首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three independent line intercept transect surveys on northern Red Sea reef slopes conducted in 1988/9 and 1997/8 in Egypt and from 2006-9 in Saudi Arabia were used to compare community patterns and coral size. Coral communities showed scale-dependent variability, highest at fine spatial and taxonomic scale (species-specific within and among reef patterns). At coarser scale (generic pattern across regions), patterns were more uniform (regionally consistent generic dominance on differently exposed reef slopes and at different depths). Neither fine- nor coarse-scale patterns aligned along the sampled 1700 km latitudinal gradient. Thus, a latitudinal gradient that had been described earlier from comparable datasets, separating the Red Sea into three faunistic zones, was no longer apparent. This may indicate subtle changes in species distributions. Coral size, measured as corrected average intercept of corals in transects, had decreased from 1997 to 2009, after having remained constant from 1988 to 1997. Recruitment had remained stable (~12 juvenile corals per m(2)). Size distributions had not changed significantly but large corals had declined over 20 years. Thus, data from a wide range of sites taken over two decades support claims by others that climate change is indeed beginning to show clear effects on Red Sea reefs.  相似文献   

2.
Coral reefs are increasingly threatened by various disturbances, and a critical challenge is to determine their ability for resistance and resilience. Coral assemblages in Moorea, French Polynesia, have been impacted by multiple disturbances (one cyclone and four bleaching events between 1991 and 2006). The 1991 disturbances caused large declines in coral cover (~51% to ~22%), and subsequent colonization by turf algae (~16% to ~49%), but this phase-shift from coral to algal dominance has not persisted. Instead, the composition of the coral community changed following the disturbances, notably favoring an increased cover of Porites, reduced cover of Montipora and Pocillopora, and a full return of Acropora; in this form, the reef returned to pre-disturbance coral cover within a decade. Thus, this coral assemblage is characterized by resilience in terms of coral cover, but plasticity in terms of community composition.  相似文献   

3.
4.
Summary Ten small isolated corals were selected as units, of habitat in each of two nearby reef sites-a lagoon and a reef slope. On six occasions over two years we collected all fishes resident in each of these corals. Collections yielded 827 fishes of 64 species from the lagoon and 525 fishes of 66 species from the slope, but at each site 12 common species comprised over 80% of the fishes collected. We examined the distribution of species of fishes among units of habitat to assess the extent to which partitioning of habitat was being carried out. Results are compared with others previously reported from a reef flat site. Species discriminated among different types of habitat offered, but to a different degree in each site. Discrimination was most pronounced at the slope site where 7 of the 12 commonest species did not occur in all three types of habitat offered, and least at the lagoon site where no common species failed to occupy both types of habitat offered. No temporal partitioning of habitat could be demonstrated. Fish did not distribute themselves among units of habitat of one type by means of precise microhabitat discrimination. No pair of species in either site could be shown to mutually avoid, or exclude one another from habitat units. At all three sites, chance patterns of recruitment and loss overwhelmingly determined species composition of the groups of fishes coexisting in single habitat units. The significance of these results for our understanding of the ecology of coral reef fishes is discussed.  相似文献   

5.
6.
Work TM  Aeby GS  Maragos JE 《PloS one》2008,3(8):e2989
Coral reefs can undergo relatively rapid changes in the dominant biota, a phenomenon referred to as phase shift. Various reasons have been proposed to explain this phenomenon including increased human disturbance, pollution, or changes in coral reef biota that serve a major ecological function such as depletion of grazers. However, pinpointing the actual factors potentially responsible can be problematic. Here we show a phase shift from coral to the corallimorpharian Rhodactis howesii associated with a long line vessel that wrecked in 1991 on an isolated atoll (Palmyra) in the central Pacific Ocean. We documented high densities of R. howesii near the ship that progressively decreased with distance from the ship whereas R. howesii were rare to absent in other parts of the atoll. We also confirmed high densities of R. howesii around several buoys recently installed on the atoll in 2001. This is the first time that a phase shift on a coral reef has been unambiguously associated with man-made structures. This association was made, in part, because of the remoteness of Palmyra and its recent history of minimal human habitation or impact. Phase shifts can have long-term negative ramification for coral reefs, and eradication of organisms responsible for phase shifts in marine ecosystems can be difficult, particularly if such organisms cover a large area. The extensive R. howesii invasion and subsequent loss of coral reef habitat at Palmyra also highlights the importance of rapid removal of shipwrecks on corals reefs to mitigate the potential of reef overgrowth by invasives.  相似文献   

