首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.

Introduction

Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses.

Results

For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient''s bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n = 88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n = 91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n = 91), which reflect the total neoplastic burden, revealed four patient groups with different survival.

Conclusion and Perspective

Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.  相似文献   

2.
We hypothesized that endothelial progenitor cells derived from individuals with diabetes would exhibit functional defects including inability to respond to hypoxia and altered paracrine/autocrine function that would impair the angiogenic potential of these cells. Circulating mononuclear cells isolated from diabetic (n = 69) and nondiabetic (n = 46) individuals were used to grow endothelial colony forming cells (ECFC), early endothelial progenitor cells (eEPCs) and isolate CD34+ cells. ECFCs and eEPCs were established from only 15% of the diabetic individuals tested thus directing our main effort toward examination of CD34+ cells. CD34+ cells were plated in basal medium to obtain cell-free conditioned medium (CM). In CM derived from CD34+ cells of diabetic individuals (diabetic-CM), the levels of stem cell factor, hepatocyte growth factor, and thrombopoietin were lower, and IL-1β and tumor necrosis factor (TNFα) levels were higher than CM derived from nondiabetic individuals (nondiabetic-CM). Hypoxia did not upregulate HIF1α in CD34+ cells of diabetic origin. Migration and proliferation of nondiabetic CD34+ cells toward diabetic-CM were lower compared to nondiabetic-CM. Attenuation of pressure-induced constriction, potentiation of bradykinin relaxation, and generation of cGMP and cAMP in arterioles were observed with nondiabetic-CM, but not with diabetic-CM. Diabetic-CM failed to induce endothelial tube formation from vascular tissue. These results suggest that diabetic subjects with microvascular complications exhibit severely limited capacity to generate ex-vivo expanded endothelial progenitor populations and that the vasoreparative dysfunction observed in diabetic CD34+ cells is due to impaired autocrine/paracrine function and reduced sensitivity to hypoxia.  相似文献   

3.
Although the generation of BCR-ABL is the molecular hallmark of chronic myeloid leukemia (CML), the comprehensive molecular mechanisms of the disease remain unclear yet. Growth arrest specific 2 (GAS2) regulates multiple cellular functions including cell cycle, apoptosis and calpain activities. In the present study, we found GAS2 was up-regulated in CML cells including CD34+ progenitor cells compared to their normal counterparts. We utilized RNAi and the expression of dominant negative form of GAS2 (GAS2DN) to target GAS2, which resulted in calpain activity enhancement and growth inhibition of both K562 and MEG-01 cells. Targeting GAS2 also sensitized K562 cells to Imatinib mesylate (IM). GAS2DN suppressed the tumorigenic ability of MEG-01 cells and impaired the tumour growth as well. Moreover, the CD34+ cells from CML patients and healthy donors were transduced with control and GAS2DN lentiviral vectors, and the CD34+ transduced (YFP+) progeny cells (CD34+YFP+) were plated for colony-forming cell (CFC) assay. The results showed that GAS2DN inhibited the CFC production of CML cells by 57±3% (n = 3), while affected those of normal hematopoietic cells by 31±1% (n = 2). Next, we found the inhibition of CML cells by GAS2DN was dependent on calpain activity but not the degradation of beta-catenin. Lastly, we generated microarray data to identify the differentially expressed genes upon GAS2DN and validated that the expression of HNRPDL, PTK7 and UCHL5 was suppressed by GAS2DN. These 3 genes were up-regulated in CML cells compared to normal control cells and the growth of K562 cells was inhibited upon HNRPDL silence. Taken together, we have demonstrated that GAS2 is up-regulated in CML cells and the inhibition of GAS2 impairs the growth of CML cells, which indicates GAS2 is a novel regulator of CML cells and a potential therapeutic target of this disease.  相似文献   

4.
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells.  相似文献   

5.

Introduction

The improvement of vascular health in the exercising limb can be attained by sprint interval training (SIT). However, the effects on systemic vascular function and on circulating angiogenic cells (CACs) which may contribute to endothelial repair have not been investigated. Additionally, a comparison between SIT and sprint continuous training (SCT) which is less time committing has not been made.

