首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The health of the plant and soil fertility is dependent on the plant–microbes interaction in the rhizosphere. Microbial life tends to endure various rhizosphere plant–microbe interactions. Phytohormones such as auxins, cytokinins, gibberellic acid, ethylene and abscisic acid are termed as the classical group of hormones. Out of the 70 rhizobacterial strains isolated from the Coleus rhizosphere, three different rhizobacterial strains Pseudomonas stutzeri MTP40, Stenotrophomonas maltophilia MTP42 and Pseudomonas putida MTP50 having plant growth-promoting attributes were isolated and characterized for its phytohormone-producing ability. The phytohormones such as indole 3-acetic acid (IAA), gibberellic acid and cytokinin (kinetin and 6-benzyladenosine) were affirmed in culture supernatant of the above isolates. IAA was detected in all the three isolates, where in highest production was found in S. maltophilia MTP42 (240?µg/mL) followed by P. stutzeri MTP40 (250?µg/mL) and P. putida MTP50 (233?µg/mL). Gibberellic acid production was found maximum in MTP40 (34?µg/mL), followed by MTP42 (31?µg/mL) and MTP50 (27?µg/mL). The cytokinin production from the isolates, namely, MTP40, MTP42 and MTP50 were 13, 11 and 7.5?µg/mL, respectively. The isolates showing the production of plant growth enhancing phytohormones can be commercialized as potent bioformulations.  相似文献   

2.
Erica andevalensis Cabezudo & Rivera is a threatened edaphic endemic species of Andalusia (SW Spain). Under natural conditions, the plants produce a very large number of small seeds (0.3–0.4 mm) but very few seedlings survive. Different treatments (high temperature, cold pre-treatment, nitrogen salts, and gibberellic acid applications) were tested to assess germination patterns in different populations and to determinate the most favorable conditions for germination. Gibberellic acid was provided in five different concentrations from 0 to 400 ppm GA3, while nitrogen was applied as 10 mM of either KNO3 or NH4NO3. The effect of pH on germination was also tested. The species always showed a low germination rate (6.50–22%) that was not stimulated either by 1 or 4 months in dry cold pre-treatment, nitrogen application, acid pH medium, or by high temperature (80°C for 10 min); although gibberellic acid application (100–400 ppm) significantly enhanced germination. The highest percentage of germination (41.6%) was achieved with a mean germination time to start germination (t 0) of 7.6 ± 0.54 days when the seeds were subjected to 400 ppm gibberellic acid treatment. The population origin did not have a significant effect on germination percentage.  相似文献   

3.
《Process Biochemistry》2007,42(4):681-685
The potential application of dry biomass of a cyanobacterium Anacystis nidulans as a supplement in SSF for the production of laccase from Pleurotus ostreatus was evaluated. Experiments were carried out in solid culture using groundnut shell as a basic substrate supplemented with four independent nitrogen sources (ammonium sulphate, urea, yeast extract and dry powder of cyanobacteria). All the four supplements enhanced the enzyme yield, and yeast extract showed precedence over inorganic nitrogenous sources. However, when dry biomass of A. nidulans was used as an additive to groundnut shell (agricultural residues), it supported maximum cell growth (56.83 ± 5.56 mg/g dry substrate) and laccase production (49.21 ± 4.89 U/g dry substrate). Addition of 1 mM copper salt in the medium containing groundnut shell supplemented with yeast extract gave laccase activity of 32.64 ± 3.4 U/g dry substrate. When dry powder of cyanobacterial biomass was used as N-supplement, laccase production enhanced to 65.42 ± 6.48 U/g dry substrate. In addition to the enhancement to enzyme production inhibitory effects of high concentrations of copper was also diminished in the medium having dry cyanobacterial biomass. This study, forms the first report on the potential application of cyanobacterial biomass as an additive for production of laccase by Pleurotus ostraetus MTCC 1804 in solid state fermentation and has relevance in scale-up production of this fungal enzyme of commercial significance.  相似文献   

