首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boerhaavia diffusa Linn. of family Nyctaginaceae is a known traditional medicinal plant and has been used in the treatment of many free radical mediated diseases. Excessive formation of free radicals, either reactive oxygen species (ROS) or reactive nitrogen species (RNS) is responsible for damaging various biomolecules like DNA, lipids and proteins. The present investigation was initially carried out to explore the possible link between antioxidant, oxidative DNA damage protective and α-amylase inhibitory property of B. diffusa root extract and their bioactive fraction. Our results illustrated an enhanced DPPH radical scavenging activity/antioxidant power of methanol root extract (IC50 < 250 μg/ml) than ethanol (IC50 = 250 μg/ml) and aqueous extract (IC50 > 250 μg/ml). In addition, the methanol root extract also showed better oxidative DNA damage protective activity and α-amylase inhibitory property than ethanol and aqueous root extract. Phytochemical screening of B. diffusa ethanol and methanol root extract showed the presence of saponins, alkaloids, flavonoids, glycosides and terpenoids in large amount. By means of repetitive preparatory TLC and HPLC the potent antioxidant and α-amylase inhibitory fraction was isolated from methanol root extract. Our results illustrated that DPPH radical scavenging activity (IC50 < 250 μg/ml) and oxidative DNA damage protective and α-amylase inhibitory activity of the isolated/purified bioactive compound from methanol extract were significantly closer to that of crude extract, which in turn confirm that antioxidant and antidiabetic property of methanol root extract resides in this fraction and established a significant correlation between antioxidant and inhibitory α-amylase property of this bioactive fraction compound. These profound effects of B. diffusa methanol root extract and its purified fraction against oxidative plasmid DNA damage, antioxidant and α-amylase inhibitory activity may explain its extensive use in daily life and possible health benefits.  相似文献   

2.
Thermal trauma can damage organs away from the skin burn site and lead to multiple organ dysfunction. Following thermal injury, all tissues are exposed to ischemia, and as a result, resuscitation and reperfusion occur during the burning shock. Burn damage starts systemic inflammatory reactions that produce toxins and reactive oxygen radicals that lead to peroxidation. This study aimed to investigate, for the first time, the possible antioxidant effects of Myrtus communis ethanol extract on burn-induced oxidative distant organ injury orally. The thermal trauma was generated under ether anesthesia by exposing the dorsum of rats to 90 °C water bath for 10 s. 100 mg/kg/day Mrytus communis ethanol extract was applied orally for two days. Malondialdehyde (MDA) and glutathione (GSH) levels, glutatinone-S-transferase (GST), superoxidedismutase (SOD) and catalase (CAT) activities were determined to detect the possible antioxidant effects of myrtle on small intestine and lung tissues. Burn damage significantly increased MDA levels in lung and small intestine tissues, and significantly decreased GSH levels, CAT and GST activities in the small intestine and lung tissues compared to control group. Mrytus communis ethanol extract decreased MDA level and increased GSH level, SOD, CAT and GST activities significantly in either small intestine or lung tissues. Mrytus communis extract may be an ideal candidate to be used as an antioxidant adjunct to improve oxidative distant organ damage to limit the systemic inflammatory response and decreasing the recovery time after thermal injury.  相似文献   

3.
In this study, the mitochondrial damage effect and mechanism of zearalenone (ZEA) in swine small intestine IPEC‐J2 cells in vitro were comprehensively characterized. The analyses revealed that ZEA at high doses (8 and 7 μg/mL) can significantly increase P < 0.05 the malondialdehyde levels and decrease antioxidant enzymes activities after 48 h of exposure. Meanwhile, the reactive oxygen species (ROS) accumulation increased in high dose ZEA‐treated groups after 2 h treatment, but decreased due to the ROS‐induced mitochondrial damage and the caused cell apoptosis after 48 h of high does ZEA treatment. Moreover, the decreasing of mitochondrial membrane potential (MMP; ΔΨ) in high dose ZEA exposure was observed in line with the increasing ROS production in mitochondria. Results suggest that ZEA exposure can induce mitochondrial damage by reducing antioxidant enzyme activities, accumulation of ROS, and decreasing MMP. The mitochondrial damage had a dramatic concentration–effects relationship with ZEA.  相似文献   

