首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolism of phthalic acid (PA) and di-(2-ethylhexyl)phthalate (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP (4.1 nmol/g [dry weight]) were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [14C]PA and [14C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [14C]DEHP to 14CO2 increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2. The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of 14C-labelled phospholipid ester-linked fatty acids (14C-PLFAs). This assay provided a radioactive fingerprint of the organisms actively metabolizing [14C]PA and [14C]DEHP. The 14C-PLFA fingerprints showed that organisms with different PLFA compositions metabolized PA and DEHP in sludge-amended soil. In contrast, microorganisms with comparable 14C-PLFA fingerprints were found to dominate DEHP metabolism in sludge and sludge-amended soil. Our results suggested that indigenous sludge microorganisms dominated DEHP degradation in sludge-amended soil. Mineralization of DEHP and PA followed complex kinetics that could not be described by simple first-order equations. The initial mineralization activity was described by an exponential function; this was followed by a second phase that was described best by a fractional power function. In the initial phase, the half times for PA and DEHP in sludge-amended soil were 2 and 58 days, respectively. In the late phase of incubation, the apparent half times for PA and DEHP increased to 15 and 147 days, respectively. In the second phase (after more than 28 days), the half time for DEHP was 2.9 times longer in sludge-amended soil assays than in sludge assays without soil. Experiments with radiolabelled DEHP degraders suggested that a significant fraction of the 14CO2 produced in long-term degradation assays may have originated from turnover of labelled microbial biomass rather than mineralization of [14C]PA or [14C]DEHP. It was estimated that a significant amount of DEHP with poor biodegradability and extractability remains in sludge-amended soil for extended periods of time despite the presence of microorganisms capable of degrading the compound (e.g., more than 40% of the DEHP added is not mineralized after 1 year).  相似文献   

2.
Early developmental exposure to di(2-ethylhexyl) phthalate (DEHP) has been linked to a variety of neurodevelopmental changes, particularly in rodents. The primary goal of this work was to establish whether acute postnatal exposure to a low dose of DEHP would alter hippocampal dendritic morphology and BDNF and caspase-3 mRNA expression in male and female Long Evans rats. Treatment with DEHP in male rats led to a reduction in spine density on basal and apical dendrites of neurons in the CA3 dorsal hippocampal region compared to vehicle-treated male controls. Dorsal hippocampal BDNF mRNA expression was also down-regulated in male rats exposed to DEHP. No differences in hippocampal spine density or BDNF mRNA expression were observed in female rats treated with DEHP compared to controls. DEHP treatment did not affect hippocampal caspase-3 mRNA expression in male or female rats. These results suggest a gender-specific vulnerability to early developmental DEHP exposure in male rats whereby postnatal DEHP exposure may interfere with normal synaptogenesis and connectivity in the hippocampus. Decreased expression of BDNF mRNA may represent a molecular mechanism underlying the reduction in dendritic spine density observed in hippocampal CA3 neurons. These findings provide initial evidence for a link between developmental exposure to DEHP, reduced levels of BDNF and hippocampal atrophy in male rats.  相似文献   

3.
Lead (Pb) is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups); Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks). The spatial learning and memory of rats was measured by Morris water maze (MWM) on PND 85–90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05). However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84), the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91), the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05); the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05), although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD), length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05). Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats.  相似文献   

4.

Methamphetamine (meth) use is often comorbid with anxiety disorders, with both conditions predominant during adolescence. Conditioned fear extinction is the most widely used model to study the fear learning and regulation that are relevant for anxiety disorders. The present study investigates how meth binge injections or meth self-administration affect subsequent fear conditioning, extinction and retrieval in adult and adolescent rats. In experiment 1, postnatal day 35 (P35—adolescent) and P70 (adult) rats were intraperitoneally injected with increasing doses of meth across 9 days. At P50 or P85, they underwent fear conditioning followed by extinction and test. In experiments 2a–c, P35 or P70 rats self-administered meth for 11 days then received fear conditioning at P50 or P85, followed by extinction and test. We observed that meth binge exposure caused a significant disruption of extinction retrieval in adult but not adolescent rats. Interestingly, meth self-administration in adolescence or adulthood disrupted acquisition of conditioned freezing in adulthood. Meth self-administration in adolescence did not affect conditioned freezing in adolescence. These results suggest that intraperitoneal injections of high doses of meth and meth self-administration have dissociated effects on fear conditioning and extinction during adulthood, while adolescent fear conditioning and extinction are unaffected.

