首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water insufficiency is the hampering feature of crop sustainability, especially in arid and semi-arid regions. So, the effectual usage of all water resources especially underground brackish water represents the core priority in Saudi Arabia. The present study aimed to recognize the influence of different types of water irrigation (tap water as a control, salinized well water, and magnetized salinized well water) with or without soil amendments (soil without any amendment as a control, peat-moss, ferrous sulfate, and peat-moss plus ferrous sulfate) on petunia plant growth and flowering as well as ion content. Irrigating Petunia plants with saline well water adversely affected growth and flowering as compared to tap water and magnetized saline well water. Additionally, plants irrigated with magnetized water showed a significant enhancement in all the studied vegetative and flowering growth parameters as compared to those irrigated with salinized well water. Furthermore, mineral contents and survival of Petunia plants irrigated with magnetized well water were higher than those irrigated with tap water. Irrigation with magnetized well water significantly reduced levels of Na+ and Cl ions in leaves of Petunia plants indicating the role of magnetization in alleviating harmful effects of salinity. In conclusion, we recommend the utilization of magnetized saline well water for irrigating Petunia plants either alone or in combination with soil amendments (peat moss plus ferrous sulfate).  相似文献   

2.
For 20 weeks, the physiological responses of Euonymus japonica plants to different irrigation sources were studied. Four irrigation treatments were applied at 100 % water holding capacity: control (electrical conductivity (EC) <0.9 dS m?1); irrigation water normally used in the area (irrigator’s water) IW (EC: 1.7 dS m?1); NaCl solution, NaCl (EC: 4 dS m?1); and wastewater, WW (EC: 4 dS m?1). This was followed by a recovery period of 13 weeks, when all the plants were rewatered with the same amount and quality of irrigation water as the control plants. Despite the differences in the chemical properties of the water used, the plants irrigated with NaCl and WW showed similar alterations in growth and size compared with the control even at the end of the recovery period. Leaf number was affected even when the EC of the irrigation water was of 1.7 dS m?1 (IW), indicating the salt sensitivity of this parameter. Stomatal conductance (gs) and photosynthesis (Pn), as well as stem water potential (Ψstem), were most affected in plants irrigated with the most saline waters (NaCl and WW). At the end of the experiment the above parameters recovered, while IW plants showed similar values to the control. The higher Na+ and Cl+ uptake by NaCl and WW plants led them to show osmotic adjustment throughout the experiment. The highest amount of boron found in WW plants did not affect root growth. Wastewater can be used as a water management strategy for ornamental plant production, as long as the water quality is not too saline, since the negative effect of salt on the aesthetic value of plants need to be taken into consideration.  相似文献   

3.
Experiment was conducted to identify the impacts of the salinity acclimation process on the photosynthetic efficiency, osmotic adjustment, membrane integrity, and yield components in two wheat cultivars differing in their salinity tolerance. The design of the experiment was factorial randomized block, where genotype is factor 1 and acclimation treatments represent factor 2. Genotypes were grown from emergence to 30 days after sowing (DAS) by irrigating with tap water [electrical conductivity (EC) of 0.776 dS m?1]. Thereafter, both the genotypes were divided into two groups and exposed to either irrigation with sublethal level of salinity EC of 2.09 or 3.76 dS m?1 for 21 days. At booting stage (65 DAS), both groups were subjected to lethal level of salinity stress EC of 12 dS m?1 for 21 days, followed by irrigation with tap water till maturity. Non-acclimated plants were irrigated with tap water from emergence to 65 days, then directly irrigated with lethal level of salinity for 21 days, followed by irrigation with tap water till maturity. The control plants were continuously irrigated with tap water from emergence until maturity. The non-acclimated plants had decreased electron transport rates at the donor and acceptor side of PSII and PSI in Giza 168, and decreased electron transport rates at PSII acceptor side in Sakha 8 compared to control plants. In both genotypes, the non-acclimated plants had decreased chlorophyll a, b, carotenoid, proline and total soluble sugar concentration, relative water content, membrane stability index, yield and yield components compared with acclimated plants. While, osmotic potential and lipid peroxidation showed an opposite trend. Overall, acclimation treatment (EC of 2.09 dS m?1) during vegetative stage alleviated the inhibitory effects of lethal level of salinity stress at booting stage through enhanced photosynthetic efficiency and osmotic adjustment, resulting in increased membrane integrity, biomass production and grain yield than in non-acclimated plants.  相似文献   

