首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caenorhabditis elegans has been used for studying host-pathogen interactions since long, and many virulence genes of pathogens have been successfully identified. In several studies, fluorescent pathogens were fed to C. elegans and fluorescence observed in the gut was considered an indicator for bacterial colonization. However, the grinder in the pharynx of these nematodes supposedly crushes the bacterial cells, and the ground material is delivered to the intestine for nutrient absorption. Therefore, it remains unclear whether intact bacteria pass through the grinder and colonize in the intestine. Here we investigated whether the appearance of fluorescence is indicative of intact bacteria in the gut using both fluorescence microscopy and transmission electron microscopy. In wild-type N2 C. elegans, Escherichia coli DH5α, and Vibrio vulnificus 93U204, both of which express the green fluorescence protein, were found intact only proximal to the grinder, while crushed bacterial debris was found in the post-pharyngeal lumen. Nevertheless, the fluorescence was evident throughout the lumen of worm intestines irrespective of whether the bacteria were intact or not. We further investigated the interaction of the bacteria with C. elegans phm-2 mutant, which has a dysfunctional grinder. Both strains of bacteria were found to be intact and accumulated in the pharynx and intestine owing to the defective grinder. The fluorescence intensity of intact bacteria in phm-2 worms was indistinguishable from that of crushed bacterial debris in N2 worms. Therefore, appearance of fluorescence in the C. elegans intestine should not be directly interpreted as successful bacterial colonization in the intestine.  相似文献   

2.
The innate immune system’s ability to sense an infection is critical so that it can rapidly respond if pathogenic microorganisms threaten the host, but otherwise maintain a quiescent baseline state to avoid causing damage to the host or to commensal microorganisms. One important mechanism for discriminating between pathogenic and non-pathogenic bacteria is the recognition of cellular damage caused by a pathogen during the course of infection. In Caenorhabditis elegans, the conserved G-protein coupled receptor FSHR-1 is an important constituent of the innate immune response. FSHR-1 activates the expression of antimicrobial infection response genes in infected worms and delays accumulation of the ingested pathogen Pseudomonas aeruginosa. FSHR-1 is central not only to the worm’s survival of infection by multiple pathogens, but also to the worm’s survival of xenobiotic cadmium and oxidative stresses. Infected worms produce reactive oxygen species to fight off the pathogens; FSHR-1 is required at the site of infection for the expression of detoxifying genes that protect the host from collateral damage caused by this defense response. Finally, the FSHR-1 pathway is important for the ability of worms to discriminate pathogenic from benign bacteria and subsequently initiate an aversive learning program that promotes selective pathogen avoidance.  相似文献   

3.
Thermotaxis behavior of Caenorhabditis elegans is robust and highly plastic. A pair of sensory neurons, AFD, memorize environmental/cultivation temperature and communicate with a downstream neural circuit to adjust the temperature preference of the animal. This results in a behavioral bias where worms will move toward their cultivation temperature on a thermal gradient. Thermotaxis of C. elegans is also affected by the internal state and is temporarily abolished when worms are starved. Here I will discuss how C. elegans is able to modulate its behavior based on temperature by integrating environmental and internal information. Recent studies show that some parasitic nematodes have a similar thermosensory mechanism to C. elegans and exhibit cultivation-temperature-dependent thermotaxis. I will also discuss the common neural mechanisms that regulate thermosensation and thermotaxis in C. elegans and Strongyloides stercoralis.  相似文献   

4.
The effect of temperature pre-exposure on locomotion and chemotaxis of the soil-dwelling nematode Caenorhabditis elegans has been extensively studied. The behavior of C. elegans was quantified using a simple harmonic curvature-based model. Animals showed increased levels of activity, compared to control worms, immediately after pre-exposure to 30°C. This high level of activity in C. elegans translated into frequent turns by making ‘complex’ shapes, higher velocity of locomotion, and higher chemotaxis index () in presence of a gradient of chemoattractant. The effect of pre-exposure was observed to be persistent for about 20 minutes after which the behavior (including velocity and ) appeared to be comparable to that of control animals (maintained at 20°C). Surprisingly, after 30 minutes of recovery, the behavior of C. elegans continued to deteriorate further below that of control worms with a drastic reduction in the curvature of the worms'' body. A majority of these worms also showed negative chemotaxis index indicating a loss in their chemotaxis ability.  相似文献   

