首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of a specific immunogenic candidate that will effectively activate the appropriate pathway for neutralizing antibody production is fundamental for vaccine design. By using a monoclonal antibody (1H8) that neutralizes HCV in vitro, we have demonstrated here that 1H8 recognized an epitope mapped between residues A524 and W529 of the E2 protein. We also found that the epitope residues A524, P525, Y527 and W529 were crucial for antibody binding, while the residues T526, Y527 and W529 within the same epitope engaged in the interaction with the host entry factor CD81. Furthermore, we detected “1H8-like” antibodies, defined as those with amino acid-specificity similar to 1H8, in the plasma of patients with chronic HCV infection. The time course study of plasma samples from Patient H, a well-characterized case of post-transfusion hepatitis C, showed that “1H8-like” antibodies could be detected in a sample collected almost two years after the initial infection, thus confirming the immunogenicity of this epitope in vivo. The characterization of this neutralization epitope with a function in host entry factor CD81 interaction should enhance our understanding of antibody-mediated neutralization of HCV infections.  相似文献   

2.
We used BIAcore to analyze the kinetics of interactions between CD81 and hepatitis C virus (HCV) envelope proteins. We immobilized different forms of HCV envelope proteins (E1E2, E2, and E2(661)) on the sensor and monitored their interaction with injected fusion proteins of CD81 large extracellular loop (CD81LEL) and glutathione-S-transferase (CD81LEL-GST) or maltose binding protein (CD81LEL-MBP). The difference between the GST and MBP fusion proteins was their multimeric and monomeric forms, respectively. The association rate constants between CD81LEL-GST or CD81LEL-MBP and the E1E2, E2 or E2(661) HCV envelope proteins were similar. However, the dissociation rate constants of CD81LEL-MBP were higher than those of CD81LEL-GST. Interestingly, the dissociation rate constant of CD81LEL-GST from E1E2 was much lower than from E2 or E2(661). The interaction between both forms of the CD81LEL fusion proteins and the HCV envelope proteins best-fitted the "heterogeneous ligand" model. This model implies that two kinds of interactions occur between envelope proteins and CD81LEL: one is strong, the other is weak. It also implies that the heterogeneity is likely due to the HCV envelope proteins, which are known to form non-covalently linked heterodimers and disulfide-linked aggregate.  相似文献   

3.
The E2 glycoprotein of hepatitis C virus (HCV) mediates viral attachment and entry into target hepatocytes and elicits neutralizing antibodies in infected patients. To characterize the structural and functional basis of HCV neutralization, we generated a novel panel of 78 monoclonal antibodies (MAbs) against E2 proteins from genotype 1a and 2a HCV strains. Using high-throughput focus-forming reduction or luciferase-based neutralization assays with chimeric infectious HCV containing structural proteins from both genotypes, we defined eight MAbs that significantly inhibited infection of the homologous HCV strain in cell culture. Two of these bound E2 proteins from strains representative of HCV genotypes 1 to 6, and one of these MAbs, H77.39, neutralized infection of strains from five of these genotypes. The three most potent neutralizing MAbs in our panel, H77.16, H77.39, and J6.36, inhibited infection at an early postattachment step. Receptor binding studies demonstrated that H77.39 inhibited binding of soluble E2 protein to both CD81 and SR-B1, J6.36 blocked attachment to SR-B1 and modestly reduced binding to CD81, and H77.16 blocked attachment to SR-B1 only. Using yeast surface display, we localized epitopes for the neutralizing MAbs on the E2 protein. Two of the strongly inhibitory MAbs, H77.16 and J6.36, showed markedly reduced binding when amino acids within hypervariable region 1 (HVR1) and at sites ~100 to 200 residues away were changed, suggesting binding to a discontinuous epitope. Collectively, these studies help to define the structural and functional complexity of antibodies against HCV E2 protein with neutralizing potential.  相似文献   