Methods

12 women (22±2 yrs) completed 12 sessions of either SIT (n = 6) or work-matched SCT (n = 6) on 3 days/week. Pre and post-training assessments included brachial artery endothelial function and peripheral blood analysis for CAC number (CD34+/CD34+CD45dim). CAC function was measured by migration and adhesion assays. Cardio-respiratory fitness, carotid arterial stiffness and carotid-radial and brachial-foot pulse wave velocity (PWV) were also evaluated.

Results

CD34+ CACs increased following training in both groups but CD34+CD45dim did not (Pre CD34+: 40±21/105 leukocytes, Post CD34+: 56±24/105 leukocytes, main time effect p<0.05). Brachial artery flow-mediated dilation (FMD) increased following SIT but SCT had no effect (Pre SIT: 5.0±3.4%, Post SIT: 5.9±3.0%, Pre SCT: 7.2±2.7%, Post SCT: 6.5±2.9%; group x time interaction p = 0.08). increased in both training groups (Pre: 34.6±4.6 ml•kg•ml−1, Post: 36.9±5.4 ml•kg•ml−1, main time effect p<0.05). CAC function, carotid arterial stiffness and PWV did not change after training (p>0.05).

Discussion

SCT involving little time commitment is comparable to SIT in increasing CD34+ cell number and . An increased mobilisation of CD34+ CACs suggests that sprint training may be an effective method to enhance vascular repair.  相似文献   

6.
Persistence of leukemic stem cells (LSC) after chemotherapy is thought to be responsible for relapse and prevents the curative treatment of acute myeloid leukemia (AML) patients. LSC and normal hematopoietic stem cells (HSC) share many characteristics and co-exist in the bone marrow of AML patients. For the development of successful LSC-targeted therapy, enabling eradication of LSC while sparing HSC, the identification of differences between LSC and HSC residing within the AML bone marrow is crucial. For identification of these LSC targets, as well as for AML LSC characterization, discrimination between LSC and HSC within the AML bone marrow is imperative. Here we show that normal CD34+CD38– HSC present in AML bone marrow, identified by their lack of aberrant immunophenotypic and molecular marker expression and low scatter properties, are a distinct sub-population of cells with high ALDH activity (ALDHbright). The ALDHbright compartment contains, besides normal HSC, more differentiated, normal CD34+CD38+ progenitors. Furthermore, we show that in CD34-negative AML, containing solely normal CD34+ cells, LSC are CD34– and ALDHlow. In CD34-positive AML, LSC are also ALDHlow but can be either CD34+ or CD34–. In conclusion, although malignant AML blasts have varying ALDH activity, a common feature of all AML cases is that LSC have lower ALDH activity than the CD34+CD38– HSC that co-exist with these LSC in the AML bone marrow. Our findings form the basis for combined functionally and immunophenotypically based identification and purification of LSC and HSC within the AML bone marrow, aiming at development of highly specific anti-LSC therapy.  相似文献   

7.
We have previously reported that the lungs of patients with very severe chronic obstructive pulmonary disease (COPD) contain significantly higher numbers of alveolar macrophages than those of non-smokers or smokers. M1 and M2 macrophages represent pro- and anti-inflammatory populations, respectively. However, the roles of M1 and M2 alveolar macrophages in COPD remain unclear. Immunohistochemical techniques were used to examine CD163, CD204 and CD206, as M2 markers, expressed on alveolar macrophages in the lungs of patients with mild to very severe COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I (mild) n = 11, II (moderate) n = 9, III (severe) n = 2, and IV (very severe) n = 16). Fifteen smokers and 10 non-smokers were also examined for comparison. There were significantly higher numbers of alveolar macrophages in COPD patients than in smokers and non-smokers. The numbers and percentages of CD163+, CD204+ or CD206+ alveolar macrophages in patients with COPD at GOLD stages III and IV were significantly higher than in those at GOLD stages I and II, and those in smokers and non-smokers. In patients with COPD, there was a significant negative correlation between the number of CD163+, CD204+ or CD206+ alveolar macrophages and the predicted forced expiratory volume in one second. Overexpression of CD163, CD204 and CD206 on lung alveolar macrophages may be involved in the pathogenesis of COPD.  相似文献   

