首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Elevated temperatures and solar ultraviolet (UV) radiation have been implicated as recent causes for the loss of symbiotic algae (i.e., bleaching) in corals and other invertebrates with photoautotrophic symbionts. One hypothesized mechanism of coral bleaching involves the production of reduced oxygen intermediates, or toxic oxygen, in the dinoflagellate symbionts and host tissues that subsequently causes cellular damage and expulsion of symbionts. Measurements of photosynthesis in the Caribbean coral Agaricia tenuifolia, taken during temperature-induced stress and exposure to full solar radiation, showed a decrease in photosynthetic performance followed by bleaching. Exposure of corals to exogenous antioxidants that scavenge reactive oxygen species during temperature-induced stress improves maximum photosynthetic capacity to rates indistinguishable from corals measured at the ambient temperature of their site of collection. Additionally, these antioxidants prevent the coral from “ bleaching ” and affect the mechanism of symbiont loss from the coral host. These observations confirm a role for oxidative stress, whether caused by elevated temperatures or exposure to UV radiation, in the bleaching phenomenon. Accepted: 18 October 1996  相似文献   

2.
Quantifying the quality of coral bleaching predictions   总被引:2,自引:0,他引:2  
Techniques that utilize sea surface temperature (SST) observations to predict coral reef bleaching are in common use and form the foundation for predicted global coral reef ecosystem demise within this century. Yet, quality assessments of these methods are typically qualitative or anecdotal. Quality is the correspondence of forecasts with observations and has standard quantitative measures. Here a forecast verification method, commonly used in meteorology, is presented and used to measure the quality of the degree heating weeks (DHW) technique as an exploration of insights that can be gleaned from this methodology. DHW values were calculated from NOAA Optimum Interpolation SST version 2 data and compared to a database of bleaching observations from 1990–2007. Quality is expressed with an objective measure, the Peirce Skill Score (PSS). The quality at varying DHW thresholds above which bleaching was projected to occur is calculated. By selecting the thresholds that maximize quality, the predictive technique is objectively optimized. This results in optimal threshold maps, showing reefs more prone and more resistant to bleaching. Optimization increases the quality of DHW as a predictor of bleaching from PSS = 0.55 to PSS = 0.83, in global average, but the optimal PSS and corresponding DHW values vary significantly from location to location. The coral reef research and management community are urged to adopt the simple, but rigorous tools of forecast verification routinely used in other disciplines so that bleaching forecasts can be quantitatively compared and their quality improved.  相似文献   

3.
Recent reports of worldwide coral bleaching events leading to devastating coral mortality have caused alarm among scientists and resource managers. Differential survival of coral species through bleaching events has been widely documented. We suggest that among the possible factors contributing to survival of coral species during such events are endolithic algae harboured in their skeleton, providing an alternative source of energy. We studied the dynamics of photosynthetic pigment concentrations and biomass of endoliths in the skeleton of the encrusting coral Oculina patagonica throughout a bleaching event. During repeated summer bleaching events these endolithic algae receive increased photosynthetically active radiation, increase markedly in biomass, and produce increasing amounts of photoassimilates, which are translocated to the coral. Chlorophyll concentrations and biomass of endoliths were 4.6 +/- 1.57 and 1570 +/- 427 microg cm(-2) respectively, in skeletons of relatively healthy colonies (0-40% bleaching) but up to 14.8 +/- 2.5 and 4036 +/- 764 microg cm(-2) endolith chlorophyll and biomass respectively, in skeletons of bleached colonies (greater than 40% bleaching). The translocation dynamics of (14)C-labelled photoassimilates from the endoliths to bleached coral tissue showed significantly higher 14C activity of the endoliths harboured within the skeletons of bleached corals than that of the endoliths in non-bleached corals. This alternative source of energy may be vital for the survivorship of O. patagonica, allowing gradual recruitment of zooxanthellae and subsequent recovery during the following winter.  相似文献   

4.
5.
There is no simple explanation for the unusual increase in coral reef bleaching events that have been occurring on a global scale over the last 2 decades. Recent studies focusing on this problem reveal that mass bleaching events have a strong periodic component, arising every 3-4 yr in step with the El Ni?o climatic phenomenon. To explore this possibility further, we examine a simple oceanographic-ecological model designed to simulate the warm and cool phases of the Pacific Ocean cycle and gauge its effect on local coral reefs. This allows us to identify causes for localized 'hot spots' in the ocean, whose high sea surface temperatures have disastrous consequences for corals. The underlying wave dynamics of the model lead to chaotic oscillations (every 3-4 yr), which help explain the coexistence of both order and irregularity in the dynamics of mass bleaching. The model makes use of a temperature threshold mechanism-a bleaching event is triggered whenever temperature anomalies exceed a critical level. In a variable environment, the threshold mechanism is sensitive to background fluctuations, and their effects are studied by making use of a 'stochastic resonance' formulation. Global climate change and other trends in external background environmental conditions are all shown to strongly influence the distribution of mass coral bleaching events.  相似文献   

6.