5.
Caenorhabditis elegans is frequently used as a model species for the study of bacterial virulence and innate immunity. In recent years, diverse mechanisms contributing to the nematode''s immune response to bacterial infection have been discovered. Yet despite growing interest in the biochemical and molecular basis of nematode-bacterium associations, many questions remain about their ecology. Although recent studies have demonstrated that free-living nematodes could act as vectors of opportunistic pathogens in soil, the extent to which worms may contribute to the persistence and spread of these bacteria has not been quantified. We conducted a series of experiments to test whether colonization of and transmission between C. elegans nematodes could enable two opportunistic pathogens (Salmonella enterica and Pseudomonas aeruginosa) to spread on agar plates occupied by Escherichia coli. We monitored the transmission of S. enterica and P. aeruginosa from single infected nematodes to their progeny and measured bacterial loads both within worms and on the plates. In particular, we analyzed three factors affecting the dynamics of bacteria: (i) initial source of the bacteria, (ii) bacterial species, and (iii) feeding behavior of the host. Results demonstrate that worms increased the spread of bacteria through shedding and transmission. Furthermore, we found that despite P. aeruginosa''s relatively high transmission rate among worms, its pathogenic effects reduced the overall number of worms colonized. This study opens new avenues to understand the role of nematodes in the epidemiology and evolution of pathogenic bacteria in the environment.  相似文献   

6.
The Gram-negative bacterium Shigella flexneri is the causative agent of shigellosis, a diarrhoeal disease also known as bacillary dysentery. S. flexneri infects the colonic and rectal epithelia of its primate host and induces a cascade of inflammatory responses that culminates in the destruction of the host intestinal lining. Molecular characterization of host-pathogen interactions in this infection has been challenging due to the host specificity of S. flexneri strains, as it strictly infects humans and non-human primates. Recent studies have shown that S. flexneri infects the soil dwelling nematode Caenorhabditis elegans, however, the interactions between S. flexneri and C. elegans at the cellular level and the cause of nematode death are unknown. Here we attempt to gain insight into the complex host-pathogen interactions between S. flexneri and C. elegans. Using transmission electron microscopy, we show that live S. flexneri cells accumulate in the nematode intestinal lumen, produce outer membrane vesicles and invade nematode intestinal cells. Using two-dimensional differential in-gel electrophoresis we identified host proteins that are differentially expressed in response to S. flexneri infection. Four of the identified genes, aco-1, cct-2, daf-19 and hsp-60, were knocked down using RNAi and ACO-1, CCT-2 and DAF-19, which were identified as up-regulated in response to S. flexneri infection, were found to be involved in the infection process. aco-1 RNAi worms were more resistant to S. flexneri infection, suggesting S. flexneri-mediated disruption of host iron homeostasis. cct-2 and daf-19 RNAi worms were more susceptible to infection, suggesting that these genes are induced as a protective mechanism by C. elegans. These observations further our understanding of the processes involved in S. flexneri infection of C. elegans, which is immensely beneficial to the routine use of this new in vivo model to study S. flexneri pathogenesis.  相似文献   

7.
RNA interference is a powerful method to understand gene function, especially when conducted at a whole-genome scale and in a quantitative context. In C. elegans, gene function can be knocked down simply and efficiently by feeding worms with bacteria expressing a dsRNA corresponding to a specific gene 1. While the creation of libraries of RNAi clones covering most of the C. elegans genome 2,3 opened the way for true functional genomic studies (see for example 4-7), most established methods are laborious. Moy and colleagues have developed semi-automated protocols that facilitate genome-wide screens 8. The approach relies on microscopic imaging and image analysis. Here we describe an alternative protocol for a high-throughput genome-wide screen, based on robotic handling of bacterial RNAi clones, quantitative analysis using the COPAS Biosort (Union Biometrica (UBI)), and an integrated software: the MBioLIMS (Laboratory Information Management System from Modul-Bio) a technology that provides increased throughput for data management and sample tracking. The method allows screens to be conducted on solid medium plates. This is particularly important for some studies, such as those addressing host-pathogen interactions in C. elegans, since certain microbes do not efficiently infect worms in liquid culture.We show how the method can be used to quantify the importance of genes in anti-fungal innate immunity in C. elegans. In this case, the approach relies on the use of a transgenic strain carrying an epidermal infection-inducible fluorescent reporter gene, with GFP under the control of the promoter of the antimicrobial peptide gene nlp 29 and a red fluorescent reporter that is expressed constitutively in the epidermis. The latter provides an internal control for the functional integrity of the epidermis and nonspecific transgene silencing9. When control worms are infected by the fungus they fluoresce green. Knocking down by RNAi a gene required for nlp 29 expression results in diminished fluorescence after infection. Currently, this protocol allows more than 3,000 RNAi clones to be tested and analyzed per week, opening the possibility of screening the entire genome in less than 2 months.  相似文献   

8.

Background

Caenorhbditis elegans has being vigorously used as a model organism in many research fields and often accompanied by administrating with various drugs. The methods of delivering drugs to worms are varied from one study to another, which make difficult in comparing results between studies.