4.
Responses of succulents to plant water stress   总被引:19,自引:16,他引:3       下载免费PDF全文
Experiments were performed to test the hypothesis that succulents “shift” their method of photosynthetic metabolism in response to environmental change. Our data showed that there were at least three different responses of succulents to plant water status. When plant water status of Portulacaria afra (L.) Jacq. was lowered either by withholding water or by irrigating with 2% NaCl, a change from C3-photosynthesis to Crassulacean acid metabolism (CAM) occurred. Fluctuation of titratable acidity and nocturnal CO2 uptake was induced in the stressed plants. Stressed Peperomia obtusifolia A. Dietr. plants showed a change from C3-photosynthesis to internal cycling of CO2. Acid fluctuation commenced in response to stress but exogenous CO2 uptake did not occur. Zygocactus truncatus Haworth plants showed a pattern of acid fluctuation and nocturnal CO2 uptake typical of CAM even when well irrigated. The cacti converted from CAM to an internal CO2 cycle similar to Peperomia when plants were water-stressed. Reverse phase gas exchange in succulents results in low water loss to carbon gain. Water is conserved and low levels of metabolic activity are maintained during drought periods by complete stomatal closure and continual fluctuation of organic acids.  相似文献   

5.
There is increasing evidence for a significant role of fruits and vegetables in infectious diseases in humans. Their consumption is increasing and environmental factors such as water availability are impacting their production. In this study, adding fertiliser to tap water (TW) increased the microbial load above that found in treated waste water (TWW); coliforms were also introduced. Low numbers of Bacillus spp. were recovered from inside some healthy cucumber fruits. No visible differences were observed between cucumber plants irrigated with TWW or TW or cucumbers with and without endophytic Bacillus spp. This is noteworthy when considering the use of TWW for crop irrigation.  相似文献   

6.
Seasonal leaf water relations characteristics were studied in fully irrigated spring barley (Hordeum distichum L. cv. Gunnar) fertilized at low (50 kg K ha−1) or high (200 kg K ha−1) levels of potassium applied as KCl. The investigation was undertaken from about 14 days before anthesis until the milk ripe stage in leaves of different position and age. Additionally, the effects of severe water stress on leaf water relations were studied in the middle of the grain filling period in spring barley (cv. Alis). The leaf water relations characteristics were determined by the pressure volume (PV) technique. Water relations of fully irrigated plants were compared in leaf No 7 with the water relations of slowly droughted plants (cv. Alis). Leaf osmotic potential at full turgor (ψ π 100 ) decreased 0.1 to 0.3 MPa in droughted leaves indicating a limited osmotic adjustment due to solute accumulation. The leaf osmotic potential at zero turgor (ψ π 0 ) was about −2.2 MPa in fully irrigated plants and −2.6 MPa in droughted plants. The relative water content at zero turgor (R0) decreased 0.1 unit in severely droughted leaves. The ratio of turgid leaf weight to dry weight (TW/DW) tended to be increased by drought. The tissue modulus of elasticity (ε) decreased in droughted plants and together with osmotic adjustment mediated turgor maintenance during drought. A similar response to drought was found in low and high K plants except that the R0 and ε values tended to be higher in the high K plants. Conclusively, during drought limited osmotic adjustment and increase in elasticity of the leaf tissue mediated turgor maintenance. These effects were only slightly modified by high potassium application. The seasonal analysis in fully irrigated plants (cv. Gunnar) showed that within about 14 days from leaf emergence ψ π 100 decreased from about −0.9 to −1.6 MPa in leaf No 7 (counting the first leaf to emerge as number one) and from about −1.1 to −1.9 MPa in leaf No 8 (the flag leaf) due to solute accumulation. A similar decrease took place in ψ π 0 except that the level of ψ π 0 was displaced to a lower level of about 0.2 to 0.3 MPa. Both ψ π 100 and ψ π 0 tended to be 0.05 to 0.10 MPa lower in high K than in low K plants. R0 was about 0.8 to 0.9 and was independent of leaf position and age, but tended to be highest in high K plants. The TW/DW ratio decreased from about 5.5 in leaf No 6 to 4.5 in leaf No 7 and 3.8 in leaf No 8. The TW/DW ratio was 4 to 10% higher in high K than in low K plants indicating larger leaf cell size in the former. The apoplastic water content (Va) at full turgor constituted about 15% in leaf No 7. ε was maximum at full turgor and varied from about 11 to 34 MPa. ε tended to be higher in high K plants. Conclusively, in fully watered plants an ontogenetically determined accumulation of solutes (probably organic as discussed) occurred in the leaves independent of K application. The main effect of high K application on water relations was an increase in leaf water content and a slight decrease in leaf ψπ. The effect of K status on growth and drought resistance is discussed.  相似文献   

