首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
《Neuron》2022,110(20):3230-3242
  相似文献   

2.
3.
4.
As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-D-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field.  相似文献   

5.
复杂刺激的知觉学习是指由训练或经验引起的对物体或者面孔等复杂视觉刺激在知觉上长期稳定的改变,一般认为这反映了大脑高级视皮层的可塑性.对简单刺激知觉学习特性的研究已经揭示了低级视皮层的部分可塑性,但是复杂刺激知觉学习的神经机制目前仍存在争议.本文介绍了知觉学习的理论模型和实验证据,并重点探讨了复杂刺激如物体和面孔知觉学习的特性、神经机制及研究方法.该领域未来需要在复杂刺激知觉学习的持久性、面孔不同属性知觉学习的机制,以及复杂刺激知觉学习的理论模型方面做进一步研究.  相似文献   

6.
A remarkable amount of our current knowledge of mechanisms underlying experience-dependent plasticity during cortical development comes from study of the mammalian visual cortex. Recent advances in high-resolution cellular imaging, combined with genetic manipulations in mice, novel fluorescent recombinant probes, and large-scale screens of gene expression, have revealed multiple molecular mechanisms that underlie structural and functional plasticity in visual cortex. We situate these mechanisms in the context of a new conceptual framework of feed-forward and feedback regulation for understanding how neurons of the visual cortex reorganize their connections in response to changes in sensory inputs. Such conceptual advances have important implications for understanding not only normal development but also pathological conditions that afflict the central nervous system.  相似文献   

7.
We introduce a distinction between cortical dominance andcortical deference, and apply it to various examples ofneural plasticity in which input is rerouted intermodally orintramodally to nonstandard cortical targets. In some cases butnot others, cortical activity `defers' to the nonstandard sourcesof input. We ask why, consider some possible explanations, andpropose a dynamic sensorimotor hypothesis. We believe that thisdistinction is important and worthy of further study, bothphilosophical and empirical, whether or not our hypothesis turnsout to be correct. In particular, the question of how the distinction should be explained is linked to explanatory gapissues for consciousness. Comparative and absolute explanatorygaps should be distinguished: why does neural activity in aparticular area of cortex have this qualitative expressionrather than that, and why does it have any qualitativeexpression at all? We use the dominance/deference distinction toaddress the comparative gaps, both intermodal and intramodal (notthe absolute gap). We do so not by inward scrutiny but rather by expanding our gaze to include relations between brain, body andenvironment.  相似文献   

8.
    
The mushroom body (MB) is an area of the insect brain involved in learning, memory, and sensory integration. Here, we used the sweat bee Megalopta genalis (Halictidae) to test for differences between queens and workers in the volume of the MB calyces. We used confocal microscopy to measure the volume of the whole brain, MB calyces, optic lobes, and antennal lobes of queens and workers. Queens had larger brains, larger MB calyces, and a larger MB calyces:whole brain ratio than workers, suggesting an effect of social dominance in brain development. This could result from social interactions leading to smaller worker MBs, or larger queen MBs. It could also result from other factors, such as differences in age or sensory experience. To test these explanations, we next compared queens and workers to other groups. We compared newly emerged bees, bees reared in isolation for 10 days, bees initiating new observation nests, and bees initiating new natural nests collected from the field to queens and workers. Queens did not differ from these other groups. We suggest that the effects of queen dominance over workers, rather than differences in age, experience, or reproductive status, are responsible for the queen–worker differences we observed. Worker MB development may be affected by queen aggression directly and/or manipulation of larval nutrition, which is provisioned by the queen. We found no consistent differences in the size of antennal lobes or optic lobes associated with differences in age, experience, reproductive status, or social caste.  相似文献   

9.
    