4.
Amylase production by three isolates ofMyrothecium roridum under different cultural conditions was studied. Starch followed by dextrin induced maximum amylase production (dextrinizing and saccharifying) by all the three isolates. Glucose was a poor substrate for the production of amylases. Bitter gourd isolate was a comparatively more efficient producer of amylases than the other two isolates. Addition of glucose to the starch medium resulted in a repression of amylases. Urea was a good source of nitrogen for induction of dextrinizing amylase in bitter gourd and pearl millet isolates.l-Asparagine,l-tyrosine were good sources of nitrogen for induction of saccharifying amylase in bitter gourd, water melon and pearl millet isolate, respectively. With a few exceptions, dextrinizing amylase production was inhibited by gibberellic acid, cycocel, calcium chloride and calcium sulfate, while these substances stimulated saccharifying-amylase production. No correlation could be observed between amylase production and vegetative growth. Amylases of all the three isolates ofM. roridum were characterized.  相似文献   

5.

Gibberellic acid (GAs), a vital phytohormone, is necessary to increase seed germination as well as plant’s health and growth. Likewise, a number of plant growth-promoting bacteria produce identical secondary metabolites which serve as plant growth stimulants. The current study focuses to investigate optimization of multiple variables for the maximum GAs production by bacterial isolates via Response surface methodology (RSM) with the help of Box–Behnken design (BBD) and its effects on seed germination and growth promotion of Cicer arietinum (Chickpea). Initially, bacterial isolates were screened on the basis of quantitative production of gibberellic acid without amendment of any precursor. Later, bacterial isolate, MEN8, was selected for peak production of gibberellic acid via BBD and a total of 50 sets of trials were finalized. RSM analysis signified maximum GAs production by the isolate up to 109.25 μg/ml on 5th day of incubation at 35 °C on pH 7.0 by consuming 3 g/l fructose and 1.0 g/l ammonium chloride. The extracted gibberellic acid was purified by using Thin-layer chromatography, elucidated on Rf value 0.72 with gray-colored spot which was further confirmed by High-performance liquid chromatography technique, at 2.68 retention time (Rt). The MEN8 isolate was molecularly identified up to species level as Bacillus cereus by using 16S rRNA gene sequencing and phylogeny. As a final point, in vitro analysis confirmed that B. cereus MEN8 was a significant isolate for increasing seed germination parameters such as germination energy (GE-27%), capacity (GC-32%), index (GI-42%), percentage (GP-55%), vigor index (VI-89%), and vegetative growth parameters including root/shoot length and fresh/dry weight. Plant growth-promoting nature of B. cereus MEN8 creates a future avenue to be utilized as ‘phytohormone-producing bioinoculant’ for sustainable agriculture at commercial implications.

  相似文献   

6.
Polyunsaturated fatty acids (PUFAs) are essential in healthy diets and their production is extremely important. Natural sources of PUFAs includes animal and aquatic products such as marine fish oil, however there are several limitations such as the decrease of fish stocks throughout the world. Thus, microbial oils are a preferable source of PUFAs. Herein, it was studied the production of PUFAs by Mortierella alpina under solid-state fermentation (SSF) using polyurethane foam as inert substrate and synthetic medium or lignocellulosic hydrolysate as source of C, N, and other nutrients. Several parameters of fermentation conditions were evaluated as carbon source, inductors addition, ratio C/N and temperature. The highest amount of total PUFAs per mass of solid (535.41 ± 24.12 mg/g), linoleic acid (129.66 ± 5.84 mg/g), and α-linoleic acid (401.93 ± 18.10 mg/g) were produced when the culture medium contained 20 g/L glucose, 10% (w/v) linseed oil, the C/N ratio was adjusted to 25 and the incubation temperature was 25°C for 3 days decreasing to 16°C on the remaining 4 days of fermentation. In addition, a hemicellulosic hydrolysate can be used as low-cost substrate to produce PUFAs, although the production was lower than the achieved with synthetic medium. SSF showed an interesting technology for microbial PUFAs production.  相似文献   