  相似文献   

5.
6.
In previous studies, we investigated a link between high fluoride exposure and functional IQ deficits in rats. This study is an extension conducted to explore the combined influence of physical exercise and temperature stress on the learning ability and memory in rats and to assess whether any positive modulation could be attenuated due to exercise regimen subjected to F-toxicated animals at different temperatures. Accumulation of ingested fluoride resulted significant inhibition in acetylcholinesterase activity (P?<?0.05), plasma cortisol levels (P?<?0.05), and impaired the acquisition, performance, latency time, and retention in fluoride-exposed animals. Fluoride-toxicated rats took more number of sessions during the learning phase [F 5, 35?=?19.065; P?<?0.05] and post hoc analysis on the number of correct choices revealed that there was a significant effect of treatments [F 5, 30?=?15.763; P?<?0.05]; sessions [F 8, 240?=?58.698; P?<?0.05]; and also significant difference in the interactions [F 40, 240?=?1.583; P?<?0.05]. The latency data also revealed a significant difference between groups [F 5, 30?=?28.085; P?<?0.05]; time?=?[F 8, 240?=?136.314; P?<?0.05]; and there was a significant difference in the interactions [F 40, 240?=?2.090; P?<?0.05]. In order to ascertain if interdependence between fluoride concentrations and the foregoing free radical parameters, respective correlation coefficients were calculated and results clearly emphasize the positive role of exercise in the promotion of cognitive functions by decreasing fluoride levels in rat hippocampus. A significant recovery in cognitive function was noticed in all the exercised animals due to reduced burden of brain oxidative stress. In comparison to exercise regimens performed at different temperatures, high (35?°C) and low temperatures (20?°C) led to a slower acquisition and poor retention of the task when compared to thermo neutral temperatures (25 and 30?°C). Thus exercise up-regulate antioxidant defenses and promote learning abilities in fluorotic population.  相似文献   

7.
尼古丁对学习记忆间接作用的研究鲜有报道。昆明小鼠母鼠受孕后随机分为对照组(CON)和尼古丁组(NIC)。CON组母鼠自由饮水,NIC组母鼠饮水中给予浓度为50μg/mL的尼古丁。子代小鼠60日龄时,进行Morris水迷宫实验,之后在体记录海马区穿通纤维通路(perforant pathway,PP)至齿状回(dentate gyrus,DG)的长时程增强(long-term potentiation,LTP)。结果显示,NIC组仔鼠的逃避潜伏期从第3天开始明显大于CON组,目标象限停留时间所占百分比和穿越平台次数均低于CON组,LTP群峰电位幅值和场兴奋性突触后电位斜率也都显著低于CON组。说明由母体摄入的尼古丁,可经胎盘和乳汁明显作用于其子代,导致子代学习记忆功能的明显损伤,其可能机制是因为海马神经元突触传递可塑性的效率显著降低。  相似文献   

8.
Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus.  相似文献   

9.
10.
老年大鼠学习记忆减退的神经基础   总被引:22,自引:0,他引:22  
洪岸 《生理科学进展》1995,26(3):240-242
对由Morris水迷宫分得的青年、老年记忆正常和记忆减退鼠的脑组织分别进行突触、AChE纤维、突触素、小白蛋白神经元以及突触体钙离子浓度、膜流动性的定量分析。结果表明老年记忆减退鼠新皮质、海马结构突触素含量、突触、胆碱能纤维、小白蛋白阳性神经元密度及突触体膜流动笥较老年记忆正常和青年鼠明显降低。老年记忆正常鼠与青年鼠各项均无显著差异。本研究提示各研究指标的异常与老年学习记忆减退密切相关。  相似文献   