Methodology/Principal Findings

We evaluated the drug absorption efficiency in C. elegans using five frequently used methods with resveratrol with low aqueous solubility and water-soluble 5-Fluoro-2′-deoxyuridine (FUDR) as positive compounds. The drugs were either applied to the LB medium with bacteria OP50, before spreading onto Nematode Growth Medium (NGM) plates (LB medium method), or to the NGM with live (NGM live method) or dead bacteria (NGM dead method), or spotting the drug solution to the surface of plates directly (spot dead method), or growing the worms in liquid medium (liquid growing method). The concentration of resveratrol and FUDR increased gradually within C. elegans and reached the highest during 12 hours to one day and then decreased slowly. At the same time point, the higher the drug concentration, the higher the metabolism rate. The drug concentrations in worms fed with dead bacteria were higher than with live bacteria at the same time point. Consistently, the drug concentration in medium with live bacteria decreased much faster than in medium with dead bacteria, reach to about half of the original concentration within 12 hours.

Conclusion

Resveratrol with low aqueous solubility and water-soluble FUDR have the same absorption and metabolism pattern. The drug metabolism rate in worms was both dosage and time dependent. NGM dead method and liquid growing method achieved the best absorption efficiency in worms. The drug concentration within worms was comparable with that in mice, providing a bridge for dose translation from worms to mammals.  相似文献   

9.
C. elegans egg-laying behavior is affected by environmental cues such as osmolarity1 and vibration2. In the total absence of food C. elegans also cease egg-laying and retain fertilized eggs in their uterus3. However, the effect of different sources of food, especially pathogenic bacteria and particularly Enterococcus faecalis, on egg-laying behavior is not well characterized. The egg-in-worm (EIW) assay is a useful tool to quantify the effects of different types of bacteria, in this case E. faecalis, on egg- laying behavior.EIW assays involve counting the number of eggs retained in the uterus of C. elegans4. The EIW assay involves bleaching staged, gravid adult C. elegans to remove the cuticle and separate the retained eggs from the animal. Prior to bleaching, worms are exposed to bacteria (or any type of environmental cue) for a fixed period of time. After bleaching, one is very easily able to count the number of eggs retained inside the uterus of the worms. In this assay, a quantifiable increase in egg retention after E. faecalis exposure can be easily measured. The EIW assay is a behavioral assay that may be used to screen for potentially pathogenic bacteria or the presence of environmental toxins. In addition, the EIW assay may be a tool to screen for drugs that affect neurotransmitter signaling since egg-laying behavior is modulated by neurotransmitters such as serotonin and acetylcholine5-9.  相似文献   

10.
Polarity is the basis for the generation of cell diversity, as well as the organization, morphogenesis, and functioning of tissues. Studies in Caenorhabditis elegans have provided much insight into PAR-protein mediated polarity; however, the molecules and mechanisms critical for cell polarization within the plane of epithelia have been identified in other systems. Tissue polarity in C. elegans is organized by Wnt-signaling with some resemblance to the Wnt/planar cell polarity (PCP) pathway, but lacking core PCP protein functions. Nonetheless, recent studies revealed that conserved PCP proteins regulate directed cell migratory events in C. elegans, such as convergent extension movements and neurite formation and guidance. Here, we discuss the latest insights and use of C. elegans as a PCP model.  相似文献   

11.
12.
《IRBM》2008,29(5):289-296
Because the entire genome of Caenorhabditis elegans (C. elegans) is available for exploration since 1998, several information have been retrieved about the global interest of this organism when it became apparent that the similarity of genes in this 1 mm length nematode and those in humans is remarkable, with approximately 67% of genes that are associated with human disease having homologues in the worm genome. C. elegans worms can be easily maintained on various food-sources and culture media allowing testing for molecules or treatments in combination with different genetic mutants backgrounds as well as RNA interference (RNAi). Because of regulatory pathways conservation between humans and worms, several interesting strategies can be developed to facilitate drugs screenings on specific targets as well as to decipher complex physiological programmed traits with potential identification of new therapeutic targets interesting for human health. By using specific examples, we propose to introduce how to use the already available C. elegans data-cross that can be used as a basis for developing new therapeutic targets identification strategies.  相似文献   

13.
Fatty acids are essential for numerous cellular functions. They serve as efficient energy storage molecules, make up the hydrophobic core of membranes, and participate in various signaling pathways. Caenorhabditis elegans synthesizes all of the enzymes necessary to produce a range of omega-6 and omega-3 fatty acids. This, combined with the simple anatomy and range of available genetic tools, make it an attractive model to study fatty acid function. In order to investigate the genetic pathways that mediate the physiological effects of dietary fatty acids, we have developed a method to supplement the C. elegans diet with unsaturated fatty acids. Supplementation is an effective means to alter the fatty acid composition of worms and can also be used to rescue defects in fatty acid-deficient mutants. Our method uses nematode growth medium agar (NGM) supplemented with fatty acidsodium salts. The fatty acids in the supplemented plates become incorporated into the membranes of the bacterial food source, which is then taken up by the C. elegans that feed on the supplemented bacteria. We also describe a gas chromatography protocol to monitor the changes in fatty acid composition that occur in supplemented worms. This is an efficient way to supplement the diets of both large and small populations of C. elegans, allowing for a range of applications for this method.  相似文献   