7.
Tannase producing fungal strains were isolated from different locations including garbages, forests and orchards, etc. The strain giving maximum enzyme yield was identified to be Aspergillus ruber. Enzyme production was studied under solid state fermentation using different tannin rich substrates like ber leaves (Zyzyphus mauritiana), jamun leaves (Syzygium cumini), amla leaves (Phyllanthus emblica) and jawar leaves (Sorghum vulgaris). Jamun leaves were found to be the best substrate for enzyme production under solid-state fermentation (SSF). In SSF with jamun leaves, the maximum production of tannase was found to be at 30 °C after 96 h of incubation. Tap water was found to be the best moistening agent, with pH 5.5 in ratio of 1:2 (w/v) with substrate. Addition of carbon and nitrogen sources to the medium did not increase tannase production. Under optimum conditions as standardized here, the enzyme production was 69 U/g dry substrate. This is the first report on production of tannase by A. ruber, giving higher yield under SSF with agro-waste as the substrate.  相似文献   

8.
毛壳霉CQ31的鉴定及固体发酵产木聚糖酶条件的优化   总被引:2,自引:0,他引:2  
从土壤中筛选出一株产木聚糖酶的真菌CQ31, 经鉴定后命名为毛壳霉CQ31。该菌能够利用几种农业废弃物固体发酵高产木聚糖酶, 玉米杆为最佳碳源。单因素优化试验表明: 以玉米杆为碳源, 胰蛋白胨为氮源, 初始水分含量80%, 初始pH值9.0为最佳产酶条件。在优化后的条件下培养7 d产木聚糖酶水平高达4897 U/g干基碳源, 此时甘露聚糖酶酶活达803 U/g干基碳源。因此, 毛壳霉CQ31固体发酵产木聚糖酶和甘露聚糖酶具有一定的工业化应用前景。  相似文献   

9.
Mycophenolic acid (MPA) was produced from Penicillium brevicompactum by solid-state fermentation (SSF) using pearl barley, and submerged fermentation (SmF) using mannitol. It was found that SSF was superior to SmF in terms of MPA concentration (1219 mg/L vs. 60 mg/L after 144 h fermentation), and the product yields were 6.1 mg/g pearl barley for SSF and 1.2 mg/g mannitol for SmF. The volumetric productivities were 8.5 and 0.42 mg/L h for SSF and SmF, respectively.The optimum solid substrate of SSF for MPA production was pearl barley, producing 5470 mg/kg compared with wheat bran (1601 mg/kg), oat (3717 mg/kg) and rice (2597 mg/kg). The optimum moisture content, incubation time and inoculum concentrations were 70%, 144 h and 6%, respectively. Neither the addition of mannitol or (NH4)2HPO4 nor adjustment of media pH within the range of 3–7 significantly enhanced MPA production.MPA production by SSF using a packed-bed bioreactor was performed and an increased maximum production of MPA 6.9 mg/g was achieved at 168 h incubation time. The higher volumetric productivity and concentrations makes SSF an attractive alternative to SmF for MPA production.  相似文献   

10.
《Process Biochemistry》2010,45(1):47-53
Rifamycin B production by isolated Amycolatopsis sp. RSP 3 was investigated under solid state fermentation (SSF) using agro-industrial waste materials. Corn husk was the most suitable substrate/support material with 4-fold higher production than wheat bran and corn cobs. A two-level (conventional and statistical) methodology was used to optimize fermentation parameters belong to physiological (pH, temperature and aeration), nutritional (carbon and nitrogen sources) and microbial (inoculum level and incubation time). Conventional optimization significantly improved (450%) the rifamycin B production of which two-third was associated with carbon and nitrogen sources. Starch as carbon source showed negative impact. Statistical optimization of suggested potassium nitrate (at individual level), soya bean meal and barbital (at interactive level) were observed to be the most noticeable variables in the maximization of production. At optimized conditions, inorganic nitrogen source played vital role (>59%) compared to all other factors. Overall, more than 920% increase in rifamycin B production was achieved at optimized environment.  相似文献   