11.
妊娠期抑郁症可以通过影响孕妇的生理和心理变化,进而影响新生儿的正常生长发育,右美托咪定(dexmedetomidine,Dex)可以有效缓解抑郁情绪,降低产后抑郁症的发生。为探讨Dex对慢性应激抑郁妊娠大鼠子代发育及空间学习记忆能力的影响,将60只妊娠大鼠随机分为对照组、模型组、低剂量右美托咪定组和高剂量右美托咪定组,统计各组大鼠孕育率、平均产仔率和平均仔鼠成活率,并记录子代大鼠出生后体质量变化及学习记忆能力;检测子鼠脑组织乙酰胆碱(acetylcholine,Ach)、5-HT含量、TChE活力及海马组织CREB、p-CREB及BDNF的表达。结果显示,Dex可以以剂量依赖的方式提高慢性应激抑郁妊娠大鼠子代的平均成活率,调节脑组织Ach、5-HT、CREB、p-CREB和BDNF的水平,改善子鼠的学习记忆能力。结果表明,Dex可能通过调控神经递质和促进CREB信号传导,改善慢性应激抑郁妊娠大鼠的子代鼠学习记忆能力。研究探究了 Dex对妊娠期抑郁症大鼠子代生长发育和空间学习记忆能力的影响,以期指导临床治疗。  相似文献   

12.
13.
This study was conducted to investigate the uptake, accumulation and the enhanced dissipation of di(2-ethylhexyl) phthalate (DEHP) spiked in soil (with a concentration of 117.4 ± 5.2 mg kg?1) by eleven plants including eight maize ( Zea mays) cultivars and three forage species (alfalfa, ryegrass and teosinte). The results showed that, after 40 days of treatment, the removal rates of DEHP ranged from 66.8% (for the control) to 87.5% (for the maize cultivar of Huanong-1). Higher removal rate was observed during the first 10 days than the following days. Plants enhanced significantly the dissipation of DEHP in soil. Enhanced dissipation amount in planted soil was 13.3–122 mg pot?1 for DEHP, and a net removal of 2.2%–20.7% of the initial DEHP was obtained compared with non-plant soil. The contribution of plant uptake to the total enhanced dissipation was <0.3%, and the enhanced dissipation of soil DEHP might be derived from plant-promoted biodegradation and sorption stronger to the soil. Nevertheless, the capability in accumulation and enhanced dissipation of DEHP from spiked soils varied within different species and cultivars.  相似文献   

14.
Alkaline phosphatase (ALP) activity in the serum and liver from rats administered with cadmium (Cd) in drinking water was studied. After metal administration, Cd showed a time‐dependent accumulation in the liver, meanwhile metallothionein had a maximum increase at 1 month, remaining in this level until the end of the study. On the other hand, serum and liver ALP activity was decreased after 3 months exposure. To determine if Cd produced an inhibition on enzyme, apo‐ALP prepared from both nonexposed and exposed rats was reactivated with Zn, showing 60% more activity as compared with the enzyme isolated from nonexposed rats. In vitro assays showed that Cd‐ALP was partially reactivated with Zn; however, in the presence of cadmium, Zn‐ALP was completely inhibited. Kinetic studies indicate a noncompetitive inhibition by Cd; these results suggest that Cd can substitute Zn, and/or Cd can interact with nucleophilic ligands essential for the enzymatic activity.  相似文献   