4.
《Process Biochemistry》2010,45(4):581-585
Punica granatum L. (Punicaceae) peels extract had the highest free radical scavenging capacity among the tested medicinal plants which are being used traditionally for treatment of diabetes in Jordan. Accordingly, the present study aimed to investigate the antioxidant effect of P. granatum peel methanolic extract against oxidative damage in streptozotocin-induced diabetic rats. The antioxidant activity of P. granatum peel extract was investigated by examining the level of antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR), the serum total antioxidant capacity and lipid peroxidation in the tissues of treated diabetic rates comparing with normal and untreated diabetic ones. The results revealed that intraperitoneal administration of 10 and 20 mg kg−1 (body weight) of P. granatum peel extract for 4 weeks significantly enhanced the activities of antioxidant enzymes in liver, kidney and RBC of STZ-induced diabetic rats. The extract also caused a significant reduction in malondialdehyde (MDA), a lipid peroxide's marker, in diabetic rat tissues and elevated the total serum antioxidant capacity in dose-dependent manner. In conclusion, this study clearly showed that P. granatum peel extract has protective role against the oxidative damage in STZ-induced diabetic rats.  相似文献   

5.
Helicobacter pylori is a gram negative bacterium that infects the human stomach of approximately half of the world’s population. It produces oxidative stress, and mitochondria are one of the possible targets and the major intracellular source of free radicals. The present study was aimed at determining mitochondrial alterations in H. pylori-infected gastric epithelial cells and its relationship with oxidative stress, one of the recognized causes of apoptotic processes. Cells were treated with a strain of H. pylori for 24 h. Cellular oxidative burst, antioxidant defense analysis, mitochondrial alterations and apoptosis-related processes were measured. Our data provide evidence on how superoxide acts on mitochondria to initiate apoptotic pathways, with these changes occurring in the presence of mitochondrial depolarization and other morphological and functional changes. Treatment of infected cells with Vitamin E prevented increases in intracellular ROS and mitochondrial damage consistent with H. pylori inducing a mitochondrial ROS mediated programmed cell death pathway.  相似文献   

6.
Oxidative stress is commonly induced when plants are grown under high temperature (HT) stress conditions. Selenium often acts as an antioxidant in plants; however, its role under HT-induced oxidative stress is not definite. We hypothesize that selenium application can partly alleviate HT-induced oxidative stress and negative impacts of HT on physiology, growth and yield of grain sorghum [Sorghum bicolor (L.) Moench]. Objectives of this study were to investigate the effects of selenium on (a) leaf photosynthesis, membrane stability and antioxidant enzymes activity and (b) grain yield and yield components of grain sorghum plants grown under HT stress in controlled environments. Plants were grown under optimal temperature (OT; 32/22 °C daytime maximum/nighttime minimum) from sowing to 63 days after sowing (DAS). All plants were foliar sprayed with sodium selenate (75 mg L?1) at 63 DAS, and HT stress (40/30 °C) was imposed from 65 DAS through maturity. Data on physiological, biochemical and yield traits were measured. High temperature stress decreased chlorophyll content, chlorophyll a fluorescence, photosynthetic rate and antioxidant enzyme activities and increased oxidant production and membrane damage. Decreased antioxidant defense under HT stress resulted in lower grain yield compared with OT. Application of selenium decreased membrane damage by enhancing antioxidant defense resulting in higher grain yield. The increase in antioxidant enzyme activities and decrease in reactive oxygen species (ROS) content by selenium was greater in HT than in OT. The present study suggests that selenium can play a protective role during HT stress by enhancing the antioxidant defense system.  相似文献   

7.
扑草净对远志幼苗根系活力及氧化胁迫的影响   总被引:4,自引:0,他引:4  
以远志(Polygala tenuifolia Willd.)为材料,应用组织化学和生物化学的方法研究不同浓度扑草净(0—400 mg/L)对远志幼苗生长、根系活力、膜脂过氧化、活性氧含量及抗氧化酶活性等的影响。10 mg/L扑草净对远志幼苗根系活力、细胞膜完整性及活性氧的积累几乎无显著影响,而25—400 mg/L扑草净处理则显著增加活性氧的积累,明显抑制根系活力且破坏细胞膜完整性;上述结果进一步被膜脂过氧化、质膜完整性、活性氧产生(O.2-和H2O2)的非损伤组织化学染色所证明。远志幼苗可通过多种抗氧化酶(SOD、POD、CAT、APX等)和非酶抗氧化剂(如脯氨酸)的相互协调作用,清除低浓度扑草净胁迫诱发产生的活性氧,减轻对细胞的伤害。研究结果表明,发芽期是远志对扑草净处理的敏感时期,较为安全的扑草净临界浓度为10 mg/L;25mg/L扑草净处理即引起远志幼苗氧化胁迫和膜脂过氧化,使细胞膜的完整性受到破坏,根系活力下降,抑制了远志幼苗的生长发育。该研究为远志抗除草剂胁迫机制及其栽培过程中除草剂的安全合理使用提供理论依据。  相似文献   