《Current biology : CB》2020,30(15):2962-2973.e5
  相似文献   

10.
Experience-dependent plasticity is closely linked with the development of sensory function; however, there is also growing evidence for plasticity in the adult visual system. This review re-examines the notion of a sensitive period for the treatment of amblyopia in the light of recent experimental and clinical evidence for neural plasticity. One recently proposed method for improving the effectiveness and efficiency of treatment that has received considerable attention is ‘perceptual learning’. Specifically, both children and adults with amblyopia can improve their perceptual performance through extensive practice on a challenging visual task. The results suggest that perceptual learning may be effective in improving a range of visual performance and, importantly, the improvements may transfer to visual acuity. Recent studies have sought to explore the limits and time course of perceptual learning as an adjunct to occlusion and to investigate the neural mechanisms underlying the visual improvement. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia.  相似文献   

11.
12.
Recent experimental evidence has implicated neurotrophic factors (NTs) in the competitive process believed to drive the development of ocular dominance (OD) columns. Application of excess amounts of particular NTs can prevent the segregation process, suggesting that they could be the substance for which geniculocortical afferents compete during development. We have previously presented a model that accounts for normal OD development as well as the prevention of that development with excess NT. The model uses a Hebbian learning rule in combination with competition for a limiting supply of cortical trophic factor to drive OD segregation, without any weight normalization procedures.Subsequent experimental evidence has further suggested that NTs may be causally involved in the competitive process. Application of NT antagonist can prevent OD columns by causing inputs from both eyes to be eliminated, suggesting that NTs may be the substance for which geniculocortical afferents compete. Also, excess NT can mitigate the shift to the open eye normally caused by monocular deprivation (MD). In this article, we show that the current model can account for these subsequent experiments. We show that deprivation of NT causes inputs from both eyes to decay and that excess NT can mitigate the shift to the open eye normally seen with MD. We then present predictions of the model concerning the effects of NT on the length of the critical period during which MD is effective. The model presents a novel mechanism for competition between neural populations inspired by particular biological evidence. It accounts for three specific experimental results, and provides several testable predictions.  相似文献   

13.
    
《Current biology : CB》2023,33(11):2163-2174.e4
  相似文献   

14.
珍珠明目液消炎作用观察   总被引:2,自引:0,他引:2  
目的观察珍珠明目液对眼结膜刺激性及其对实验性兔眼部炎症的影响.方法给兔眼眶内滴入珍珠明目液(每次0.1ml/眼,1天3次,连续7天),观察给药7天后角膜、虹膜及结膜的反应;用30%巴豆油造成兔眼结膜炎,致炎前及致炎后局部应用珍珠明目液滴眼(0.1ml/眼),并设醋酸可的松眼药水治疗组和生理盐水对照组.于致炎后2、4、12、24、36、48及72h,根据结膜炎充血、水肿及分泌物轻重程度进行评分.结果珍珠明目液对兔眼角膜、虹膜及结膜未见明显异常反应.珍珠明目液治疗30%巴豆油所致兔眼炎症评分值显著低于相应生理盐水组(P<0.01),与醋酸可的松治疗组比较无显著性差异.结论珍珠明目液无眼刺激性,对巴豆油致兔眼结膜炎具有较好的消炎作用.  相似文献   

15.
Consistent and heritable individual differences in reaction to challenges, often referred to as stress coping styles, have been extensively documented in vertebrates. In fish, selection for divergent post-stress plasma cortisol levels in rainbow trout (Oncorhynchus mykiss) has yielded a low (LR) and a high responsive (HR) strain. A suite of behavioural traits is associated with this physiological difference, with LR (proactive) fish feeding more rapidly after transfer to a new environment and being socially dominant over HR (reactive) fish. Following transport from the UK to Norway, a switch in behavioural profile occurred in trout from the 3rd generation; HR fish regained feeding sooner than LR fish in a novel environment and became dominant in size-matched HR–LR pairs. One year after transport, HR fish still fed sooner, but no difference in social dominance was found. Among offspring of transported fish, no differences in feeding were observed, but as in pre-transported 3rd generation fish, HR fish lost fights for social dominance against size-matched LR opponents. Transported fish and their offspring retained their distinctive physiological profile throughout the study; HR fish showed consistently higher post-stress cortisol levels at all sampling points. Altered risk-taking and social dominance immediately after transport may be explained by the fact that HR fish lost more body mass during transport than did LR fish. These data demonstrate that some behavioural components of stress coping styles can be modified by experience, whereas behavioural plasticity is limited by genetic effects determining social position early in life story.  相似文献   

16.
17.
    