4.
Hepatitis C virus (HCV) or HCV-low-density lipoprotein (LDL) complexes interact with the LDL receptor (LDLr) and the HCV envelope glycoprotein E2 interacts with CD81 in vitro. However, E2 interactions with LDLr and HCV interactions with CD81 have not been clearly described. Using sucrose gradient-purified low-density particles (1.03 to 1.07 g/cm(3)), intermediate-density particles (1. 12 to 1.18 g/cm(3)), recombinant E2 protein, or control proteins, we assessed binding to MOLT-4 cells, foreskin fibroblasts, or LDLr-deficient foreskin fibroblasts at 4 degrees C by flow cytometry and confocal microscopy. Viral entry was determined by measuring the coentry of alpha-sarcin, a protein synthesis inhibitor. We found that low-density HCV particles, but not intermediate-density HCV or controls bound to MOLT-4 cells and fibroblasts expressing the LDLr. Binding correlated with the extent of cellular LDLr expression and was inhibited by LDL but not by soluble CD81. In contrast, E2 binding was independent of LDLr expression and was inhibited by human soluble CD81 but not mouse soluble CD81 or LDL. Based on confocal microscopy, we found that low-density HCV particles and LDL colocalized on the cell surface. The addition of low-density HCV but not intermediate-density HCV particles to MOLT-4 cells allowed coentry of alpha-sarcin, indicating viral entry. The amount of viral entry also correlated with LDLr expression and was independent of the CD81 expression. Using a solid-phase immunoassay, recombinant E2 protein did not interact with LDL. Our data indicate that E2 binds CD81; however, virus particles utilize LDLr for binding and entry. The specific mechanism by which HCV particles interact with LDL or the LDLr remains unclear.  相似文献   

5.
丙型肝炎病毒E2蛋白对HepG2细胞MAPK/ERK的激活   总被引:7,自引:0,他引:7  
人CD81是丙型肝炎病毒(hepatitis Cvirus,HCV)的细胞表面特异性受体,HCV包膜蛋白-2(E2)可与其结合。细胞个信号调节激酶(extracellular signal-regulated protein kinase,MAPK/ERK1,2)信号途径主要介导细胞增殖及分化。为探讨HCV E2蛋白与人CD81结合对MAPK/ERK活性变化的影响,以HCV E2蛋白刺激HepG2细胞,采用免疫印迹、免疫组化及免疫荧光等方法动态观察细胞内MAPK/ERK的激活情况,并以流式细胞术检测细胞表面CD81的表达。结果表明:HepG2细胞高表达人CD81;HCV E2蛋白可激活细胞内MAPK/ERK;MAPK/ERK的磷酸化反应与HCV E2蛋白浓度、作用时间呈依赖关系;HCV E2-CD81相互作用引发的细胞异常信号转导可能与HCV致病性相关。  相似文献   

6.
The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes. One such NAb is AP33, a mouse monoclonal antibody that recognizes a conserved, linear epitope on E2 and potently neutralizes a broad range of HCV genotypes. In this study, the X-ray structure of AP33 Fab in complex with an epitope peptide spanning residues 412 to 423 of HCV E2 was determined to 1.8 Å. In the complex, the peptide adopts a β-hairpin conformation and docks into a deep binding pocket on the antibody. The major determinants of antibody recognition are E2 residues L413, N415, G418, and W420. The structure is compared to the recently described HCV1 Fab in complex with the same epitope. Interestingly, the antigen-binding sites of HCV1 and AP33 are completely different, whereas the peptide conformation is very similar in the two structures. Mutagenesis of the peptide-binding residues on AP33 confirmed that these residues are also critical for AP33 recognition of whole E2, confirming that the peptide-bound structure truly represents AP33 interaction with the intact glycoprotein. The slightly conformation-sensitive character of the AP33-E2 interaction was explored by cross-competition analysis and alanine-scanning mutagenesis. The structural details of this neutralizing epitope provide a starting point for the design of an immunogen capable of eliciting AP33-like antibodies.  相似文献   