Some reef corals form stable, dominant or codominant associations with multiple endosymbiotic dinoflagellate species (family Symbiodiniaceae). Given the immense genetic and physiological diversity within this family, Symbiodiniaceae community composition has the potential to impact the nutritional physiology and fitness of the cnidarian host and all associated symbionts. Here we assessed the impact of the symbiont community composition on the metabolome of the coral Montipora capitata in Kāne‘ohe Bay, Hawai‘i, where different colonies can be dominated by stress-tolerant Durusdinium glynnii or stress-sensitive Cladocopium spp. Based on our existing knowledge of these symbiont taxa, we hypothesised that the metabolite profile of D. glynnii-dominated corals would be consistent with poorer nutritional support of the host relative to those corals dominated by Cladocopium spp. However, comparative metabolite profiling revealed that the metabolite pools of the host and symbiont were unaffected by differences in the abundance of the two symbionts within the community. The abundance of the individual metabolites was the same in the host and in the endosymbiont regardless of whether the host was populated with D. glynnii or Cladocopium spp. These results suggest that coral-dinoflagellate symbioses have the potential to undergo physiological adjustments over time to accommodate differences in their resident symbionts. Such mechanisms may involve host heterotrophic compensation (increasing the level of nutrition generated by feeding relative to delivery from the algae), dynamic regulation of metabolic pathways when exchange of metabolites between the organisms differs, and/or modification of both the type and quantity of metabolites that are exchanged. We discuss these adjustments and the implications for the physiology and survival of reef corals under changing environmental regimes.

  相似文献   

7.
8.
Coral Reefs - Coral bleaching as a response to increased sea surface temperature is regularly surveyed, but our understanding of species-specific differences in response is limited. We compiled...  相似文献   

9.
10.
Annual bleaching of Oculina patagonica on the Israeli Mediterranean coastline has been reported since 1993, although the cellular mechanisms underlying the bleaching have not yet been investigated. This survey examined 48 coral colonies of O. patagonica (bleached and unbleached) from various sites along the Israeli coast. Histopathological investigations of bleached lesions revealed a loss of endosymbionts, and an apparent in situ degradation of the endosymbionts. In situ end labelling of bleaching lesions did not provide evidence of apoptotic cell death. Electron microscopy of bleaching lesions also demonstrated an apparent in situ degradation and no evidence of apoptotic cell death of the host.  相似文献   

11.
12.
Permanent study sites were established at 6 m, 12 m and 18 m on the West Fore Reef at Discovery Bay, Jamaica. Colonies of Montastrea annularis, Porites astreoides, Porites porites and Agaricia spp. were assessed for presence and extent of bleached tissue at two month intervals between October 1986 and September 1987. In 98% of all corals exhibiting a bleaching response, less than 25% of the colony appeared pale. In the remaining 2%, more than 25% of the tissue appeared pale. M. annularis, P. astreoides and Agaricia spp. showed a significant positive correlation between the percent of colonies exhibiting a partial bleaching response and seawater temperature. There was no significant difference in the percentage of colonies bleached between the three depths. M. annularis and Agaricia spp. exhibited a significantly higher percentage of colonies bleached than P. astreoides and P. porites. For M. annularis 15% of coral colonies studied showed 1–2 cm2 randomly seattered patches of pale tissue which remained constant throughout the study. The partial bleaching patterns observed in this study were never lethal and are considered, in part, to be a response to seasonal variations in seawater temperature. Study location: Discovery Bay Marine Laboratory, P.O. Box 35, Discovery Bay, Jamaica, W. Indies  相似文献   

13.
14.
Coral bleaching is a major concern to researchers, conservationists and the general public worldwide. To date, much of the high profile attention for bleaching has coincided with major environmental impacts and for many the term coral bleaching is synonymously associated with coral mortality (so‐called ‘lethal’ bleaching episodes). While this synonymous association has undoubtedly been key in raising public support, it carries unfair representation: nonlethal bleaching is, and always has been, a phenomenon that effectively occurs regularly in nature as corals acclimatize to regular periodic changes in growth environment (days, seasons etc). In addition, corals can exhibit sublethal bleaching during extreme environmental conditions whereby mortality does not occur and corals can potentially subsequently recover once ambient environmental conditions return. Perhaps not surprisingly it is the frequency and extent of these non and sublethal processes that yield key evidence as to how coral species and reef systems will likely withstand environmental and thus climatic change. Observations of non and sublethal bleaching (and subsequent recovery) are arguably not as readily reported as those of lethal bleaching since (1) the convenient tools used to quantify bleaching yield major ambiguity (and hence high potential for misidentification) as to the severity of bleaching; and (2) lethal bleaching events inevitably receive higher profile (media) attention and so are more readily reported. Under‐representation of non and sublethal bleaching signs may over‐classify the severity of bleaching, under‐estimate the potential resilience of reefs against environmental change, and thus ultimately limit (if not depreciate) the validity and effectiveness of reef management policies and practices. While bleaching induced coral mortality must remain our key concern it must be better placed within the context of bleaching signs that do not result in a long‐term loss of reef viability.  相似文献   

