首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Silent Information Regulator 2 (Sir2), a conserved NAD+-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phasedependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.  相似文献   

2.
Fission yeast Spc1/StyI MAPK is activated by many environmental insults including high osmolarity, oxidative stress, and heat shock. Spc1/StyI is activated by Wis1, a MAPK kinase (MEK), which is itself activated by Wik1/Wak1/Wis4, a MEK kinase (MEKK). Spc1/StyI is inactivated by the tyrosine phosphatases Pyp1 and Pyp2. Inhibition of Pyp1 was recently reported to play a crucial role in the oxidative stress and heat shock responses. These conclusions were based on three findings: 1) osmotic, oxidative, and heat stresses activate Spc1/StyI in wis4 cells; 2) oxidative stress and heat shock activate Spc1/StyI in cells that express Wis1AA, in which MEKK consensus phosphorylation sites were replaced with alanine; and 3) Spc1/StyI is maximally activated in Δpyp1 cells. Contrary to these findings, we report: 1) Spc1/StyI activation by osmotic stress is greatly reduced in wis4 cells; 2) wis1-AA and Δwis1 cells have identical phenotypes; and 3) all forms of stress activate Spc1/StyI in Δpyp1 cells. We also report that heat shock, but not osmotic or oxidative stress, activate Spc1 in wis1-DD cells, which express Wis1 protein that has the MEKK consensus phosphorylation sites replaced with aspartic acid. Thus osmotic and oxidative stress activate Spc1/StyI by a MEKK-dependent process, whereas heat shock activates Spc1/StyI by a novel mechanism that does not require MEKK activation or Pyp1 inhibition.  相似文献   

3.
4.
5.
Saccharomyces cerevisiae is calorie-restricted by lowering glucose from 2% to 0.5%. Under low glucose conditions, replicative lifespan is extended in a manner that depends on the NAD+-dependent protein lysine deacetylase Sir2 and NAD+ salvage enzymes. Because NAD+ is required for glucose utilization and Sir2 function, it was postulated that glucose levels alter the levels of NAD+ metabolites that tune Sir2 function. Though NAD+ precursor vitamins, which increase the levels of all NAD+ metabolites, can extend yeast replicative lifespan, glucose restriction does not significantly change the levels or ratios of intracellular NAD+ metabolites. To test whether glucose restriction affects protein copy numbers, we developed a technology that combines the measurement of Urh1 specific activity and quantification of relative expression between Urh1 and any other protein. The technology was applied to obtain the protein copy numbers of enzymes involved in NAD+ metabolism in rich and synthetic yeast media. Our data indicated that Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinamide and then to nicotinic acid, are up-regulated by glucose restriction in rich media, and that Pnc1 alone is up-regulated in synthetic media while levels of all other enzymes are unchanged. These data suggest that production or export of nicotinic acid might be a connection between NAD+ and calorie restriction-mediated lifespan extension in yeast.  相似文献   

6.
The Skn7 response regulator has previously been shown to play a role in the induction of stress-responsive genes in yeast, e.g., in the induction of the thioredoxin gene in response to hydrogen peroxide. The yeast Heat Shock Factor, Hsf1, is central to the induction of another set of stress-inducible genes, namely the heat shock genes. These two regulatory trans-activators, Hsf1 and Skn7, share certain structural homologies, particularly in their DNA-binding domains and the presence of adjacent regions of coiled-coil structure, which are known to mediate protein-protein interactions. Here, we provide evidence that Hsf1 and Skn7 interact in vitro and in vivo and we show that Skn7 can bind to the same regulatory sequences as Hsf1, namely heat shock elements. Furthermore, we demonstrate that a strain deleted for the SKN7 gene and containing a temperature-sensitive mutation in Hsf1 is hypersensitive to oxidative stress. Our data suggest that Skn7 and Hsf1 cooperate to achieve maximal induction of heat shock genes in response specifically to oxidative stress. We further show that, like Hsf1, Skn7 can interact with itself and is localized to the nucleus under normal growth conditions as well as during oxidative stress.  相似文献   

7.
8.
9.
10.
11.
12.
The aim of this work was to identify elements of adaptive regulatory mechanism for basal level of yeast histone deacetylase Sir2. Heat shock response (HSR) was altered in the absence of the NAD-dependent glycerol 3-phosphate dehydrogenase (Gpd1). Increase in HSR was lower in ΔGpd1 cells than wild-type cells. An inverse correlation existed between Gpd1 and Sir2; Sir2-deleted cells showed higher expression of Gpd1 while deletion of Gpd1 led to higher expression of Sir2. In the absence of Gpd1, basal activity of Sir2 promoter was higher and was increased further upon heat shock, suggesting higher Sir2 levels. No interaction between Gpd1 and Sir2 was detected without or with heat shock using immunoprecipitation. The results show that Gpd1 regulates HSR in yeast cells and likely blocks its uncontrolled activation. As uncontrolled stress adversely affects the cellular adaptive response, Gpd1 may be a component of the cell's catalogue to ensure a balanced response to unmitigated thermal stress.  相似文献   

13.
14.
15.
16.
17.
ErbB2/Neu oncogene is overexpressed in 25% of invasive/metastatic breast cancers. We have found that deletion of heat shock factor Hsf1 in mice overexpressing ErbB2/Neu significantly reduces mammary tumorigenesis and metastasis. Hsf1+/−ErbB2/Neu+ tumors exhibit reduced cellular proliferative and invasive properties associated with reduced activated ERK1/2 and reduced epithelial-mesenchymal transition (EMT). Hsf1+/+Neu+ mammary epithelial cells exposed to TGFβ show high levels of ERK1/2 activity and EMT; this is associated with reduced expression of E-cadherin and increased expression of Slug and vimentin, a mesenchymal marker. In contrast, Hsf1−/−Neu+ or Hsf1+/+Neu+ cells do not exhibit activated ERK1/2 and show reduced EMT in the presence of TGFβ. The ineffective activation of the RAS/RAF/MEK/ERK1/2 signaling pathway in cells with reduced levels of HSF1 is due to the low levels of HSP90 in complex with RAF1 that are required for RAF1 stability and maturation. These results indicate a powerful inhibitory effect conferred by HSF1 downstream target genes in the inhibition of ErbB2-induced breast cancers in the absence of the Hsf1 gene.  相似文献   

18.
19.
Sirtuin1 (SIRT1) deacetylase and poly(ADP-ribose)-polymerase-1 (PARP-1) respond to environmental cues, and both require NAD+ cofactor for their enzymatic activities. However, the functional link between environmental/oxidative stress-mediated activation of PARP-1 and SIRT1 through NAD+ cofactor availability is not known. We investigated whether NAD+ depletion by PARP-1 activation plays a role in environmental stimuli/oxidant-induced reduction in SIRT1 activity. Both H2O2 and cigarette smoke (CS) decreased intracellular NAD+ levels in vitro in lung epithelial cells and in vivo in lungs of mice exposed to CS. Pharmacological PARP-1 inhibition prevented oxidant-induced NAD+ loss and attenuated loss of SIRT1 activity. Oxidants decreased SIRT1 activity in lung epithelial cells; however increasing cellular NAD+ cofactor levels by PARP-1 inhibition or NAD+ precursors was unable to restore SIRT1 activity. SIRT1 was found to be carbonylated by CS, which was not reversed by PARP-1 inhibition or selective SIRT1 activator. Overall, these data suggest that environmental/oxidant stress-induced SIRT1 down-regulation and PARP-1 activation are independent events despite both enzymes sharing the same cofactor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号