11.
A tannase yielding fungal culture identified as Aspergillus fumigatus MA was isolated from the effluent collected from a local small scale tannery. The fungal culture produced high yields of extracellular tannase under solid-state fermentation (SSF) using different agro forest residues such as Amla leaves (Phyllanthus emblica), Ber leaves (Zyzyphus mauritiana), Jamun leaves (Syzygium cumini), Jamoa leaves (Syzygium sp.) and Keekar leaves (Acacia nilotica). Among different substrates used, Jamun leaves yielded maximal extra-cellular production of tannase. Various parameters were studied to optimize the extracellular yield of tannase under SSF. The maximum yield of 174.32 U g−1 was obtained at 25°C after 96 h of incubation at pH 5.0. The tap water was used as a moistening agent. A substrate to tap water ratio of 1:1 was found to best for tannase production. Supplementation of the medium with ammonium sulfate as nitrogen source had enhanced tannase production whereas glucose had decreased the enzyme production. This is the first report on production of tannase by Aspergillus fumigatus MA, giving a much higher yield of enzyme under SSF with Jamun leaves as the substrate.  相似文献   

12.
A loss of fungicide efficacy, particularly for carbendazim, was noted in soybean fields in Thailand and was considered to be due to the development of Colletotrichum truncatum resistance. The carbendazim sensitivity of C. truncatum populations isolated from various soybean fields in Thailand was thus evaluated with in vitro sensitivity assays and molecular characterization of mutations in the sequences of the ß2-tubulin (TUB2) gene that confer carbendazim resistance in the pathogen. Among 52 isolates, 46 isolates were classified as highly resistant (HR) to carbendazim (EC50 > 1,000 µg/ml). All HR isolates grew on PDA amended with carbendazim at 1,000 µg/ml. Six isolates were classified as carbendazim sensitive (S) (EC50 < 1 µg/ml). Mycelial growth on PDA amended with 1 µg/ml carbendazim was inhibited by over 50% compared with growth on PDA alone. When a partial TUB2 gene from the isolates was amplified and analysed using predicted amino acid sequences, an alteration from glutamic acid to alanine at codon 198 (E198A) was found in 45 HR isolates for which the EC50 was higher than 2000 µg/ml. This mutation resulted from a nucleotide substitution from adenine to cytosine (GA G → GC G). The other HR isolate, CtPhS_1, with EC50 of 1,127 µg/ml, had an alteration at codon 200 (F200Y) (TT C → TA C).  相似文献   

13.
This article examines the potential of lactose from whey permeate as a substrate for gibberellic acid production. In addition, the paper reports the derivation of mathematical models which simulate the various fermentation conditions to predict precise values. Of the five Fusarium moniliforme isolates screened for their ability to synthesize the gibberellic acid, F. moniliforme-1 proved to be the best strain (670 mg gibberellic acid/l) when fermentation was carried out at 28°C for 12 days. The product started to accumulate at the end of maximum growth phase (day 9) and continued until the curve reached a plateau (day 12). From the observed data and expected values, a temperature range of 27–30°C, pH range of 3.5–5.5 and an inoculum level of 10–12.5% (v/v) were considered optimal for attaining the highest product yield. However, nitrogen sources supplemented in whey permeate medium suppressed the ability of the culture under study to synthesize metabolite and utilize lactose.  相似文献   

14.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

15.
Iturin A, a lipopeptide antibiotic produced by Bacillus subtilis RB14-CS, suppresses the growth of various plant pathogens. Here, enhancement of iturin A production in solid-state fermentation (SSF) on okara, a soybean curd residue produced during tofu manufacturing, was accomplished using statistical experimental design. Primary experiments showed that the concentrations of carbon and nitrogen sources were the main factors capable of enhancing iturin A production, whereas initial pH, initial water content, temperature, relative humidity, and volume of inoculum were only minor factors. Glucose and soybean meal were the most effective among tested carbon and nitrogen sources, respectively. Based on these preliminary findings, response surface methodology was applied to predict the optimum amounts of the carbon and nitrogen sources in the medium. The maximum iturin A concentration was 5,591 μg/g initial wet okara under optimized condition. Subsequent experiments confirmed that iturin A production was significantly improved under the predicted optimal medium conditions. The SSF product generated under the optimized conditions exhibited significantly higher suppressive effect on the damping-off of tomato caused by Rhizoctonia solani K-1 compared with the product generated under the non-optimized conditions.  相似文献   