7.
Like many marine organisms, most coral reef fishes have a dispersive larval phase. The fate of this phase is of great concern for their ecology as it may determine population demography and connectivity. As direct study of the larval phase is difficult, we tackle the question of dispersion from an opposite point of view and study self-recruitment. In this paper, we propose a mathematical model of the pelagic phase, parameterized by a limited number of factors (currents, predator and prey distributions, energy budgets) and which focuses on the behavioral response of the larvae to these factors. We evaluate optimal behavioral strategies of the larvae (i.e. strategies that maximize the probability of return to the natal reef) and examine the trajectories of dispersal that they induce. Mathematically, larval behavior is described by a controlled Markov process. A strategy induces a sequence, indexed by time steps, of "decisions" (e.g. looking for food, swimming in a given direction). Biological, physical and topographic constraints are captured through the transition probabilities and the sets of possible decisions. Optimal strategies are found by means of the so-called stochastic dynamic programming equation. A computer program is developed and optimal decisions and trajectories are numerically derived. We conclude that this technique can be considered as a good tool to represent plausible larval behaviors and that it has great potential in terms of theoretical investigations and also for field applications.  相似文献   

8.
Indirect effects occur when two species interact through one or more intermediate species. Theoretical studies indicate that indirect interactions between two prey types that share common predators can be positive, neutral or negative. We document a positive indirect interaction between different types of prey fish on coral reefs in Australia. A high abundance of one type of prey fish (cardinalfishes: Apogonidae) resulted in higher recruitment, abundance and species richness of other prey fish. Our evidence indicates that these effects were not due to differential settlement but were instead due to differential post-settlement predation. We hypothesize that resident piscivores altered their foraging behaviour by concentrating on highly abundant cardinal-fish when they were present, leaving recruits of other species relatively unmolested. Indirect effects were evident within 48 h of settlement and persisted throughout the 42-day experiment, highlighting the importance of early post-settlement processes in these communities.  相似文献   

9.
A platform reef at Bach Long Vi Island (Gulf of Tonkin in the South China Sea) was investigated for the first time. In all, 264 species of corals and their accompanying species of macrobenthos were found. Among the scleractinian corals, acroporids, poritids, and mussids dominated. Monospecific aggregations of alcyonarians Sinularia and Lobophytum and the hydroid Millepora were rather numerous. Based on its geomorphological characteristics, coral species diversity and zonal distribution, the investigated reef is comparable with ribbon and platform reefs on the Great Barrier Reef in Australia and in the Indian Ocean.  相似文献   

10.
Dynamics in reef cover, mortality and recruitment success of a high-latitude coral community in South Africa were studied over 20 yr with the aim to detect the effects of climate change. Coral communities at this locality are the southernmost on the African continent, non-accretive, attain high biodiversity and are dominated by soft corals. Long-term monitoring within fixed transects on representative reef was initiated in 1993 and has entailed annual photo-quadrat surveys and hourly temperature logging. Although sea temperatures rose by 0.15 °C p.a. at the site up to 2000, they have subsequently been decreasing, and the overall trend based on monthly means has been a significant decrease of 0.03 °C p.a. Despite this, minor bleaching was encountered in the region during the 1998 El Niño–Southern Oscillation event, again in the summer of 2000/2001 and in 2005. A significant decreasing trend of 0.95% p.a. in soft coral cover has been evident throughout the monitoring period, attributable to significant decreases in Sinularia and Lobophytum spp. cover. In contrast, hard coral cover gradually and significantly increased up to 2005, this being largely attributable to increases in cover by Acropora spp. Recruitment success and mortality of both soft and hard corals has displayed high inter-annual variability with increasing but non-significant trends in the last 5 yr. The reduction in soft coral cover has been more consistent and greater than that of hard corals, but it is difficult at this stage to attribute this to changes in water quality, acidification-linked accretion or temperature.  相似文献   

11.
Patchiness and composition of coral reef demersal zooplankton   总被引:1,自引:0,他引:1  
Zooplankton samples were collected weekly for a full year withdemersal traps on a coral reef off the west coast of Barbados.There was a marked temporal variability in weekly catches bothin terms of abundance and biomass. Patchiness occurred at allsampling frequencies from 2 to 26 weeks, but spectral analysisindicated a variance shift at a frequency of 8–10 weeksAggregations of the two most abundant taxa, the copepoditesand the microzooplankton, occurred at 8–12 week intervalsand significant differences in abundance and biomass were foundbetween mean bimonthly zooplankton catches Lagged cross-correlationsat 7 and 11 weeks between chlorophyll and microzooplankton andcopepodites suggest that aggregations are connected to cyclesof primary production. There was a negative correlation betweenzooplankton abundance and surface water salinity in 8 of 16taxa Copepods were the most abundant taxon overall. Microzooplanktonand copepodites comprised 96% of the abundance and 66% of thebiomass Decreases in taxonomic richness and in diversity wereassociated with patchiness of small-sized copepodites and microzooplankton,suggesting that composition was altered and stability temporarilylessened during peaks of abundance  相似文献   