7.
Copaifera officinalis, the diesel tree, is known for massive production of oleoresin, mainly composed of sesquiterpene hydrocarbons. In this study, composition of these sesquiterpenes and their concentrations in leaves, stems and roots of C. officinalis at two developmental stages, including the three-week old (TW) seedlings and two-year old (TY) trees, were determined. The leaves of TW seedlings and TY trees contained similar number of sesquiterpenes, which also had comparable concentrations. The stems of TW seedlings had higher concentrations of sesquiterpenes than those of TY trees. In contrast, the number of sesquiterpene species and their concentrations in the roots of TW seedlings were much lower than those in the roots of TY trees. Cluster analysis of sesquiterpenes estimated that there are at least four terpene synthase genes involved in the production of sesquiterpenes in C. officinalis. Because sesquiterpenes are highly volatile, emissions of sesquiterpenes from healthy and wounded TW seedlings were examined using headspace analysis. Whereas very low emission of sesquiterpenes was detected from undamaged plants, the physically injured seedlings emitted a large number of sesquiterpenes, the quality and the relative quantity of which were similar to those in leaves determined using organic extraction. The implications of our findings to the biosynthetic pathways leading to the production of sesquiterpenes as well as their biological roles in C. officinalis are discussed.  相似文献   

8.
Heat and drought stresses are often coincident and constitute major factors limiting global crop yields. A better understanding of plant responses to the combination of these stresses under production environments will facilitate efforts to improve yield and water use efficiencies in a climatically changing world. To evaluate photosynthetic performance under dry-hot conditions, four cotton (Gossypium barbadense L.) cultivars, Monseratt Sea Island (MS), Pima 32 (P32), Pima S-6 (S6) and Pima S-7 (S7), were studied under well-watered (WW) and water-limited (WL) conditions at a field site in central Arizona. Differences in canopy temperature and leaf relative water content under WL conditions indicated that, of the four cultivars, MS was the most drought-sensitive and S6 the most drought-tolerant. Net CO2 assimilation rates (A) and stomatal conductances (gs) decreased and leaf temperatures increased in WL compared to WW plants of all cultivars, but MS exhibited the greatest changes. The response of A to the intercellular CO2 concentration (ACi) showed that, along with stomatal closure, non-stomatal factors associated with heat stress also limited A under WL conditions, especially in MS. The activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) decreased in WL compared to WW plants, consistent with thermal inhibition of Rubisco activase activity. The extent of Rubisco deactivation could account for the metabolic limitation to photosynthesis in MS. Taken together, these data reveal the complex relationship between water availability and heat stress for field-grown cotton plants in a semi-arid environment. Both diffusive (drought-stress-induced) and biochemical (heat-stress-induced) limitations contributed to decreased photosynthetic performance under dry-hot conditions.  相似文献   

9.
The objective of this research was to determine the effect of the chelate EDTA (ethylenediaminetetraacetic acid), which is used in phytoremediation, on plant availability of heavy metals in liquid sewage sludge applied to soil. Sunflower (Helianthus annuus L.) was grown under greenhouse conditions in a commercial potting soil; the tetrasodium salt of EDTA (EDTA Na4) was added at a rate of 1 g kg-1 to half the pots. Immediately after seeds were planted, half of the pots with each soil (with or without EDTA) were irrigated with 60 ml sludge, and half were irrigated with 60 ml tap water. For the subsequent five irrigations, plants in soil with EDTA received either sludge or tap water containing 0.5 g EDTA Na4 per 1000 ml, and plants in soil without EDTA received sludge or tap water without EDTA. Of the four heavy metals whose extractable concentrations in the soil were measured (Cu, Fe, Mn, and Zn), only Zn had a higher concentration in sludge-treated soil with EDTA compared to sludge-treated soil without EDTA. The concentrations of Fe, Cu, and Mn were similar in sludge-treated soil with and without EDTA. Of the three heavy metals whose total concentrations in the soil were measured (Cd, Pb, Cr), Pb (<10 mg kg-1) and Cd (< 1 mg kg-1) were below detection limits, and Cr was unaffected by treatment. The concentration of all measured elements in plants (Cd, Cu, Fe, Zn, Pb) was higher than the concentrations measured in the soil. With no EDTA, sludge-treated plants had a higher concentration of the five heavy elements than plants grown without sludge. Cadmium was lower in sludge-treated plants with EDTA than plants with EDTA and no sludge. After treatment with EDTA, the concentrations of Cu, Fe, and Zn were similar in plants with and without sludge. Lead was higher in plants with EDTA than plants without EDTA, showing that EDTA can facilitate phytoremediation of soil with Pb from sewage sludge.  相似文献   