16.
Response surface methodology was used to evaluate optimal time, temperature and oxalic acid concentration for simultaneous saccharification and fermentation (SSF) of corncob particles by Pichia stipitis CBS 6054. Fifteen different conditions for pretreatment were examined in a 23 full factorial design with six axial points. Temperatures ranged from 132 to 180 °C, time from 10 to 90 min and oxalic acid loadings from 0.01 to 0.038 g/g solids. Separate maxima were found for enzymatic saccharification and hemicellulose fermentation, respectively, with the condition for maximum saccharification being significantly more severe. Ethanol production was affected by reaction temperature more than by oxalic acid and reaction time over the ranges examined. The effect of reaction temperature was significant at a 95% confidence level in its effect on ethanol production. Oxalic acid and reaction time were statistically significant at the 90% level. The highest ethanol concentration (20 g/l) was obtained after 48 h with an ethanol volumetric production rate of 0.42 g ethanol l−1 h−1. The ethanol yield after SSF with P. stipitis was significantly higher than predicted by sequential saccharification and fermentation of substrate pretreated under the same condition. This was attributed to the secretion of β-glucosidase by P. stipitis. During SSF, free extracellular β-glucosidase activity was 1.30 pNPG U/g with P. stipitis, while saccharification without the yeast was 0.66 pNPG U/g.  相似文献   

17.
The production of β-mannanase from palm kernel cake (PKC) as a substrate in solid substrate fermentation (SSF) was studied using a laboratory column bioreactor. The simultaneous effects of three independent variables, namely incubation temperature, initial moisture content of substrate and airflow rate, on β-mannanase production were evaluated by response surface methodology (RSM) on the basis of a central composite face-centered (CCF) design. Eighteen trials were conducted in which Aspergillus niger FTCC 5003 was cultivated on PKC in an aerated column bioreactor for seven days under SSF process. The highest level of β-mannanase (2117.89 U/g) was obtained when SSF process was performed at incubation temperature, initial moisture level and aeration rate of 32.5°C, 60% and 0.5 l/min, respectively. Statistical analysis revealed that the quadratic terms of incubation temperature and initial moisture content had significant effects on the production of β-mannanase (P < 0.01). A similar analysis also demonstrated that the linear effect of initial moisture level and an interaction effect between the initial moisture content and aeration rate significantly influenced the production of β-mannanase (P < 0.01). The statistical model suggested that the optimal conditions for attaining the highest level of β-mannanase were incubation temperature of 32°C, initial moisture level of 59% and aeration rate of 0.5 l/min. A β-mannanase yield of 2231.26 U/g was obtained when SSF process was carried out under the optimal conditions described above.  相似文献   

18.
Ethanol production by recombinant Escherichia coli strain FBR5 from dilute acid pretreated wheat straw (WS) by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid (0.5% H2SO4) pretreated (160 °C, 10 min) and enzymatically saccharified (pH 5.0, 45 °C, 72 h) WS (86 g/l) was 50.0 ± 1.4 g/l. The hydrolyzate contained 1,184 ± 19 mg furfural and 161 ± 1 mg hydroxymethyl furfural per liter. The recombinant E. coli FBR5 could not grow at all at pH controlled at 4.5 to 6.5 in the non-abated wheat straw hydrolyzate (WSH) at 35 °C. However, it produced 21.9 ± 0.3 g ethanol from non-abated WSH (total sugars, 44.1 ± 0.4 g/l) in 90 h including the lag time of 24 h at controlled pH 7.0 and 35 °C. The bioabatement of WS was performed by growing Coniochaeta ligniaria NRRL 30616 in the liquid portion of the pretreated WS aerobically at pH 6.5 and 30 °C for 15 h. The bacterium produced 21.6 ± 0.5 g ethanol per liter in 40 h from the bioabated enzymatically saccharified WSH (total sugars, 44.1 ± 0.4 g) at pH 6.0. It produced 24.9 ± 0.3 g ethanol in 96 h and 26.7 ± 0.0 g ethanol in 72 h per liter from bioabated WSH by batch SSF and fed-batch SSF, respectively. SSF offered a distinct advantage over SHF with respect to reducing total time required to produce ethanol from the bioabated WS. Also, fed-batch SSF performed better than the batch SSF with respect to shortening the time requirement and increase in ethanol yield.  相似文献   