8.
The present study reports the cytoprotective and antioxidant properties of alcoholic leaf extract of seabuckthorn (SBT) against hypoxia induced oxidative stress in C-6 glioma cells. Exposure of cells to hypoxia for 12 h resulted in a significant increase in cytotoxicity and decrease in mitochondrial transmembrane potential compared to the controls. Further an appreciable increase in nitric oxide and reactive oxygen species (ROS) production was noted which in turn was responsible for fall in intracellular antioxidant levels and GSH/GSSG ratio. There was a significant increase in DNA damage during hypoxia as revealed by comet assay. Pretreatment of cells with alcoholic leaf extract of SBT at 200 μg/ml significantly inhibited cytotoxicity, ROS production and maintained antioxidant levels similar to that of control cells. Further, the leaf extract restored the mitochondrial integrity and prevented the DNA damage induced by hypoxia. These results indicate that the leaf extract of SBT has strong antioxidant and cytoprotective activity against hypoxia induced oxidative injury. (Mol Cell Biochem 278: 9–14, 2005)  相似文献   

9.
Regulation of the balance between production of reactive oxygen species (ROS) by cellular processes and its removal by antioxidant defense system maintains normal physiological processes. Any condition leading to increased ROS results in oxidative stress which has been related with a number of diseases including cancer. Improvement in antioxidant defense system is required to overcome the damaging effects of oxidative stress. Therefore in the present study, effect of the aqueous extract of a medicinal plant Andrographis paniculata (AP) on antioxidant defense system in liver is investigated in lymphoma bearing AKR mice. Estimating catalase, superoxide dismutase and glutathione S transferase monitored the antioxidant action. Oral administration of the aqueous extract of A. paniculata in different doses causes a significant elevation of catalase, superoxide dismutase and glutathione S transferase activities. It reveals the antioxidant action of the aqueous extract of AP, which may play a role in the anticarcinogenic activity by reducing the oxidative stress. LDH activity is known to increase in various cancers due to hypoxic condition. Lactate dehydrogenase is used as tumor marker. We find a significant decrease in LDH activity on treatment with AP, which indicates a decrease in carcinogenic activity. A comparison with Doxorubicin (DOX), an anticancerous drug, indicates that the aqueous extract of AP is more effective than DOX with respect to its effect on catalase, superoxide dismutase, glutathione S transferase as well as on lactate dehydrogenase activities in liver of lymphoma bearing mice.  相似文献   

10.
Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumulation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmental stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present review, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress tolerance in cereals.  相似文献   

11.
Temperature is one of the most important environmental factors, and is responsible for a variety of physiological stress responses in organisms. Induced thermal stress is associated with elevated reactive oxygen species (ROS) generation leading to oxidative damage. The ladybeetle, Propylaea japonica (Thunberg) (Coleoptera: Coccinellidae), is considered a successful natural enemy because of its tolerance to high temperatures in arid and semi-arid areas in China. In this study, we investigated the effect of high temperatures (35, 37, 39, 41 and 43 °C) on the survival and activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidases (POD), glutathione-S-transferases (GST), and total antioxidant capacity (TAC) as well as malondialdehyde (MDA) concentrations in P. japonica adults. The results indicated that P. japonica adults could not survive at 43 °C. CAT, GST and TAC were significantly increased when compared to the control (25 °C), and this played an important role in the process of antioxidant response to thermal stress. SOD and POD activity, as well as MDA, did not differ significantly at 35 and 37 °C compared to the control; however, there were increased levels of SOD, POD and MDA when the temperature was above 37 °C. These results suggest that thermal stress leads to oxidative stress and antioxidant enzymes play important roles in reducing oxidative damage in P. japonica adults. This study represents the first comprehensive report on the antioxidant defense system in predaceous coccinellids (the third trophic level). The findings provide useful information for predicting population dynamics and understanding the potential for P. japonica as a natural enemy to control pest insects under varied environmental conditions.  相似文献   