10.
N2-fixing alfalfa plants were grown in controlled conditions at different CO2 levels (350 μmol mol?1 versus 700 μmol mol?1) and water-availability conditions (WW, watered at maximum pot water capacity versus WD, watered at 50% of control treatments) in order to determine the CO2 effect (and applied at two water regimes) on plant growth and nodule activity in alfalfa plants. The CO2 stimulatory effect (26% enhancement) on plant growth was limited to WW plants, whereas no CO2 effect was observed in WD plants. Exposure to elevated CO2 decreased Rubisco carboxylation capacity of plants, caused by a specific reduction in Rubisco (EC 4.1.1.39) concentration (11% in WW and 43% in WD) probably explained by an increase in the leaf carbohydrate levels. Plants grown at 700 μmol mol?1 CO2 maintained control photosynthetic rates (at growth conditions) by diminishing Rubisco content and by increasing nitrogen use efficiency. Interestingly, our data also suggest that reduction in shoot N demand (reflected by the TSP and especially Rubisco depletion) affected negatively nodule activity (malate dehydrogenase, EC 1.1.1.37, and glutamate-oxaloacetate transaminase, EC 2.6.1.1, activities) particularly in water-limited conditions. Furthermore, nodule DM and TSS data revealed that those nodules were not capable to overcome C sink strength limitations.  相似文献   

11.
Octaketide synthase (OKS) from Aloe arborescens is a plant-specific type III polyketide synthase (PKS) that catalyzes iterative condensations of eight molecules of malonyl-CoA to produce the C16 aromatic octaketides SEK4 and SEK4b. On the basis of the crystal structures of OKS, the F66L/N222G double mutant was constructed and shown to produce an unnatural dodecaketide TW95a by sequential condensations of 12 molecules of malonyl-CoA. The C24 naphthophenone TW95a is a product of the minimal type II PKS (whiE from Streptomyces coelicolor), and is structurally related to the C20 decaketide benzophenone SEK15, the product of the OKS N222G point mutant. The C24 dodecaketide naphthophenone TW95a is the first and the longest polyketide scaffold generated by a structurally simple type III PKS. A homology model predicted that the active-site cavity volume of the F66L/N222G mutant is increased to 748 Å3, from 652 Å3 of the wild-type OKS. The structure-based engineering thus greatly expanded the catalytic repertoire of the simple type III PKS to further produce larger and more complex polyketide molecules.  相似文献   

12.
Non-native species are hypothesized to decrease native species establishment and cover crops are hypothesized to decrease non-native species abundance. Although many studies have compared invaded to non-invaded habitats, relatively few studies have experimentally added non-native species to directly examine their effects. In a greenhouse mesocosm experiment, we tested the effects of non-native forbs (Melilotus officinalis, Verbascum thapsus, and Lespedeza cuneata), a proposed C3 grass cover crop (Pascopyrum smithii), and a commonly seeded non-native C3 grass (Bromus inermis) on the establishment of target native C4 prairie grass species. All treatments contained the same seed density of target C4 species and were begun on bare soil collected from the field. The legume M. officinalis strongly decreased the abundance of all other species, species diversity, and light and soil moisture levels. Surprisingly, M. officinalis took up relatively large amounts of labeled nitrogen (15N) from the soil early in its development, but M. officinalis fixed nitrogen, thus increasing nitrogen in biomass nearly fivefold by the end of the study. We found few effects of either C3 grass species on non-native forbs or C4 target species, but seeded P. smithii did increase species diversity. Non-native plants therefore impeded native C4 grass establishment through long-lasting effects of target species seedbank depletion (death of most target seedlings) and altered nutrient availability. The effects of M. officinalis were not reduced by the presence of a cover crop.  相似文献   