7.
Hepatitis C virus (HCV) entry into isolated primary liver cells and cell lines requires interaction with the cell surface receptors. The study of HCV attachment with host cell surface receptors has been hindered by the unavailability of competent cell culture based system for HCV propagation. This problem has been overcome by the development of genetically tagged infectious HCV pseudo particles (HCVpp) harboring unmodified E1 and E2 glycoproteins. Studies using cell binding assays together with infection assays using HCVpp have shown that CD81 and scavenger receptor (SRBI) are actively involved in binding with envelope proteins facilitating the viral entrance process. This paper aimed to develop HCVpp of local HCV 3a Pakistani isolate and to study the viral tropism role of CD81 and SRBI receptors in HCV infectivity. HCV E1 and E2 genes were amplified and cloned in mammalian expression vector pcDNA 3.1/myc. The expressing plasmid of HCV E1–E2 glycoprotein in native form was co-transfected into 293FT cells with lentiviral packaging plasmid encoding the MLV Gag–Pol core proteins, and a packaging competent MLV-derived genome (pMLVYCMV-Luc) encoding the luciferase marker protein to produce infectious HCVpp. Anti-CD81 antibody (CBL579), anti-SRBI type II antibody (sc-20441) HCV anti-E2 mouse IgG1 (sc-65457) and HCV anti-E1 antibody mouse IgG1 (sc-65459) were used in this setup. We showed that primary site of viral replication is liver which involve CD81 and SRBI receptors for HCV gp-dependent infection with HCVpp. This is the preliminary reported cell cultured based mechanism from Pakistan which facilitated functional studies of different antiviral agents. Understanding of this technique will help in development of new antiviral therapeutics focusing on earlier steps of HCV life cycle. We have developed infectious pseudo particles of local 3a-isolate and concluded that a number of liver-specific surface proteins function along with CD81 and SRBI receptor regarding HCV infectivity. To endeavors and to identify this liver specific co-receptor molecule(s) will provide insights into the role of these molecules in the initial steps of HCV life cycle.  相似文献   

8.

Aim

To analyze the expression of HMOX1 and miR-122 in liver biopsy samples obtained from HCV mono-and HIV/HCV co-infected patients in relation to selected clinical parameters, histological examination and IL-28B polymorphism as well as to determine whether HMOX1 expression is dependent on Bach-1.

Materials and Methods

The study group consisted of 90 patients with CHC: 69 with HCV mono and 21 with HIV/HCV co-infection. RT-PCR was used in the analysis of HMOX1, Bach-1 and miR-122 expression in liver biopsy samples and in the assessment of IL-28B single-nucleotide polymorphism C/T (rs12979860) in the blood. Moreover in liver biopsy samples an analysis of HO-1 and Bach-1 protein level by Western Blot was performed.

Results

HCV mono-infected patients, with lower grading score (G<2) and higher HCV viral load (>600000 IU/mL) demonstrated higher expression of HMOX1. In patients with HIV/HCV co-infection, the expression of HMOX1 was lower in patients with lower lymphocyte CD4 count and higher HIV viral load. IL28B polymorphism did not affect the expression of either HMOX1 or miR-122. Higher HMOX1 expression correlated with higher expression of Bach-1 (Spearman’s ρ = 0.586, p = 0.000001) and miR-122 (Spearman’s ρ = 0.270, p = 0.014059).

Conclusions

HMOX1 and miR-122 play an important role in the pathogenesis of CHC in HCV mono-and HIV/HCV co-infected patients. Reduced expression of HMOX1 in patients with HIV/HCV co-infection may indicate a worse prognosis in this group. Our results do not support the importance of Bach-1 in repression of HMOX1 in patients with chronic hepatitis C.  相似文献   

9.
10.
There are highly complicated signal systems in response to a variety of environmental stimuli in organisms. Recently, intensive studies have focused on the relationship between human diseases and alterations of cellular signal transduction. A number of human diseases, such as angiocardiopathy, diabetes and cancer, have been identified to be correlative with disruption of signaling. It was estimated that approximately 3% of world抯 population was infected with hepatitis C virus (HCV), and 70%…  相似文献   

11.
Kitadokoro K 《Uirusu》2004,54(1):39-47
Human CD81, which is belonged to tetraspanin family, has been previously identified as a receptor for the hepatitis C virus envelope E 2 glycoprotein. The crystal structure of the human CD81 long extracellular domain, binding site for E 2 glycoprotein, is presented here at 1.6 A resolution. The tertiary structure of CD81-LEL, which is composed of five alpha-helices, is resemble for a mushroom-shaped molecules (stalk and head subdomains) and forms a dimer in the crystallographic asymmetric unit. The two disulfide bridges, which are conserved all the tetraspanin and are necessary for CD 81-HCV interaction, are stabilizing the conformation of the head domain. This head domain is solvent exposed surface region and is locating the amino acid residues which are essential for the E 2 binding. The hydrophobic cluster in this head domain may suggest that the presence of a docking site for a low complementary surface cavity in the partner E 2 glycoprotein. We proposed that the dimer structure may be important in the interactions of HCV E 2 glycoprotein and also the viral protein may occur in dimeric aggregation on the HCV envelope. This common structural motif of the tetraspanin provides the first insight onto the mechanism of HCV binding to human cell and may be targets for structure-based antiviral drug.  相似文献   