12.
Hydrogen peroxide (H2O2), a major reactive oxygen species (ROS) produced during oxidative stress, is toxic to the cells. Hence, H2O2 has been extensively used to study the effects of antioxidant and cytoprotective role of phytochemicals. In the present investigation H2O2 was used to induce oxidative stress via ROS production within PC12 and L132 cells. Cytoprotective propensity of Bacopa monniera extract (BME) was confirmed by cell viability assays, ROS estimation, lipid peroxidation, mitochondria membrane potential assay, comet assay followed by gene expression studies of antioxidant enzymes in PC12 and L132 cells treated with H2O2 for 24 h with or without BME pre-treatment. Our results elucidate that BME possesses radical scavenging activity by scavenging 2,2-diphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), superoxide radical, and nitric oxide radicals. The IC50 value of BME against these radicals was found to be 226.19, 15.17, 30.07, and 34.55 µg/ml, respectively). The IC50 of BME against ROS, lipid peroxidation and protein carbonylation was found to be 1296.53, 753.22, and 589.04 µg/ml in brain and 1137.08, 1079.65, and 11101.25 µg/ml in lung tissues, respectively. Further cytoprotective potency of the BME ameliorated the mitochondrial and plasma membrane damage induced by H2O2 as evidenced by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase leakage assays in both PC12 and L132 cells. H2O2 induced cellular, nuclear and mitochondrial membrane damage was restored by BME pre-treatment. H2O2 induced depleted antioxidant status was also replenished by BME pre-treatment. This was confirmed by spectrophotometric analysis, semi-quantitative RT-PCR and western blot studies. These results justify the traditional usage of BME based on its promising antioxidant and cytoprotective property.  相似文献   

13.
BackgroundOxidative stress and frequently unwanted alterations in mitochondrial structure and function are key aspects of the pathological cascade in transient focal cerebral ischemia. Chikusetsu saponin V (CHS V), a major component of saponins from Panax japonicas, can attenuate H2O2-induced oxidative stress in SH-SY5Y cells.PurposeThe aim of the present study was to investigate the neuroprotective effects and the possible underlying mechanism of CHS V on transient focal cerebral ischemia/reperfusion.MethodsMice with middle cerebral artery occlusion (MCAO) and cultured cortical neurons exposed to oxygen glucose deprivation (OGD) were used as in vivo and in vitro models of cerebral ischemia, respectively. The neurobehavioral scores, infarction volumes, H&E staining and some antioxidant levels in the brain were evaluated. The occurrence of neuronal death was estimated. Total and mitochondrial reactive oxygen species (ROS) levels, as well as mitochondrial potential were measured using flow cytometry analysis. Mitochondrial structure and respiratory activity were also examined. Protein levels were investigated by western blotting and immunohistochemistry.ResultsCHS V effectively attenuated cerebral ischemia/reperfusion (CI/R) injury, including improving neurological deficits, shrinking infarct volume and reducing the number of apoptotic cells. Furthermore, CHS V treatment remarkably increased antioxidant levels and reduced ROS levels and mitochondrial damage by enhancing the expression and deacetylation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) by activating AMPK and SIRT-1, respectively.ConclusionOur data demonstrated that CHS V prevented CI/R injury by suppressing oxidative stress and mitochondrial damage through the modulation of PGC-1α with AMPK and SIRT-1.  相似文献   

14.
The bloom-forming cyanobacterium Nodularia spumigena produces toxic compounds, including nodularin, which is known to have adverse effects on various organisms. We monitored the primary effects of nodularin exposure on physiological parameters in Spinachia oleracea. We present the first evidence for the uptake of nodularin by a terrestrial plant, and show that the exposure of spinach to cyanobacterial crude water extract from nodularin-producing strain AV1 results in inhibition of growth and bleaching of the leaves. Despite drastic effects on phenotype and survival, nodularin did not disturb the photosynthetic performance of plants or the structure of the photosynthetic machinery in the chloroplast thylakoid membrane. Nevertheless, the nodularin-exposed plants suffered from oxidative stress, as evidenced by a high level of oxidative modifications targeted to various proteins, altered levels of enzymes involved in scavenging of reactive oxygen species (ROS), and increased levels of α-tocopherol, which is an important antioxidant. Moreover, the high level of cytochrome oxidase (COX II), a typical marker for mitochondrial respiratory protein complexes, suggests that the respiratory capacity is increased in the leaves of nodularin-exposed plants. Actively respiring plant mitochondria, in turn, may produce ROS at high rates. Although the accumulation of ROS and induction of the ROS scavenging network enable the survival of the plant upon toxin exposure, the upregulation of the enzymatic defense system is likely to increase energetic costs, reducing growth and the ultimate fitness of the plants.  相似文献   