8.
9.
HIV-mediated immune dysfunction may influence CD4+ T cell recovery during suppressive antiretroviral therapy (ART). We analyzed cellular biomarkers of immunological inflammation, maturation, and senescence in HIV-infected subjects on early suppressive ART. We performed longitudinal analyses of peripheral immunological biomarkers of subjects on suppressive ART (n = 24) from early treatment (median 6.4 months, interquartile range [IQR] 4.8–13.9 months) to 1–2 years of follow-up (median 19.8 months, IQR 18.3–24.6 months). We performed multivariate regression to determine which biomarkers were associated with and/or predictive of CD4+ T cell recovery. After adjusting for the pre-ART CD4+ T cell count, age, proximal CD4+ T cell count, and length of ART medication, the percentage of CD27+CD8+ T cells remained significantly associated with the CD4+ T cell recovery rate (β = 0.092 cells/ul/month, P = 0.028). In HIV-infected subjects starting suppressive ART, patients with the highest percentage of CD8+ T cells expressing CD27 had the greatest rate of CD4+ T cell recovery.  相似文献   

10.

Background

Asthmatic nasal polyps primarily exhibit eosinophilic infiltration. However, the identities of the immune cells that infiltrate non-asthmatic nasal polyps remain unclear. Thus, we thought to investigate the distribution of innate immune cells and its clinical relevance in non-asthmatic chronic rhinosinusitis (CRS) in Korea.

Methods

Tissues from uncinate process (UP) were obtained from controls (n = 18) and CRS without nasal polyps (CRSsNP, n = 45). Nasal polyps (NP) and UP were obtained from CRS with nasal polyps (CRSwNP, n = 56). The innate immune cells was evaluated by immunohistochemistry such as, eosinophil major basic protein (MBP), tryptase, CD68, CD163, CD11c, 2D7, human neutrophil elastase (HNE) and its distribution was analyzed according to clinical parameters.

Results

In comparisons between UP from each group, CRSwNP had a higher number of MPB+, CD68+, and CD11c+ cells relative to CRSsNP. Comparisons between UP and NP from CRSwNP indicated that NP have a higher infiltrate of MBP+, CD163+, CD11c+, 2D7+ and HNE+ cells, whereas fewer CD68+ cells were found in NP. In addition, MBP+ and CD11c+ cells were increased from UP of CRSsNP, to UP of CRSwNP, and to NP of CRSwNP. Moreover, in UP from CRSwNP, the number of MBP+ and CD11c+ cells positively correlated with CT scores. In the analysis of CRSwNP phenotype, allergic eosinophilic polyps had a higher number of MBP+, tryptase+, CD11c+, 2D7+ cells than others, whereas allergic non-eosinophilic polyps showed mainly infiltration of HNE+ and 2D7+ cells.

Conclusions

The infiltration of MBP+ and CD11c+ innate immune cells show a significant association with phenotype and disease extent of CRS and allergic status also may influences cellular phenotype in non-asthmatic CRSwNP in Korea.  相似文献   

11.
CD4+ T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5+ cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4+ compartment. To test these hypotheses we measured in vivo turnover rates of CD4+ T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143–569 cells/ul) participated. CCR5-expression defined a CD4+ subpopulation of predominantly CD45R0+ memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5+ vs CCR5; healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4+ T-cells (predominantly CD45RA+ naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5+CD45R0+CD4+ memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4+ T-cell loss is primarily driven by non-specific immune activation.  相似文献   