19.
Drought stress adversely affects plant health and productivity. Recently, drought-resistant bacterial isolates are used to combat drought resistance in crops. In this in vitro study, 20 bacterial isolates were isolated from harsh soil; their drought tolerance was evaluated using four concentrations of polyethylene glycol (PEG) 6000. The two most efficient isolates (DS4 and DS9) were selected and identified using 16S rRNA genetic sequencing. They were registered in the NCBI database and deposited under accession numbers MW916285 and MW916307 for Bacillus cereus (DS4) and Bacillus albus (DS9), respectively. These isolates were screened for plant growth-promoting properties compared to non-stressed conditions. Biochemical parameters; Proline, salicylic acid, gibberellic acid (GA), indole acetic acid (IAA), antioxidant activity, and antioxidant enzymes were measured under the same conditions, and in vitro seed germination was tested under stress conditions and inoculation with selected isolates. The results showed that under the harsh conditions of PEG6000, DS4 produced the highest amount of IAA of 1.61 µg/ml, followed by DS9 with 0.9 µg/ml. The highest amount of GA (49.95 µg/ml) was produced by DS9. On the other hand, the highest amount of siderophore was produced from DS4 isolate followed by DS9. Additionally, DS4 isolate recorded the highest exopolysaccharide (EPS) content of 3.4 mg/ml under PEG (-1.2 MPa) followed by DS9. The antioxidant activity increased in PEG concentrations depending manner, and the activity of the antioxidant enzymes increased, as catalase (CAT) recorded the highest activity in DS4 with an amount of 1.095 mg/ml. additionally, an increase in biofilm formation was observed under drought conditions. The isolated mixture protected the plant from the harmful effects of drought and showed an increase in the measured variables. Under unstressed conditions, the highest rates of emulsification index (EI 24%) were obtained for DS4 and DS9, at 14.92 and 11.54, respectively, and decreased under stress. The highest values of germination, total seedling length, and vigor index were obtained upon inoculation with the combination of two strains, and were 100%, 4.10 cm, and 410, respectively. Therefore, two strains combination is an effective vaccine capable of developing and improving drought tolerance in dryland plants.  相似文献   

20.
The biological delignification of lignocellulosic feedstocks, Prosopis juliflora and Lantana camara was carried out with Pycnoporus cinnabarinus, a white rot fungus, at different scales under solid-state fermentation (SSF) and the fungal treated substrates were evaluated for their acid and enzymatic saccharification. The fungal fermentation at 10.0 g substrate level optimally delignified the P. juliflora by 11.89% and L. camara by 8.36%, and enriched their holocellulose content by 3.32 and 4.87%, respectively, after 15 days. The fungal delignification when scaled up from 10.0 g to 75.0, 200.0 and 500.0 g substrate level, the fungus degraded about 7.69–10.08% lignin in P. juliflora and 6.89–7.31% in L. camara, and eventually enhanced the holocellulose content by 2.90–3.97 and 4.25–4.61%, respectively. Furthermore, when the fungal fermented L. camara and P. juliflora was hydrolysed with dilute sulphuric acid, the sugar release was increased by 21.4-42.4% and the phenolics content in hydrolysate was decreased by 18.46 and 19.88%, as compared to the unfermented substrate acid hydrolysis, respectively. The reduction of phenolics in acid hydrolysates of fungal treated substrates decreased the amount of detoxifying material (activated charcoal) by 25.0–33.0% as compared to the amount required to reduce almost the same level of phenolics from unfermented substrate hydrolysates. Moreover, an increment of 21.1–25.1% sugar release was obtained when fungal treated substrates were enzymatically hydrolysed as compared to the hydrolysis of unfermented substrates. This study clearly shows that fungal delignification holds potential in utilizing plant residues for the production of sugars and biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号