12.
Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.  相似文献   

13.
In January 1980, a severe 3 day storm struck the normally protected leeward coral reefs of Kona, Hawaii. Waves generated by the storm, which was estimated to be a once in 20–40 year occurrence, were in excess of 6 m and caused extensive reef destruction and shoreline alteration. Shallow nearshore areas were denuded of most bottom cover and marine life. Damage to corals was extensive with broken colonies of the coral Porites compressa occurring down to depths of 27 m. Pronounced algal blooms occurred in a clearly defined sequence subsequent to the storm. The patterns of both coral destruction and algal succession were similar to those described on other storm damaged reefs. Fish mortality directly attributable to the storm was slight and the few dead fishes noted were either surge zone or tide pool species. After the storm the shallow reef flat was devoid of resident fishes while deeper areas contained many fishes which had moved from shallower water. This habitat shift substantially reduced the immediate impact of the storm on the fish community. Despite considerable habitat destruction that resulted from the storm, there were no decreases in species or population abundances on five 25 m2 quadrats monitored for 23 months before and 16 months after the storm. Similarly, the numbers of triggerfish sheltering within an area increased even though the storm reduced the number of available shelter holes. The shelter and space-related carrying capacity of these areas prior to the storm may therefore not have been reached. Recolonization of evacuated areas by fishes began shortly after the storm and within 16 months many areas had regained their prestorm appearances. Large numbers of individuals remained however, in their shifted locations.  相似文献   

14.
Wave energy and swimming performance shape coral reef fish assemblages   总被引:6,自引:0,他引:6  
Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morphology and swimming performance were examined in three diverse coral reef fish families from two major evolutionary lineages. Among-habitat variation in morphology and performance was directly compared with quantitative values of wave-induced water motion from seven coral reef habitats of different depth and wave exposure on the Great Barrier Reef. Fin morphology was strongly correlated with both field and experimental swimming speeds in all three families. The range of observed swimming speeds coincided closely with the magnitude of water velocities commonly found on coral reefs. Distribution patterns in all three families displayed highly congruent relationships between fin morphology and wave-induced water motion. Our findings indicate a general functional relationship between fin morphology and swimming performance in labriform-swimming fishes, and provide quantitative evidence that wave energy may directly influence the assemblage structure of coral reef fishes through interactions with morphology and swimming performance.  相似文献   

15.
Coral Reefs - Our ability to understand natural constraints on coral reef benthic communities requires quantitative assessment of the relative strengths of abiotic and biotic processes across large...  相似文献   

16.

Some reef corals form stable, dominant or codominant associations with multiple endosymbiotic dinoflagellate species (family Symbiodiniaceae). Given the immense genetic and physiological diversity within this family, Symbiodiniaceae community composition has the potential to impact the nutritional physiology and fitness of the cnidarian host and all associated symbionts. Here we assessed the impact of the symbiont community composition on the metabolome of the coral Montipora capitata in Kāne‘ohe Bay, Hawai‘i, where different colonies can be dominated by stress-tolerant Durusdinium glynnii or stress-sensitive Cladocopium spp. Based on our existing knowledge of these symbiont taxa, we hypothesised that the metabolite profile of D. glynnii-dominated corals would be consistent with poorer nutritional support of the host relative to those corals dominated by Cladocopium spp. However, comparative metabolite profiling revealed that the metabolite pools of the host and symbiont were unaffected by differences in the abundance of the two symbionts within the community. The abundance of the individual metabolites was the same in the host and in the endosymbiont regardless of whether the host was populated with D. glynnii or Cladocopium spp. These results suggest that coral-dinoflagellate symbioses have the potential to undergo physiological adjustments over time to accommodate differences in their resident symbionts. Such mechanisms may involve host heterotrophic compensation (increasing the level of nutrition generated by feeding relative to delivery from the algae), dynamic regulation of metabolic pathways when exchange of metabolites between the organisms differs, and/or modification of both the type and quantity of metabolites that are exchanged. We discuss these adjustments and the implications for the physiology and survival of reef corals under changing environmental regimes.