12.
The majority of broadly neutralizing antibodies to hepatitis C virus (HCV) are against conformational epitopes on the E2 glycoprotein. Many of them recognize overlapping epitopes in a cluster, designated as antigenic domain B, that contains residues G530 and D535. To gain information on other regions that will be relevant for vaccine design, we employed yeast surface display of antibodies that bound to genotype 1a H77C E2 mutant proteins containing a substitution either at Y632A (to avoid selecting non-neutralizing antibodies) or D535A. A panel of nine human monoclonal antibodies (HMAbs) was isolated and designated as HC-84-related antibodies. Each HMAb neutralized cell culture infectious HCV (HCVcc) with genotypes 1–6 envelope proteins with varying profiles, and each inhibited E2 binding to the viral receptor CD81. Five of these antibodies neutralized representative genotypes 1–6 HCVcc. Epitope mapping identified a cluster of overlapping epitopes that included nine contact residues in two E2 regions encompassing aa418–446 and aa611–616. Effect on virus entry was measured using H77C HCV retroviral pseudoparticles, HCVpp, bearing an alanine substitution at each of the contact residues. Seven of ten mutant HCVpp showed over 90% reduction compared to wild-type HCVpp and two others showed approximately 80% reduction. Interestingly, four of these antibodies bound to a linear E2 synthetic peptide encompassing aa434–446. This region on E2 has been proposed to elicit non-neutralizing antibodies in humans that interfere with neutralizing antibodies directed at an adjacent E2 region from aa410–425. The isolation of four HC-84 HMAbs binding to the peptide, aa434–446, proves that some antibodies to this region are to highly conserved epitopes mediating broad virus neutralization. Indeed, when HCVcc were passaged in the presence of each of these antibodies, virus escape was not observed. Thus, the cluster of HC-84 epitopes, designated as antigenic domain D, is relevant for vaccine design for this highly diverse virus.  相似文献   

13.
Structure-function analysis of hepatitis C virus envelope-CD81 binding   总被引:24,自引:0,他引:24       下载免费PDF全文
Hepatitis C virus (HCV) is a major human pathogen causing chronic liver disease. We have recently found that the large extracellular loop (LEL) of human CD81 binds HCV. This finding prompted us to assess the structure-function features of HCV-CD81 interaction by using recombinant E2 protein and a recombinant soluble form of CD81 LEL. We have found that HCV-E2 binds CD81 LEL with a K(d) of 1.8 nM; CD81 can mediate attachment of E2 on hepatocytes; engagement of CD81 mediates internalization of only 30% of CD81 molecules even after 12 h; and the four cysteines of CD81 LEL form two disulfide bridges, the integrity of which is necessary for CD81-HCV interaction. Altogether our data suggest that neutralizing antibodies aimed at interfering with HCV binding to human cells should have an affinity higher than 10(-9) M, that HCV binding to hepatocytes may not entirely depend on CD81, that CD81 is an attachment receptor with poor capacity to mediate virus entry, and that reducing environments do not favor CD81-HCV interaction. These studies provide a better understanding of the CD81-HCV interaction and should thus help to elucidate the viral life cycle and to develop new strategies aimed at interfering with HCV binding to human cells.  相似文献   