15.
Nodularin is one of the most conspicuous and widespread pollutants that elicit water ecological hazards to fish, causing serious damage on the immune system and physiological functions. Nodularin can cause oxidative stress-induced apoptosis on fish lymphocytes. The regulatory effects of epigallocatechin-3-gallate (EGCG) at 10, 100, and 1000 μg/L levels on the antioxidant defense system and apoptosis of Carassius auratus lymphocytes exposed to a high dose of nodularin (100 μg/L) were quantified in vitro. EGCG reduced nodularin-induced oxidative damage on fish immune cells. This compound significantly increased the activities of superoxide dismutase and catalase and the level of glutathione but decreased the levels of intracellular reactive oxygen species and malondialdehyde. Flow cytometry results showed that the percentages of apoptotic cells after treatment with 10, 100, and 1000 μg/L EGCG for 12 h reached 27.9%, 19.1%, and 13.7%, respectively. By contrast, the nodularin alone-induced group showed a high percentage of apoptosis (44.2%). Western blot analysis showed the increased expression of bcl-2 and the decreased expression of bax and caspase-3 in EGCG-treated fish lymphocytes. EGCG also inhibited the potential collapse of the mitochondrial membrane. Overall, EGCG can inhibit nodularin-induced apoptosis and protect the normal immunity of fish by regulating bax/bcl-2 and blocking the downstream of mitochondrial apoptosis pathway with increased intracellular antioxidant enzyme activity.  相似文献   

16.
Heat stress (HS) is the most potent environmental stressors for livestock in tropical and subtropical regions. HS induced splanchnic tissue hypoxia and intestinal oxidative damage, leading to endotoxemia and systemic inflammation. The present study evaluated and compared the modulatory effects of feeding Barki male sheep (Ovis aries) on a standard concentrated diet containing 2% or 4% of the brown seaweed (Sargassum latifolium) followed by roughage for 40 consecutive days on the toxicity-induced by exposure to severe environmental HS (temperature-humidity index = 28.55 ± 1.62). The present study showed that the diet containing Sargassum latifolium (especially 4%) modulated significantly (P < 0.05–0.001) almost all changes shown in the HS-exposed sheep including the increase in the thermo-respiratory responses (skin and rectal temperatures, and respiration rate) and the resulted dyslipidemia, anemia, and systemic inflammation (blood leukocytosis, the elevation in the erythrocyte sedimentation rate, and the increase in serum proinflammatory cytokines and heat shock protein-70 concentrations). In addition, Sargassum latifolium improved significantly (P < 0.05–0.001) the body-weight gain, kidney functions (especially at the high dose), and blood antioxidant defense system (total antioxidant capacity, and the activities of catalase and superoxide dismutase) in the HS-exposed sheep, as well as protected the animals from oxidative tissue damage and the risk of atherosclerosis. In conclusion, feeding sheep with the diet containing 4% of Sargassum latifolium was safe and suitable for animal nutrition, as well as efficiently alleviated the harmful effects of the environmental HS in Barki sheep through improving the animal antioxidant defense system, and regulating the thermo-respiratory and inflammatory responses.  相似文献   

17.
BackgroundMangiferin is a polyphenolic xanthonoid with remarkable antioxidant activity. Oxidative stress plays the key role in tert-butyl hydroperoxide (tBHP) induced renal cell damage. In this scenario, we consider mangiferin, as a safe agent in tBHP induced renal cell death and rationalize its action systematically, in normal human kidney epithelial cells (NKE).MethodsNKE cells were exposed to 20 µM mangiferin for 2 h followed by 50 µM tBHP for 18 h. The effect on endogenous ROS production, antioxidant status (antioxidant enzymes and thiols), mitochondrial membrane potential, apoptotic signaling molecules, PI3K mediated signaling cascades and cell cycle progression were examined using various biochemical assays, FACS and immunoblot analyses.ResultstBHP exposure damaged the NKE cells and decreased its viability. It also elevated the intracellular ROS and other oxidative stress-related biomarkers within the cells. However, mangiferin dose dependently, exhibited significant protection against this oxidative cellular damage. Mangiferin inhibited tBHP induced activation of different pro-apoptotic signals and thus protected the renal cells against mitochondrial permeabilization. Further, mangiferin enhanced the expression of cell proliferative signaling cascade molecules, Cyclin d1, NFκB and antioxidant molecules HO-1, SOD2, by PI3K/Akt dependent pathway. However, the inhibitor of PI3K abolished mangiferin's protective activity.ConclusionsResults show Mangiferin maintains the intracellular anti-oxidant status, induces the expression of PI3K and its downstream molecules and shields NKE cells against the tBHP induced cytotoxicity.General significanceMangiferin can be indicated as a therapeutic agent in oxidative stress-mediated renal toxicity. This protective action of mangiferin primarily attributes to its potent antioxidant and antiapoptotic nature.  相似文献   