《Cell reports》2023,42(4):112287
  1. Download : Download high-res image (168KB)
  2. Download : Download full-size image
  相似文献   

18.
There are a number of statements that can be made about eye movements of monkeys during the learning of simple and complex discriminative problems that are probably applicable to a wide variety of visual tasks. There are systematic changes in eye movements as a function of practice. Some of these changes occur long after grosser measures of performance, such as frequency of correct choices, have reached an asymptote. Hence, short-term studies of visual information processing may be misleading. Duration of visual fixations and frequency of visual fixations are independent measures, reflecting different cognitive processes. Studies which measure only total looking time confound these two measures and, thus, may miss important information. Eye movements appear to be an important, if not essential, component of the chain of events constituting the cognitive processing underlying performance on visual tasks.  相似文献   

19.
    
Abstract. Access to the ventral nerve cord in living specimens of Lumbriculus variegatus , an aquatic oligochaete, is normally impossible because surgical invasion induces segmental autotomy (self-fragmentation). We show here that nicotine is a powerful paralytic agent that reversibly immobilizes worms, blocks segmental autotomy, and allows experimental access to the nerve cord. Using nicotine-treated worms, we transected the ventral nerve cord and used non-invasive electrophysiological recordings and behavioral analyses to characterize the functional recovery of giant nerve fibers and other reflex pathways. Initially, after transection, medial giant fiber (MGF) and lateral giant fiber (LGF) spikes conducted up to, but not across, the transection site. Reestablishment of MGF and LGF through-conduction across the transection site occurred as early as 10 h (usually by 20 h) after transection. Analyses of non-giant-mediated behavioral responses (i.e., helical swimming and body reversal) were also made following nerve cord transection. Immediately after transection, functional reorganization of touch-evoked locomotor reflexes occurred, so that the two portions of the worm anterior and posterior to the transection site were independently capable of helical swimming and body reversal responses. Similar reorganization of responses occurred in amputated body fragments. Reversion back to the original whole-body pattern of swimming and reversal occurred as early as 8 h after transection. Thus, functional restoration of the non-giant central pathways appeared slightly faster than giant fiber pathways. The results demonstrate the remarkable plasticity of locomotor reflex behaviors immediately after nerve cord transection or segment amputation. They also demonstrate the exceptional speed and specificity of regeneration of the central pathways that mediate locomotor reflexes.  相似文献   

20.
    
The eye is a very sophisticated system of optical elements for the preeminent sense of vision. In recent years, the number of laser surgery to correct the optical aberration such as myopia or astigmatism has significantly increased. Consequently, improving the knowledge related to the interactions of light with the eye is very important in order to enhance the efficiency of the surgery. For this reason, a complete optical characterization of the porcine eye is presented in this study. Kubelka‐Munk and Inverse Adding‐Doubling methods were applied to spectroscopy measurement to determine the absorption and scattering coefficients. Furthermore, the refractive index has been measured by ellipsometry. The different parameters were obtained for the cornea, lens, vitreous humor, sclera, iris, choroids and eyelid in the visible and infrared region. Thereafter, the results are implemented in a COMSOL Multiphysics® software to create an eye model. This model gives a better understanding of the propagation of light in the eye by adding optical parts such as the iris, the sclera or the ciliary bodies. Two simulations show the propagation of light from the cornea to the retina but also from the sclera to the retina. This last possibility provides a better understanding of light propagation during eye laser surgery such as, for example, transscleral cyclophotocoagulation. Figure: Eye simulation models allow the development of new laser treatments in a simple and safe way for patients. To this purpose, the creation of an eye simulated model based on optical parameters obtained from experimental data is presented in this study. This model will facilitate the understanding of the light propagation inside the porcine eye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号