14.
CD81 plays a central role in a variety of physiological and pathological processes. Recent structural analysis of CD81 indicates that it contains an intramembrane cholesterol-binding pocket and that interaction with cholesterol may regulate a conformational switch in the large extracellular domain of CD81. Therefore, CD81 possesses a potential cholesterol-sensing mechanism; however, its relevance for protein function is thus far unknown. In this study we investigate CD81 cholesterol sensing in the context of its activity as a receptor for hepatitis C virus (HCV). Structure-led mutagenesis of the cholesterol-binding pocket reduced CD81–cholesterol association but had disparate effects on HCV entry, both reducing and enhancing CD81 receptor activity. We reasoned that this could be explained by alterations in the consequences of cholesterol binding. To investigate this further we performed molecular dynamic simulations of CD81 with and without cholesterol; this identified a potential allosteric mechanism by which cholesterol binding regulates the conformation of CD81. To test this, we designed further mutations to force CD81 into either the open (cholesterol-unbound) or closed (cholesterol-bound) conformation. The open mutant of CD81 exhibited reduced HCV receptor activity, whereas the closed mutant enhanced activity. These data are consistent with cholesterol sensing switching CD81 between a receptor active and inactive state. CD81 interactome analysis also suggests that conformational switching may modulate the assembly of CD81–partner protein networks. This work furthers our understanding of the molecular mechanism of CD81 cholesterol sensing, how this relates to HCV entry, and CD81''s function as a molecular scaffold; these insights are relevant to CD81''s varied roles in both health and disease.  相似文献   

15.
The E2 protein of hepatitis C virus (HCV) is believed to be a virion surface glycoprotein that is a candidate for inclusion in an antiviral vaccine. A truncated soluble version of E2 has recently been shown to interact with CD81, suggesting that this protein may be a component of the receptor for HCV. When expressed in eukaryotic cells, a significant proportion of E2 forms misfolded aggregates. To analyze the specificity of interaction between E2 and CD81, the aggregated and monomeric forms of a truncated E2 glycoprotein (E2(661)) were separated by high-pressure liquid chromatography and analyzed for CD81 binding. Nonaggregated forms of E2 preferentially bound CD81 and a number of conformation-dependent monoclonal antibodies (MAbs). Furthermore, intracellular forms of E2(661) were found to bind CD81 with greater affinity than the extracellular forms. Intracellular and secreted forms of E2(661) were also found to differ in reactivity with MAbs and human sera, consistent with differences in antigenicity. Together, these data indicate that proper folding of E2 is important for its interaction with CD81 and that modifications of glycans can modulate this interaction. Identification of the biologically active forms of E2 will assist in the future design of vaccines to protect against HCV infection.  相似文献   

16.
Hepatitis C virus (HCV), a member of the family Flaviviridae, is a leading cause of chronic liver disease and cancer. Recent advances in HCV therapeutics have resulted in improved cure rates, but an HCV vaccine is not available and is urgently needed to control the global pandemic. Vaccine development has been hampered by the lack of high-resolution structural information for the two HCV envelope glycoproteins, E1 and E2. Recently, Kong and coworkers (Science 342:1090–1094, 2013, doi:10.1126/science.1243876) and Khan and coworkers (Nature 509[7500]:381–384, 2014, doi:10.1038/nature13117) independently determined the structure of the HCV E2 ectodomain core with some unexpected and informative results. The HCV E2 ectodomain core features a globular architecture with antiparallel β-sheets forming a central β sandwich. The residues comprising the epitopes of several neutralizing and nonneutralizing human monoclonal antibodies were also determined, which is an essential step toward obtaining a fine map of the human humoral response to HCV. Also clarified were the regions of E2 that directly bind CD81, an important HCV cellular receptor. While it has been widely assumed that HCV E2 is a class II viral fusion protein (VFP), the newly determined structure suggests that the HCV E2 ectodomain shares structural and functional similarities only with domain III of class II VFPs. The new structural determinations suggest that the HCV glycoproteins use a different mechanism than that used by class II fusion proteins for cell fusion.  相似文献   

17.
Hepatitis C virus (HCV) cell entry involves interaction between the viral envelope glycoprotein E2 and the cell surface receptor CD81. Knowledge of conserved E2 determinants important for successful binding will facilitate development of entry inhibitors designed to block this interaction. Previous studies have assigned the CD81 binding function to a number of discontinuous regions of E2. To better define specific residues involved in receptor binding, a panel of mutants of HCV envelope proteins was generated, where conserved residues within putative CD81 binding regions were sequentially mutated to alanine. Mutant proteins were tested for binding to a panel of monoclonal antibodies and CD81 and for their ability to form noncovalent heterodimers and confer infectivity in the retroviral pseudoparticle (HCVpp) assay. Detection by conformation-sensitive monoclonal antibodies indicated that the mutant proteins were correctly folded. Mutant proteins fell into three groups: those that bound CD81 and conferred HCVpp infectivity, those that abrogated both CD81 binding and HCVpp infectivity, and a final group containing mutants that were able to bind CD81 but were noninfectious in the HCVpp assay. Specific amino acids conserved across all genotypes that were critical for CD81 binding were W420, Y527, W529, G530, and D535. These data significantly increase our understanding of the CD81 receptor-E2 binding process.  相似文献   