15.
The formation of an adult animal from a fertilized embryo involves the production and death of cells. Surprisingly, many cells are produced during development with an ultimate fate of death, and defects in programmed cell death can result in developmental abnormalities. Recent studies indicate that cells can die by many different mechanisms, and these differences have implications for proper animal development and disorders such as cancer and autoimmunity.  相似文献   

16.
In 1998, the Indian Ocean coral reefs suffered a severe and extensive mass bleaching event. The thermal tolerances of corals were exceeded and their photosynthetic symbionts (zooxanthellae) lost. Mortalities of up to 90% were recorded on the reefs of Seychelles, Maldives, Kenya and Tanzania. South African coral reefs were among the few that largely escaped the 1998 mass bleaching event, but may be threatened in the future if global warming increases. This study assessed the extent of coral bleaching and partial recovery at Sodwana Bay, South Africa during 2000 and 2001. Bleaching levels in this study varied over the course of a year, which suggested that seasonally varying parameters such as sea temperature were the most likely cause of bleaching. Bleaching levels were highest at the shallowest site. However, these bleaching levels were very low in comparison with those of reefs elsewhere in the Indian Ocean. The greater volume of water over the relatively deeper reefs of Sodwana Bay may have protected the reefs from severe bleaching. Field measurements on the three reefs indicated that, although the reefs at Sodwana Bay are still healthy, bleaching increased from <1% in 1998 to 5–10% in 2002. Bleaching occurred in 26 coral genera. The Alcyonacea were highly susceptible to bleaching, especially Sarcophyton sp. Among the hard corals, Montipora spp. were the species most susceptible to bleaching. The sensitivity of these genera to early and slight increases in temperature suggests that they can forewarn of a possible greater bleaching event. In contrast, the coral genera Turbinaria and Stylophora were most resistant to bleaching.  相似文献   

17.
18.
Vibrio shiloi is the causative agent of bleaching (loss of endosymbiotic zooxanthellae) of the coral Oculina patagonica in the Mediterranean Sea. To obtain information on the mechanism of bleaching, we examined the effect of secreted material (AK1-S) produced by V. shiloi on zooxanthellae isolated from corals. AK1-S caused a rapid inhibition of photosynthesis of the algae, as measured with a Mini-PAM fluorometer. The inhibition of photosynthesis was caused by (i) ammonia produced during the growth of V. shiloi on protein-containing media and (ii) a non-dialysable heat-resistant factor. This latter material did not inhibit photosynthesis of the algae by itself but, when added to different concentrations of NH4Cl, enhanced the inhibition approximately two- to threefold. Ammonia and the enhancer were effective to different degrees on zooxanthellae isolated from four species of coral examined. In addition to the rapid inhibition of photosynthesis, AK1-S caused bleaching (loss of pigmentation) and lysis of zooxanthellae. Bleaching was more rapid than lysis, reaching a peak (25% bleached algae) after 6 h. The factors in AK1-S responsible for bleaching and lysis were different from those responsible for the inhibition of photosynthesis, because they were heat sensitive, non-dialysable and active in the dark. Thus, the coral pathogen V. shiloi produces an array of extracellular materials that can inhibit photosynthesis, bleach and lyse zooxanthellae.  相似文献   

19.
Rankin TL  Sponaugle S 《PloS one》2011,6(5):e16814
For organisms with complex life cycles, processes occurring at the interface between life stages can disproportionately impact survival and population dynamics. Temperature is an important factor influencing growth in poikilotherms, and growth-related processes are frequently correlated with survival. We examined the influence of water temperature on growth-related early life history traits (ELHTs) and differential mortality during the transition from larval to early juvenile stage in sixteen monthly cohorts of bicolor damselfish Stegastes partitus, sampled on reefs of the upper Florida Keys, USA over 6 years. Otolith analysis of settlers and juveniles coupled with environmental data revealed that mean near-reef water temperature explained a significant proportion of variation in pelagic larval duration (PLD), early larval growth, size-at-settlement, and growth during early juvenile life. Among all cohorts, surviving juveniles were consistently larger at settlement, but grew more slowly during the first 6 d post-settlement. For the other ELHTs, selective mortality varied seasonally: during winter and spring months, survivors exhibited faster larval growth and shorter PLDs, whereas during warmer summer months, selection on PLD reversed and selection on larval growth became non-linear. Our results demonstrate that temperature not only shapes growth-related traits, but can also influence the direction and intensity of selective mortality.  相似文献   

20.
Coral Reefs - Reef-building corals are surrounded by complex microenvironments (i.e. concentration boundary layers) that partially isolate them from the ambient seawater. Although the presence of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号