18.
Cardiac hypertrophy, a risk factor for heart failure, is associated with enhanced oxidative stress in the mitochondria, resulting from high levels of reactive oxygen species (ROS). The balance between ROS generation and ROS detoxification dictates ROS levels. As such, disruption of these processes results in either increased or decreased levels of ROS. In previous publications, we have demonstrated that one of the primary functions of mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2) is to control the mitochondrial redox balance, and thereby mediate the cellular defense against oxidative damage, via the production of NADPH. To explore the association between IDH2 expression and cardiac function, we measured myocardial hypertrophy, apoptosis, and contractile dysfunction in IDH2 knockout (idh2−/−) and wild-type (idh2+/+) mice. As expected, mitochondria from the hearts of knockout mice lacked IDH2 activity and the hearts of IDH2-deficient mice developed accelerated heart failure, increased levels of apoptosis and hypertrophy, and exhibited mitochondrial dysfunction, which was associated with a loss of redox homeostasis. Our results suggest that IDH2 plays an important role in maintaining both baseline mitochondrial function and cardiac contractile function following pressure-overload hypertrophy, by preventing oxidative stress.  相似文献   

19.
In the present study, the possible involvement of reactive oxygen species (ROS) in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis of Bombyx mori prothoracic glands (PGs) was investigated. Results showed that PTTH treatment resulted in a rapidly transient increase in the intracellular ROS concentration, as measured using 2′,7′-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant, N-acetylcysteine (NAC), abolished PTTH-induced increase in fluorescence. Furthermore, PTTH-induced ROS production was partially inhibited by the NAD(P)H oxidase inhibitor, apocynin, indicating that NAD(P)H oxidase is one of the sources for PTTH-stimulated ROS production. Four mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenylene iodonium (DPI)) significantly attenuated ROS production induced by PTTH. These data suggest that the activity of complexes I and III in the electron transport chain and the mitochondrial inner membrane potential (ΔΨ) contribute to PTTH-stimulated ROS production. In addition, PTTH-stimulated ecdysteroidogenesis was greatly inhibited by treatment with either NAC or mitochondrial inhibitors (rotenone, antimycin A, FCCP, and DPI), but not with apocynin. These results indicate that mitochondria-derived, but not membrane NAD(P)H oxidase-mediated ROS signaling, is involved in PTTH-stimulated ecdysteroidogenesis of PGs in B. mori.  相似文献   

20.
A potent analog (HNG) of the endogenous peptide humanin protects against myocardial ischemia–reperfusion (MI–R) injury in vivo, decreasing infarct size and improving cardiac function. Since oxidative stress contributes to the damage from MI–R we tested the hypotheses that: (1) HNG offers cardioprotection through activation of antioxidant defense mechanisms leading to preservation of mitochondrial structure and that, (2) the activity of either of a pair of non-receptor tyrosine kinases, c-Abl and Arg is required for this protection. Rat cardiac myoblasts (H9C2 cells) were exposed to nanomolar concentrations of HNG and to hydrogen peroxide (H2O2). Cells treated with HNG in the presence of H2O2 demonstrated reduced intracellular reactive oxygen species (ROS), preserved mitochondrial membrane potential, ATP levels and mitochondrial structure. HNG induced activation of catalase and glutathione peroxidase (GPx) within 5 min and decreased the ratio of oxidized to reduced glutathione within 30 min. siRNA knockdown of both Abl and Arg, but neither alone, abolished the HNG-mediated reduction of ROS in myoblasts exposed to H2O2. These findings demonstrate an HNG-mediated, Abl- and Arg-dependent, rapid and sustained activation of critical cellular defense systems and attenuation of oxidative stress, providing mechanistic insights into the observed HNG-mediated cardioprotection in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号