18.
Development of full-length hepatitis C virus (HCV) RNAs replicating efficiently and producing infectious cell-cultured virions, HCVcc, in hepatoma cells provides an opportunity to characterize immunogenic domains on viral envelope proteins involved in entry into target cells. A panel of immunoglobulin G1 human monoclonal antibodies (HMAbs) to three immunogenic conformational domains (designated A, B, and C) on HCV E2 glycoprotein showed that epitopes within two domains, B and C, mediated HCVcc neutralization, whereas HMAbs to domain A were all nonneutralizing. For the neutralizing antibodies to domain B (with some to conserved epitopes among different HCV genotypes), the inhibitory antibody concentration reducing HCVcc infection by 90%, IC90, ranged from 0.1 to 4 microg/ml. For some neutralizing HMAbs, HCVcc neutralization displayed a linear correlation with an antibody concentration between the IC50 and the IC90 while others showed a nonlinear correlation. The differences between IC50/IC90 ratios and earlier findings that neutralizing HMAbs block E2 interaction with CD81 suggest that these antibodies block different facets of virus-receptor interaction. Collectively, these findings support an immunogenic model of HCV E2 having three immunogenic domains with distinct structures and functions and provide added support for the idea that CD81 is required for virus entry.  相似文献   

19.
Production of immunogenic hepatitis C virus (HCV) envelope proteins will assist in the future development of preventive or therapeutics applications. Only properly folded monomeric E2 protein is able to bind a putative cellular co-receptor CD81, but this interaction may modulate cell immune function. Recombinant E2 proteins, similar to the native form, but lacking undesirable immunoregulatory features, might be promising components of vaccine candidates against HCV. To obtain E2 suitable for structural as well as functional studies, a recombinant E2 variant (E2680) was produced in Pichia pastoris cells. E2680, comprising amino acids 384 to 680 of the HCV polyprotein, was secreted into the culture supernatant in the N-glycosilated form and was mainly composed of disulide-linked multimers. Both monomeric and oligomeric forms of E2680 were recognized by conformational-sensitive MAb H53. In addition, antibodies in sera from 70% of HCV-positive patients were reactive against E2680. By immunizing E2680 in BALB/c mice, both a specific cellular immune response and anti-E2680 IgG antibody titers of 1:200,000 were induced. Our data suggest that recombinant E2680 could be useful to successfully induce strong anti-HCV immunity.  相似文献   

20.
Intrinsically disordered proteins (IDPs) perform their physiological role without possessing a well-defined three-dimensional structure. Still, residual structure and conformational dynamics of IDPs are crucial for the mechanisms underlying their functions. For example, regions of transient secondary structure are often involved in molecular recognition, with the structure being stabilized (or not) upon binding. Long-range interactions, on the other hand, determine the hydrodynamic radius of the IDP, and thus the distance over which the protein can catch binding partners via so-called fly-casting mechanisms. The modulation of long-range interactions also presents a convenient way of fine-tuning the protein’s interaction network, by making binding sites more or less accessible. Here we studied, mainly by nuclear magnetic resonance spectroscopy, residual secondary structure and long-range interactions in nonstructural protein 5A (NS5A) from hepatitis C virus (HCV), a typical viral IDP with multiple functions during the viral life cycle. NS5A comprises an N-terminal folded domain, followed by a large (∼250-residue) disordered C-terminal part. Comparing nuclear magnetic resonance spectra of full-length NS5A with those of a protein construct composed of only the C-terminal residues 191–447 (NS5A-D2D3) allowed us to conclude that there is no significant interaction between the globular and disordered parts of NS5A. NS5A-D2D3, despite its overall high flexibility, shows a large extent of local residual (α-helical and β-turn) structure, as well as a network of electrostatic long-range interactions. Furthermore, we could demonstrate that these long-range interactions become modulated upon binding to the host protein Bin1, as well as after NS5A phosphorylation by CK2. As the charged peptide regions involved in these interactions are well conserved among the different HCV genotypes, these transient long-range interactions may be important for some of the functions of NS5A over the course of the HCV life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号