  相似文献   

17.
While morphological variation across geographical clines has been well documented, it is often unclear whether such changes enhance individual performance to local environments. We examined whether the damselfish Acanthochromis polyacanthus display functional changes in swimming phenotype across a 40-km cline in wave-driven water motion on the Great Barrier Reef, Australia. A. polyacanthus populations displayed strong intraspecific variation in swimming morphology and performance that matched local levels of water motion: individuals on reefs subject to high water motion displayed higher aspect-ratio fins and faster swimming speeds than conspecifics on sheltered reefs. Remarkably, intraspecific variation within A. polyacanthus spanned over half the diversity seen among closely related damselfish species from the same region. We find that local selection driven by wave-induced abiotic stress is an overarching ecological mechanism shaping the inter- and intraspecific locomotor diversity of coral reef fishes.  相似文献   

18.
Environmental DNA (eDNA) metabarcoding, a technique for retrieving multispecies DNA from environmental samples, can detect a diverse array of marine species from filtered seawater samples. There is a growing potential to integrate eDNA alongside existing monitoring methods in order to establish or improve the assessment of species diversity. Remote island reefs are increasingly vulnerable to climate‐related threats and as such there is a pressing need for cost‐effective whole‐ecosystem surveying to baseline biodiversity, study assemblage changes and ultimately develop sustainable management plans. We investigated the utility of eDNA metabarcoding as a high‐resolution, multitrophic biomonitoring tool at the Cocos (Keeling) Islands, Australia (CKI)—a remote tropical coral reef atoll situated within the eastern Indian Ocean. Metabarcoding assays targeting the mitochondrial 16S rRNA and CO1 genes, as well as the 18S rRNA nuclear gene, were applied to 252 surface seawater samples collected from 42 sites within a 140 km2 area. Our assays successfully detected a wide range of bony fish and elasmobranchs (244 taxa), crustaceans (88), molluscs (37) and echinoderms (7). Assemblage composition varied significantly between sites, reflecting habitat partitioning across the island ecosystem and demonstrating the localisation of eDNA signals, despite extensive tidal and oceanic movements. In addition, we document putative new occurrence records for 46 taxa and compare the efficiency of our eDNA approach to visual survey techniques at CKI. Our study demonstrates the utility of a multimarker metabarcoding approach in capturing multitrophic biodiversity across an entire coral reef atoll and sets an important baseline for ongoing monitoring and management.  相似文献   

19.
What shapes variation in genetic structure within a community of codistributed species is a central but difficult question for the field of population genetics. With a focus on the isolated coral reef ecosystem of the Hawaiian Archipelago, we assessed how life history traits influence population genetic structure for 35 reef animals. Despite the archipelago's stepping stone configuration, isolation by distance was the least common type of genetic structure, detected in four species. Regional structuring (i.e. division of sites into genetically and spatially distinct regions) was most common, detected in 20 species and nearly in all endemics and habitat specialists. Seven species displayed chaotic (spatially unordered) structuring, and all were nonendemic generalist species. Chaotic structure also associated with relatively high global FST. Pelagic larval duration (PLD) was not a strong predictor of variation in population structure (R2 = 0.22), but accounting for higher FST values of chaotic and invertebrate species, compared to regionally structured and fish species, doubled the power of PLD to explain variation in global FST (adjusted R2 = 0.50). Multivariate correlation of eight species traits to six genetic traits highlighted dispersal ability, taxonomy (i.e. fish vs. invertebrate) and habitat specialization as strongest influences on genetics, but otherwise left much variation in genetic traits unexplained. Considering that the study design controlled for many sampling and geographical factors, the extreme interspecific variation in spatial genetic patterns observed for Hawaìi marine species may be generated by demographic variability due to species‐specific abundance and migration patterns and/or seascape and historical factors.  相似文献   

20.
Coral reefs are the most diverse marine systems in the world, yet our understanding of the processes that maintain such extraordinary diversity remains limited and taxonomically biased toward the most conspicuous species. Cryptofauna that live deeply embedded within the interstitial spaces of coral reefs make up the majority of reef diversity, and many of these species provide important protective services to their coral hosts. However, we know very little about the processes governing the diversity and composition of these less conspicuous but functionally important species. Here, we experimentally quantify the role of predation in driving the community organization of small fishes and decapods that live embedded within Pocillopora eydouxi, a structurally complex, reef-building coral found widely across the Indo-Pacific. We use surveys to describe the natural distribution of predators, and then, factorially manipulate two focal predator species to quantify the independent and combined effects of predator density and identity on P. eydouxi-dwelling cryptofauna. Predators reduced abundance (34 %), species richness (20 %), and modified species composition. Rarefaction revealed that observed reductions in species richness were primarily driven by changes in abundance. Additionally, the two predator species uniquely affected the beta diversity and composition of the prey assemblage. Predators reduced the abundance and modified the composition of a number of mutualist fishes and decapods, whose benefit to the coral is known to be both diversity- and density-dependent. We predict that the density and identity of predators present within P. eydouxi may substantially alter coral performance in the face of an increased frequency and intensity of natural and anthropogenic stressors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号