首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Aim

The aim of this study is to examine emotional processing of infant displays in people with Eating Disorders (EDs).

Background

Social and emotional factors are implicated as causal and maintaining factors in EDs. Difficulties in emotional regulation have been mainly studied in relation to adult interactions, with less interest given to interactions with infants.

Method

A sample of 138 women were recruited, of which 49 suffered from Anorexia Nervosa (AN), 16 from Bulimia Nervosa (BN), and 73 were healthy controls (HCs). Attentional responses to happy and sad infant faces were tested with the visual probe detection task. Emotional identification of, and reactivity to, infant displays were measured using self-report measures. Facial expressions to video clips depicting sad, happy and frustrated infants were also recorded.

Results

No significant differences between groups were observed in the attentional response to infant photographs. However, there was a trend for patients to disengage from happy faces. People with EDs also reported lower positive ratings of happy infant displays and greater subjective negative reactions to sad infants. Finally, patients showed a significantly lower production of facial expressions, especially in response to the happy infant video clip. Insecure attachment was negatively correlated with positive facial expressions displayed in response to the happy infant and positively correlated with the intensity of negative emotions experienced in response to the sad infant video clip.

Conclusion

People with EDs do not have marked abnormalities in their attentional processing of infant emotional faces. However, they do have a reduction in facial affect particularly in response to happy infants. Also, they report greater negative reactions to sadness, and rate positive emotions less intensively than HCs. This pattern of emotional responsivity suggests abnormalities in social reward sensitivity and might indicate new treatment targets.  相似文献   

2.
Study of the visual displays of more than 30 species of crabsallows some generalizations on the Brachyrhyncha. The displaysfall into two groups, the Lateral Merus and the Chela Forward.Each group contains three major subtypes of display, which originatedas discrete signals of intensity. Several special ritualizationsof the Lateral Merus have evolved in certain genera. The LateralMerus seems to be the primitive type of display in the Brachyuraand still exists in most crabs. It is speculated that the ChelaForward arose from a specialized courtship display but has beenadopted for general agonistic use in some genera.  相似文献   

3.
Talking Heads: Language, Metalanguage, and the Semiotics of Subjectivity. Benjamin Lee. Durham, NC: Duke University Press, 1997. 376 pp.  相似文献   

4.
The development of basic visual functions in children of the first year of life—the process of preparation of infants for visual perception has been considered. For children at the age until 2 years there were described stages and age standards of formation of visual notions about shape, size, color of stimuli and about their location and translocation in space. The effect of defects of basic visual functions on formation of visual notions is discussed.  相似文献   

5.
6.
7.
Determining where another person is attending is an important skill for social interaction that relies on various visual cues, including the turning direction of the head and body. This study reports a novel high-level visual aftereffect that addresses the important question of how these sources of information are combined in gauging social attention. We show that adapting to images of heads turned 25° to the right or left produces a perceptual bias in judging the turning direction of subsequently presented bodies. In contrast, little to no change in the judgment of head orientation occurs after adapting to extremely oriented bodies. The unidirectional nature of the aftereffect suggests that cues from the human body signaling social attention are combined in a hierarchical fashion and is consistent with evidence from single-cell recording studies in nonhuman primates showing that information about head orientation can override information about body posture when both are visible.  相似文献   

8.
The relation of gamma-band synchrony to holistic perception in which concerns the effects of sensory processing, high level perceptual gestalt formation, motor planning and response is still controversial. To provide a more direct link to emergent perceptual states we have used holistic EEG/ERP paradigms where the moment of perceptual “discovery” of a global pattern was variable. Using a rapid visual presentation of short-lived Mooney objects we found an increase of gamma-band activity locked to perceptual events. Additional experiments using dynamic Mooney stimuli showed that gamma activity increases well before the report of an emergent holistic percept. To confirm these findings in a data driven manner we have further used a support vector machine classification approach to distinguish between perceptual vs. non perceptual states, based on time-frequency features. Sensitivity, specificity and accuracy were all above 95%. Modulations in the 30–75 Hz range were larger for perception states. Interestingly, phase synchrony was larger for perception states for high frequency bands. By focusing on global gestalt mechanisms instead of local processing we conclude that gamma-band activity and synchrony provide a signature of holistic perceptual states of variable onset, which are separable from sensory and motor processing.  相似文献   

9.
Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic) prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing) at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing). Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design) and task-irrelevant (by instruction), and by creating instead endogenous (orthogonal) expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech.  相似文献   

10.
Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a “pop out” effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.  相似文献   

11.
12.
13.

Background

Normal reading requires eye guidance and activation of lexical representations so that words in text can be identified accurately. However, little is known about how the visual content of text supports eye guidance and lexical activation, and thereby enables normal reading to take place.

Methods and Findings

To investigate this issue, we investigated eye movement performance when reading sentences displayed as normal and when the spatial frequency content of text was filtered to contain just one of 5 types of visual content: very coarse, coarse, medium, fine, and very fine. The effect of each type of visual content specifically on lexical activation was assessed using a target word of either high or low lexical frequency embedded in each sentence

Results

No type of visual content produced normal eye movement performance but eye movement performance was closest to normal for medium and fine visual content. However, effects of lexical frequency emerged early in the eye movement record for coarse, medium, fine, and very fine visual content, and were observed in total reading times for target words for all types of visual content.