12.
Dendritic cells (DCs) are professional antigen-presenting cells that are required for the initiation of the immune response. DCs have been shown to be generated from CD34+pluripotent hematopoietic progenitor cells in the bone marrow and cord blood (CB), but relatively little is known about the effect of cryopreservation on functional maturation of DCs from hematopoietic stem cells. In this work we report the generation of DCs from cryopreserved CB CD34+cells. CB CD34+cells were cryopreserved at −80°C for 2 days. Cryopreserved CB CD34+cells as well as freshly isolated CB CD34+cells cultured with granulocyte—macrophage colony-stimulating factor (GM-CSF)/stem cell factor (SCF)/tumor necrosis factor-α (TNF-α) for 14 days gave rise to CD1a+/CD4+/CD11c+/CD14/CD40+/CD80+/CD83+/CD86+/HLA-DR+cells with dendritic morphology. DCs derived from cryopreserved CB CD34+cells showed a similar endocytic capacity for fluorescein isothiocyanate-labeled dextran and lucifer yellow when compared with DCs derived from freshly isolated CB CD34+cells. Flow cytometric analysis revealed that two CC chemokine receptors (CCRs), CCR-1 and CCR-3, were expressed on the cell surface of DCs derived from both cryopreserved and freshly isolated CB CD34+cells, and these DCs exhibited similar chemotactic migratory capacities in response to regulated on activation normal T-cell expressed and secreted. DCs derived from cryopreserved as well as freshly isolated CB CD34+cells were more efficient than peripheral blood mononuclear cells in the primary allogeneic T-cell response. These results indicate that frozen CB CD34+cells cultured with GM-CSF/TNF-α/SCF gave rise to dendritic cells which were morphologically, phenotypically and functionally similar to DCs derived from fresh CB CD34+cells.  相似文献   

13.

Background

Xenotransplantation of patient-derived AML (acute myeloid leukemia) cells in NOD-scid Il2rγ null (NSG) mice is the method of choice for evaluating this human hematologic malignancy. However, existing models constructed using intravenous injection in adult or newborn NSG mice have inferior engraftment efficiency, poor peripheral blood engraftment, or are difficult to construct.

Methods

Here, we describe an improved AML xenograft model where primary human AML cells were injected into NSG newborn pups intrahepatically.

Results

Introduction of primary cells from AML patients resulted in high levels of engraftment in peripheral blood, spleen, and bone marrow (BM) of recipient mice. The phenotype of engrafted AML cells remained unaltered during serial transplantation. The mice developed features that are consistent with human AML including spleen enlargement and infiltration of AML cells into multiple organs. Importantly, we demonstrated that although leukemic stem cell activity is enriched and mediated by CD34+CD117+ subpopulation, CD34+CD117? subpopulation can acquire CD34+CD117+ phenotype through de-differentiation. Lastly, we evaluated the therapeutic potential of Sorafenib and Regorafenib in this AML model and found that periphery and spleen AML cells are sensitive to these treatments, whereas BM provides a protective environment to AML.

Conclusions

Collectively, our improved model is robust, easy-to-construct, and reliable for pre-clinical AML studies.
  相似文献   

14.

Background and Objective

Reflux esophagitis (RE) is characterized by inflammation of the squamous epithelium (SQ) of the esophagus and may progress to Barrett’s esophagus (BE) characterized by intestinal metaplasia. The role of inflammation in this transition has been postulated but lacks experimental evidence. Here, the inflammatory responses in the esophagus of these patients were investigated.

Patients and Methods

Fifty-one esophageal biopsies from with patients BE (n = 19), RE (n = 8) and controls (n = 23) were analyzed. T-cells were analyzed before and after ex vivo expansion (14 days) by multicolor flow cytometric analysis. The following markers were studied: CD3, CD4, CD8 (T-cell markers), Granzyme B (marker of cytotoxicity), CD103 (αE/epithelial integrin) and NKg2a (inhibitory receptor on T-cells and NK-cells).

Results

Analysis of ex vivo cultures from normal looking SQ from controls, RE patients, and BE patients revealed no significant differences in the number and phenotypes of T-cells. In contrast, tissue from RE was different to normal SQ in four aspects: 1) higher percentages of CD3+CD4+-cells (72±7% vs 48±6%, p = 0.01) and 2) CD8+GranzymeB+ -cells (53±11% vs 26±4%, p<0.05), while 3) lower percentages of CD4+CD103+-cells (45±19% vs 80±3%, p = 0.02) and 4) CD8+NKg2a+- cells (31±12% vs 44±5%).