13.
Rosmarinus officinalis is a dominant shrub species of calcareous Mediterranean communities that has increased its presence in wide areas due to fire frequency increase and field abandonment. We aimed to study the capacity of adult shrubs to respond to nutrient pulses such as those produced by fires and human driven eutrophycation. In a 5 years old post-fire Mediterranean shrubland we conducted an experiment to investigate the effects of irrigation and N and P fertilisation on the growth, nutrient status and flowering effort of adult plants of the dominant shrub R. officinalis in a post-fire shrubland. The responses were monitored during the immediate 3 years after fertilisation. P fertilisation increased plant growth, produced a great increase in P aerial mineralomass and P concentration in leaf and stems and had a slight positive effect on flowering effort. Irrigation increased plant growth, but did not have significant effects on nutrient contents and flowering. The results show that adult individuals of the Mediterranean shrub R. officinalis have a notable capacity to positively respond in growth and in nutritional status to a sudden increase of the limiting nutrient, in this case P, and in a lesser extent, to an increase of water supply. These capacities may be important under the more unpredictable nutrient and water availability conditions expected for the near future; they will allow to take advantage of the pulses of higher nutrient and water availability in the middle of dry periods, thus increasing the community capacity to improve the nutrient retention in the ecosystem.  相似文献   

14.
Leaf CO2 compensation points and stable hydrogen, oxygen and carbon isotope ratios were determined for Panicum species including C3/C4 intermediate photosynthesis plants, hybrids between C3/C4 intermediates and C3 plants, C3 and C4 plants in the Panicum genus as well as several other C3 and C4 plants. C3 plants had the highest compensation points, followed by hybrids, C3/C4 intermediates, and C4 plants. δ13C values of cellulose nitrate and saponifiable lipids from C4 plants were about 10‰ higher than those observed for cellulose nitrate and saponifiable lipids of C3/C4 intermediates, hybrids, and C3 plants. Oxygen isotope ratios of cellulose as well as those of leaf water were similar for all plants. There was substantial variability in the δD values of cellulose nitrate among the plants studied. In contrast, such variability was not observed in δD values of water distilled from the leaves, nor in the δD values of the saponifiable lipids. Variability in δD values of cellulose nitrate from C3/C4 intermediates, hybrids, C3, and C4 plants is due to fractionations occurring during biochemical reactions specific to leaf carbohydrate metabolism.  相似文献   

15.
The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse‐grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well‐watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs) and leaf water potential (Ψleaf) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X‐ABA]leaf) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs, but [X‐ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA‐induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements.  相似文献   

16.
The bicyclic monoterpene ketone (+)-camphor undergoes lactonization to 1,2-campholide in mature sage (Salvia officinalis L.) leaves followed by conversion to the β-d-glucoside-6-O-glucose ester of the corresponding hydroxy acid (1-carboxymethyl-3-hydroxy-2,2,3-trimethyl cyclopentane). Analysis of the disposition of (+)-[G-3H]camphor applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis of the bis-glucose derivative and its transport from leaf to root to be determined, and gave strong indication that the transport derivative was subsequently metabolized in the root. Root extracts were shown to possess β-glucosidase and acyl glucose esterase activities, and studies with (+)-1,2[U-14C]campholide as substrate, using excised root segments, revealed that the terpenoid was converted to lipid materials. Localization studies confirmed the radiolabeled lipids to reside in the membranous fractions of root extracts, and analysis of this material indicated the presence of labeled phytosterols and labeled fatty acids (C14 to C20) of acyl lipids. Although it was not possible to detail the metabolic steps between 1,2-campholide and the acyl lipids and phytosterols derived therefrom because of the lack of readily detectable intermediates, it seemed likely that the monoterpene lactone was degraded to acetyl CoA which was reincorporated into root membrane components via standard acyl lipid and isoprenoid biosynthetic pathways. Monoterpene catabolism thus appears to represent a salvage mechanism for recycling mobile carbon from senescing oil glands on the leaves to the roots.  相似文献   