Conclusion

These findings suggest that while the orchestration of multiple scales of visual content is required for normal eye-guidance during reading, a broad range of visual content can activate processes of word identification independently. Implications for understanding the role of visual content in reading are discussed.  相似文献   

14.
15.

Background

Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families.

Methodology/Principal Findings

We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper''s Hawks'' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper''s Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack.

Conclusions

We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral strategies to visually search for and track prey while perching.  相似文献   

16.
The Ethnographer's Eye: Ways of Seeing in Modern Anthropology. Anna Grimshaw. Cambridge: University of Cambridge Press, 2001. 222 pp.
Visual Methods in Social Research. Marcus Banks. New York City: Sage Publications, 2001. 201 pp.  相似文献   

17.
In the past decades, multiple studies have been interested in developmental patterns of the visual system in healthy infants. During the first year of life, differential maturational changes have been observed between the Magnocellular (P) and the Parvocellular (P) visual pathways. However, few studies investigated P and M system development in infants born prematurely. The aim of the present study was to characterize P and M system maturational differences between healthy preterm and fullterm infants through a critical period of visual maturation: the first year of life. Using a cross-sectional design, high-density electroencephalogram (EEG) was recorded in 31 healthy preterms and 41 fullterm infants of 3, 6, or 12 months (corrected age for premature babies). Three visual stimulations varying in contrast and spatial frequency were presented to stimulate preferentially the M pathway, the P pathway, or both systems simultaneously during EEG recordings. Results from early visual evoked potentials in response to the stimulation that activates simultaneously both systems revealed longer N1 latencies and smaller P1 amplitudes in preterm infants compared to fullterms. Moreover, preterms showed longer N1 and P1 latencies in response to stimuli assessing the M pathway at 3 months. No differences between preterms and fullterms were found when using the preferential P system stimulation. In order to identify the cerebral generator of each visual response, distributed source analyses were computed in 12-month-old infants using LORETA. Source analysis demonstrated an activation of the parietal dorsal region in fullterm infants, in response to the preferential M pathway, which was not seen in the preterms. Overall, these findings suggest that the Magnocellular pathway development is affected in premature infants. Although our VEP results suggest that premature children overcome, at least partially, the visual developmental delay with time, source analyses reveal abnormal brain activation of the Magnocellular pathway at 12 months of age.  相似文献   

18.
19.
The interhemispheric interactions in perception of Russian prosody were studied in the norm and in schizophrenia as a clinical model of impaired hemispheric interactions. Monaural presentation of stimuli and binaural presentation in a free acoustical field were used. Sentences with main variants of Russian prosodic intonations were used as stimuli. The response time and the number of erroneous responses were recorded. In binaural listening without headphones, no significant difference in the percent of errors in identifying the emotional prosody was found between healthy subjects and schizophrenics. Compared with the healthy subjects, the patients made more errors in understanding the logical stress and fewer errors in understanding the syntagmatic segmentation. By response time, a significant dominance of the left ear was revealed in the healthy subjects during monaural listening to sentences with emotional prosody and complete or incomplete sentences, whereas no significant ear dominance was found in the schizophrenics. During monaural listening to sentences with logical stress, the response time was shorter when stimuli were presented to the right ear both in the healthy subjects and in the schizophrenics. The results testified that the functional brain asymmetry in schizophrenics is flattened. The flattening was less evident in the perception of a logical stress in a sentence and did not significantly affect the efficiency of identification of emotional prosody and syntagmatic segmentation of a sentence.  相似文献   

20.
A general problem in learning is how the brain determines what lesson to learn (and what lessons not to learn). For example, sound localization is a behavior that is partially learned with the aid of vision. This process requires correctly matching a visual location to that of a sound. This is an intrinsically circular problem when sound location is itself uncertain and the visual scene is rife with possible visual matches. Here, we develop a simple paradigm using visual guidance of sound localization to gain insight into how the brain confronts this type of circularity. We tested two competing hypotheses. 1: The brain guides sound location learning based on the synchrony or simultaneity of auditory-visual stimuli, potentially involving a Hebbian associative mechanism. 2: The brain uses a ‘guess and check’ heuristic in which visual feedback that is obtained after an eye movement to a sound alters future performance, perhaps by recruiting the brain’s reward-related circuitry. We assessed the effects of exposure to visual stimuli spatially mismatched from sounds on performance of an interleaved auditory-only saccade task. We found that when humans and monkeys were provided the visual stimulus asynchronously with the sound but as feedback to an auditory-guided saccade, they shifted their subsequent auditory-only performance toward the direction of the visual cue by 1.3–1.7 degrees, or 22–28% of the original 6 degree visual-auditory mismatch. In contrast when the visual stimulus was presented synchronously with the sound but extinguished too quickly to provide this feedback, there was little change in subsequent auditory-only performance. Our results suggest that the outcome of our own actions is vital to localizing sounds correctly. Contrary to previous expectations, visual calibration of auditory space does not appear to require visual-auditory associations based on synchrony/simultaneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号