CoV) and this novel virus, SARS-CoV-2,  相似文献   

13.
《Developmental cell》2021,56(23):3250-3263.e5
  1. Download : Download high-res image (215KB)
  2. Download : Download full-size image
  相似文献   

14.
  1. Download : Download high-res image (171KB)
  2. Download : Download full-size image
  相似文献   

15.
《Cell》2021,184(17):4401-4413.e10
  1. Download : Download high-res image (289KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
Understanding the risk factors for breakthrough coronavirus disease 2019 (COVID-19) (BC19) is critical to inform policy. Herein, we assessed Delta (Lineage B.1.617.2) variant-specific effectiveness of the BNT162b2 (Pfizer) vaccine and characterized Delta-driven BC19 cases (fully vaccinated individuals who get infected) with known-time-since-vaccination. In this longitudinal prospective study (January 21–October 30, 2021), 90 naïve and 15 convalescent individuals were enrolled at the initiation of vaccination. Samples from 27 unvaccinated individuals with previous laboratory-confirmed COVID-19 diagnosis were collected at a single time point. Longitudinal serology profile (antibodies against severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] S and N proteins) and live-virus-based neutralization capacities were assessed while controlling for age. Sex, age, history of reactions to the COVID-19 vaccine, and viral neutralization capacities were identified as significant risk factors for breakthrough COVID-19. At 8 months postvaccination, male sex, individuals ⩾65 years of age, and individuals who experienced noticeable side effects with the COVID-19 vaccine were at 5.47 (p-value = 0.0102), 4.33 (p-value = 0.0236), and 4.95 (p-value = 0.0159) fold greater risk of BC19 as compared to their peers, respectively. Importantly, every five-fold increase in viral neutralization capacities (by live-virus-based assays) was significantly associated with ~4-fold reduction in the risk occurrence of breakthrough COVID-19 (p-value = 0.045). Vaccine boosting remarkably increased these viral neutralization capacities by 16.22-fold (p- value = 0.0005), supporting the importance of the BNT162b2 booster in efforts to control the incursion of future variants into the population at large. Strikingly, BC19 cases exhibited a delayed/absent antibody response to the N protein, suggesting limited exposure to the virus. Since antibodies against N protein are widely used to evaluate the extent of virus spread in communities, our finding has important implications on the utility of existing serological diagnostic and surveillance for COVID-19.  相似文献   

18.
The ongoing outbreak of the recently emerged 2019 novel coronavirus (nCoV), which has seriously threatened global health security, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high morbidity and mortality. Despite the burden of the disease worldwide, still, no licensed vaccine or any specific drug against 2019-nCoV is available. Data from several countries show that few repurposed drugs using existing antiviral drugs have not (so far) been satisfactory and more recently were proven to be even highly toxic. These findings underline an urgent need for preventative and therapeutic interventions designed to target specific aspects of 2019-nCoV. Again the major factor in this urgency is that the process of data acquisition by physical experiment is time-consuming and expensive to obtain. Scientific simulations and more in-depth data analysis permit to validate or refute drug repurposing opportunities predicted via target similarity profiling to speed up the development of a new more effective anti-2019-nCoV therapy especially where in vitro and/or in vivo data are not yet available. In addition, several research programs are being developed, aiming at the exploration of vaccines to prevent and treat the 2019-nCoV. Computational-based technology has given us the tools to explore and identify potentially effective drug and/or vaccine candidates which can effectively shorten the time and reduce the operating cost. The aim of the present review is to address the available information on molecular determinants in disease pathobiology modules and define the computational approaches employed in systematic drug repositioning and vaccine development settings for SARS-CoV-2.  相似文献   

19.
Coronavirus disease 2019 (COVID-19), a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) had resulted in considerable morbidity and mortality. COVID-19 primarily posed a threat to the respiratory system and violated many different organs, including the heart, kidney, liver, and blood vessels with the development of the disease. Severe patients were often accompanied by cardiac injury, and once the heart gets damaged, the mortality of patients will significantly increase. The main clinical manifestations of cardiac injury range from myocarditis, heart failure (HF), arrhythmia, and Takotsubo cardiomyopathy (TCM). A high abundance of angiotensin-converting enzyme II (ACE2) on the membrane of cardiomyocytes makes it possible that the virus can directly attack cardiomyocytes as subsequently evidenced by the detection of spike protein and virus RNA in autopsy cardiac tissues. The secondary myocardial injury through systemic inflammatory and immune response also caused obvious cardiac damage. The pathological manifestations of heart tissue were diverse, varied from mild cardiomyocyte edema, myocardial hypertrophy, cardiomyocyte degeneration, and necrosis to severe myocarditis caused by lymphocyte and macrophage infiltration. However, the mechanism of heart injury was still unclear. Here, we summarized the clinical manifestations and mechanism of SARS-CoV2 mediated cardiac injury, providing a reference for cardiac treatment in critically ill patients.  相似文献   

20.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is characterized by a high mortality of elderly men with age-related comorbidities. In most of these patients, uncontrolled local and systemic hyperinflammation induces severe and often lethal outcomes. The aging process is characterized by the gradual development of a chronic subclinical systemic inflammation (inflamm-aging) and by acquired immune system impairment (immune senescence). Here, we advance the hypothesis that four well-recognized features of aging contribute to the disproportionate SARS-CoV-2 mortality suffered by elderly men: i. the presence of subclinical systemic inflammation without overt disease, ii. a blunted acquired immune system and type I interferon response due to the chronic inflammation; iii. the downregulation of ACE2 (i.e. the SARS-CoV-2 receptor); and iv. accelerated biological aging. The high mortality rate of SARS-CoV-2 infection suggests that clarification of the mechanisms of inflamm-aging and immune senescence can help combat not only age-related disorders but also SARS-CoV-2 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号