14.
In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.  相似文献   

15.
Caenorhabditis elegans Senses Bacterial Autoinducers   总被引:2,自引:0,他引:2       下载免费PDF全文
Pseudomonas aeruginosa uses virulence factors controlled by quorum sensing (QS) to kill Caenorhabditis elegans. Here we show that C. elegans is attracted to the acylated homoserine lactones (AHSLs) that mediate QS in P. aeruginosa. Our data also indicate that C. elegans can distinguish AHSLs and may use them to mediate aversive or attractive learning.  相似文献   

16.
17.
Although the starvation response of the model multicellular organism Caenorhabditis elegans is a subject of much research, there is no convenient phenotypic readout of caloric restriction that can be applicable to large numbers of worms. This paper describes the distribution of mass densities of populations of C. elegans, from larval stages up to day one of adulthood, using isopycnic centrifugation, and finds that density is a convenient, if complex, phenotypic readout in C. elegans. The density of worms in synchronized populations of wildtype N2 C. elegans grown under standard solid-phase culture conditions was normally distributed, with distributions peaked sharply at a mean of 1.091 g/cm3 for L1, L2 and L3 larvae, 1.087 g/cm3 for L4 larvae, 1.081 g/cm3 for newly molted adults, and 1.074 g/cm3 at 24 hours of adulthood. The density of adult worms under starvation stress fell well outside this range, falling to a mean value of 1.054 g/cm3 after eight hours of starvation. This decrease in density correlated with the consumption of stored glycogen in the food-deprived worms. The density of the worms increased when deprived of food for longer durations, corresponding to a shift in the response of the worms: worms sacrifice their bodies by retaining larvae, which consume the adults from within. Density-based screens with the drug Ivermectin on worms cultured on single plates resulted in a clear bimodal (double-peaked) distribution of densities corresponding to drug exposed and non-exposed worms. Thus, measurements of changes in density could be used to conduct screens on the effects of drugs on several populations of worms cultured on single plates.  相似文献   

18.
Determining the relationship between individual life‐history traits and population dynamics is an essential step to understand and predict natural selection. Model organisms that can be conveniently studied experimentally at both levels are invaluable to test the rich body of theoretical literature in this area. The nematode Caenorhabditis elegans, despite being a well‐established workhorse in genetics, has only recently received attention from ecologists and evolutionary biologists, especially with respect to its association with pathogenic bacteria. In order to start filling the gap between the two areas, we conducted a series of experiments aiming at measuring life‐history traits as well as population growth of C. elegans in response to three different bacterial strains: Escherichia coli OP50, Salmonella enterica Typhimurium, and Pseudomonas aeruginosa PAO1. Whereas previous studies had established that the latter two reduced the survival of nematodes feeding on them compared to E. coli OP50, we report for the first time an enhancement in reproductive success and population growth for worms feeding on Senterica Typhimurium. Furthermore, we used an age‐specific population dynamic model, parameterized using individual life‐history assays, to successfully predict the growth of populations over three generations. This study paves the way for more detailed and quantitative experimental investigation of the ecology and evolution of C. elegans and the bacteria it interacts with, which could improve our understanding of the fate of opportunistic pathogens in the environment.  相似文献   

19.
We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of Gα signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn), but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine''s effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol.  相似文献   

20.
In this protocol, we present the required materials, and the procedure for making modified C. elegans Habituation and Reproduction media (mCeHR). Additionally, the steps for exposing and acclimatizing C. elegans grown on E. coli to axenic liquid media are described. Finally, downstream experiments that utilize axenic C. elegans illustrate the benefits of this procedure. The ability to analyze and determine C. elegans nutrient requirement was illustrated by growing N2 wild type worms in axenic liquid media with varying heme concentrations. This procedure can be replicated with other nutrients to determine the optimal concentration for worm growth and development or, to determine the toxicological effects of drug treatments. The effects of varied heme concentrations on the growth of wild type worms were determined through qualitative microscopic observation and by quantitating the number of worms that grew in each heme concentration. In addition, the effect of varied nutrient concentrations can be assayed by utilizing worms that express fluorescent sensors that respond to changes in the nutrient of interest. Furthermore, a large number of worms were easily produced for the generation of transgenic C. elegans using microparticle bombardment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号