17.
Deep-sea water (DSW), which is rich in micronutrients and minerals and with antioxidant and anti-inflammatory qualities, may be developed as marine drugs to provide intestinal protection against duodenal ulcers. We determined several characteristics in the modified DSW. We explored duodenal pressure, oxygenation, microvascular blood flow, and changes in pH and oxidative redox potential (ORP) values within the stomach and duodenum in response to tap water (TW, hardness: 2.48 ppm), DSW600 (hardness: 600 ppm), and DSW1200 (hardness: 1200 ppm) in Wistar rats and analyzed oxidative stress and apoptosis gene expressions by cDNA and RNA microarrays in the duodenal epithelium. We compared the effects of drinking DSW, MgCl2, and selenium water on duodenal ulcers using pathologic scoring, immunohistochemical analysis, and Western blotting. Our results showed DSW has a higher pH value, lower ORP value, higher scavenging H2O2 and HOCl activity, higher Mg2+ concentrations, and micronutrients selenium compared with TW samples. Water infusion significantly increased intestinal pressure, O2 levels, and microvascular blood flow in DSW and TW groups. Microarray showed DSW600, DSW1200, selenium water upregulated antioxidant and anti-apoptotic genes and downregulated pro-apoptotic gene expression compared with the TW group. Drinking DSW600, DSW1200, and selenium water but not Mg2+ water significantly enhanced Bcl-2 and thioredoxin reductase 1 expression. Bax/Bcl-2/caspase 3/poly-(ADP-ribose)-polymerase signaling was activated during the pathogenesis of duodenal ulceration. DSW drinking reduced ulcer area as well as apoptotic signaling in acetic acid-induced duodenal ulcers. DSW, which contains selenium, provides intestinal protection against duodenal ulcers through the upregulation of Bcl-2 and thioredoxin reductase 1.  相似文献   

18.
Summary Tomato (Lycopersicon esculentum var. VF 145) plants were grown with three soils in a greenhouse irrigated with water high in sulphates to determine their effects on soil salinity, growth and yield. Fruit fresh weights decreased by 53 and 40% when irrigated with water having 32 and 16 meq SO4/l respectively, and no leaching was allowed, relative to irrigating with a half strength modified Hoagland solution. When a 0.3 leaching fraction was allowed the respective decrease in fruit fresh weights were 32 and 12% for the two levels of sulphate. Tops were less affected than were fruits. The electrical conductivity of solutions extracted from the soils during the growing period was highly correlated with the soil solution SAR (sodium adsorption ratio) and with Na and Cl concentrations. Leaching, although effective in controlling soil salinity caused by highly soluble salts, was ineffective in controlling salinity derived from SO4.  相似文献   

19.
Behboudian  M.H.  Ma  Q.  Turner  N.C.  Palta  J.A. 《Photosynthetica》2000,38(1):155-157
The rate of photosynthesis (P N) in leaves and pods as well as carbon isotope content in leaves, pod walls, and seeds was measured in well-watered (WW) and water-stressed (WS) chickpea plants. The P N, on an area basis, was negligible in pods compared to leaves and was reduced by water stress (by 26%) only in leaves. WS pod walls and seeds discriminated less against 13CO2 than did the controls. This response was not observed for leaves as is usually the case. Pod walls and seeds discriminated less against 13CO2 than did leaves in both WW and WS plants. Measurement of carbon isotope composition in pods may be a more sensitive tool for assessing the impact of water stress on long-term assimilation than is the instantaneous measurement of gas exchange rates.  相似文献   

20.
In grassland ecosystems, spatial and temporal variability in precipitation is a key driver of species distributions and population dynamics. We experimentally manipulated precipitation to understand the physiological basis for differences in responses of species to water availability in a southern mixed grass prairie. We focused on the performance of two dominant C4 grasses, Andropogon gerardii Vitman and Schizachyrium scoparium (Michx.) Nash, in treatments that received ambient rainfall, half of ambient rainfall (“drought” treatment), or approximately double ambient rainfall (“irrigated” treatment). Water potentials of S. scoparium were lower than A. gerardii, suggesting superior ability to adjust to water deficit in S. scoparium. Additionally, drought reduced photosynthesis to a greater extent in A. gerardii compared to S. scoparium. Leaf-level photosynthesis rates were similar in ambient and irrigated treatments, but were significantly lower in the drought treatment. Although stomatal conductance was reduced by drought, this was not limiting for photosynthesis. Leaf δ13C values were decreased by drought, caused by an increase in Ci/Ca. Chlorophyll fluorescence measures indicated light-harvesting rates were highest in irrigated treatments, and were lower in ambient and drought treatments. Moreover, drought resulted in a greater proportion of absorbed photon energy being lost via thermal pathways. Reductions in photosynthesis came as a result of non-stomatal limitations in the C4 cycle. Our results provide mechanistic support for the hypothesis that S. scoparium is more drought tolerant than A. gerardii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号