Conclusion

Despite the fact that both tissues are exposed to the same reflux associated inflammatory triggers, the immune response observed in RE is clearly distinct from that in SQ of BE. The differences in immune responses in BE tissue might contribute to its susceptibility for transformation into intestinal metaplasia.  相似文献   

15.
HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.  相似文献   

16.
17.
PurposeWe recently found that the tetraspanin family member, CD82, which is aberrantly expressed in chemotherapy-resistant CD34+/CD38 acute myelogenous leukemia (AML) cells, negatively regulates matrix metalloproteinase 9, and plays an important role in enabling CD34+/CD38 AML cells to adhere to the bone marrow microenvironment. This study explored novel functions of CD82 that contribute to AML progression.ResultsMicroarray analysis revealed that levels of EZH2 decreased after shRNA-mediated depletion of CD82 in CD34+/CD38 AML cells. Moreover, the antibody-mediated blockade of CD82 in leukemia cells lowered EZH2 expression via activation of p38 MAPK signaling, decreased the amount of EZH2 bound to the promoter regions of the tumor suppressor genes, and inhibited histone H3 lysine 27 trimethylation in these promoter regions, resulting in upregulation of the tumor suppressors at both the mRNA and protein levels.  相似文献   

18.
ObjectivesMutant C/EBPα p30 (mp30), the product of C/EBPα double mutations (DM), lacks transactivation domain 1 and has C‐terminal loss‐of‐function mutation. Acute myeloid leukaemia (AML) patients harbouring C/EBPα DM could be classified as a distinct subgroup with favourable prognosis. However, the underlying mechanism remains elusive.Materials and MethodsAutophagy regulated by mp30 was detected by western blot and immunofluorescence. Immune infiltration analysis and GSEA were performed to investigate autophagic and inflammatory status of AML patients from the GSE14468 cohort. Flow cytometry was applied to analyse T cell activation.ResultsMp30 inhibited autophagy by suppressing nucleus translocation of NF‐κB. Autophagy‐associated secretion of IL‐1β was decreased in mp30‐overexpressed AML cells. Bioinformatic analysis revealed that inflammatory status was attenuated, while CD8+ T cell infiltration was upregulated in C/EBPα DM AML patients. Consistently, the proportion of CD8+CD69+ T cells in peripheral blood mononuclear cells (PBMCs) was upregulated after co‐culture with mp30 AML cell conditional culture medium. Knock‐out of IL‐1β in AML cells also enhanced CD8+ T cell activation. Accordingly, IL‐1β expression was significantly reduced in the bone marrow (BM) cells of C/EBPα DM AML patients compared to the wildtype, while the CD8+CD69+ T cell proportion was specifically elevated.ConclusionsC/EBPα DM alleviates immunosuppression of CD8+ T cells by inhibiting the autophagy‐associated secretion of IL‐1β, which elucidated that repression of autophagy‐related inflammatory response in AML patients might achieve a favourable clinical benefit.

Mp30 suppresses autophagy‐associated IL‐β secretion, which ultimately alleviates the immunosuppression of CD8+ T cells in the microenvironment, contributing to favourable prognosis of AML patients.  相似文献   

19.
External signals that are mediated by specific receptors determine stem cell fate. The thrombin receptor PAR1 plays an important role in haemostasis, thrombosis and vascular biology, but also in tumor biology and angiogenesis. Its expression and function in hematopoietic stem cells is largely unknown. Here, we analyzed expression and function of PAR1 in primary hematopoietic cells and their leukemic counterparts. AML patients'' blast cells expressed much lower levels of PAR1 mRNA and protein than CD34+ progenitor cells. Constitutive Par1-deficiency in adult mice did not affect engraftment or stem cell potential of hematopoietic cells. To model an AML with Par1-deficiency, we retrovirally introduced the oncogene MLL-AF9 in wild type and Par1−/− hematopoietic progenitor cells. Par1-deficiency did not alter initial leukemia development. However, the loss of Par1 enhanced leukemic stem cell function in vitro and in vivo. Re-expression of PAR1 in Par1−/− leukemic stem cells delayed leukemogenesis in vivo. These data indicate that Par1 contributes to leukemic stem cell maintenance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号