15.
目的:探讨铅锌联合染毒对乳鼠颅骨成骨细胞增殖分化的影响。方法:分离并培养原代成骨细胞,加入不同浓度铅、锌培养48h,检测其对成骨细胞增殖的作用;用碱性磷酸酶试剂盒检测ALP活力。结果:在染铅48h后,当铅浓度≥10μmol/L时,细胞增殖功能下降(P<0.05);加锌干预48h后,铅+锌组细胞增殖功能均高于各自单独染铅组,其中铅(1μmol/L、10μmol/L)+锌(50μmol/L)组、铅(10)+锌(100)组与对照组间的差异具有统计学意义(P<0.05)。铅干预48h后,100μmol/L铅组的ALP活力显著下(P<0.05),给予锌干预的铅锌联合染毒组,各组ALP活力均有增加,其中铅(1μmol/L、10μmol/L)+锌(50μmol/L)组ALP活力均高于对照组,而铅(100μmol/L)+锌(50μmol/L)组ALP活力低于对照组,差异均有统计学意义(P<0.05)。结论:铅对成骨细胞有毒性作用,影响其增殖和分化功能;50μmol/L锌在一定程度上可以拮抗铅对成骨细胞增殖和分化功能的损伤,且对ALP活力的作用更显著,为铅中毒骨病的防治提供一定的科学依据。  相似文献   

16.
借助基因芯片获取慢性酒精中毒大鼠海马相关基因的表达数据集,通过生物信息学的分析方法对差异表达基因进行筛选与分析。从分子水平揭示慢性酒精中毒对大鼠大脑海马体的影响,为慢性酒精中毒的损伤机制以及相关疾病发病机制的基础研究与临床治疗提供新的方向。同时,还通过Y迷宫实验对实验大鼠的学习记忆功能进行了检测,借助电镜拍摄其线粒体。结果显示,我们一共筛选出208个差异表达基因,其中51个表达上调,157个表达下调。其中涉及的主要信号通路有氧化磷酸化通路、D-谷氨酰胺和谷氨酸代谢通路、阿尔茨海默病信号通路、帕金森病信号通路、膀胱癌信号通路、B细胞受体信号通路和亨廷顿病信号通路等。由此我们得出结论,慢性酒精中毒可能影响了海马多个基因的表达,其中包括Rpsa、Wdr31、Rps11、Rps9、Ndufa2、Mrto4、Rpl6、Dap3、Ndufb8、Ndufb6、Ephb2、Cox6c、Prkcd、Rela、Raf1、Ubd、Mrps28、Mrpl35等关键基因,进而损伤了电子传递链复合体Ⅰ,最终损伤线粒体,导致大鼠学习记忆能力的损伤。  相似文献   

17.
Ma YY  Yu P  Guo CY  Cui CL 《Neurochemical research》2011,36(3):383-391
Drug addiction, as well as learning and memory, share common mechanisms in terms of neural circuits and intracellular signaling pathways. In the present study, the role of N-methyl-D-aspartate (NMDA) receptors, particularly those containing NR2B subunits, in morphine-induced conditioned place preference (CPP) and Morris water maze (MWM) learning and memory task was investigated. CPP was used as a paradigm for assessing the rewarding effect of morphine, and MWM was used to measure spatial learning and memory in male Sprague–Dawley rats. We found that ifenprodil, an antagonist highly selective for NR2B-containing NMDA receptors, dose-dependently blocked the development, maintenance and reinstatement of morphine-induced CPP, without evident impairment of the acquisition and retrieval of spatial memory in the MWM task. However, the consolidation of spatial memory was disrupted by a high dose (10 mg/kg) of ifenprodil. These results clearly demonstrate that NR2B-containing NMDA receptors are actively involved in addiction memory induced by morphine conditioning, but not in the acquisition and retrieval of spatial learning and memory. In conclusion, NR2B-containing NMDA receptors can be considered potential targets for the treatment of opiate addiction.  相似文献   

18.
Many studies have shown that postweaning social isolation (pwSI) alters various behavioral phenotypes, including hippocampus-dependent tasks. Here, we report the comprehensive analysis of the expression of glutamatergic and GABAergic neurotransmission-related genes in the distinct hippocampal subregions of pwSI rats. Male F344 rats (age, 4 wk) experienced either pwSI or group housing (controls). At 7 wk of age, the hippocampus of each rat was removed and laser-microdissected into the CA1 and CA3 layers of pyramidal cells and the granule cell layer of the dentate gyrus. Subsequently, the expression of glutamatergic- and GABAergic-related genes was analyzed by quantitative RT-PCR. In the CA1 and CA3 pyramidal cell layers, 18 of 24 glutamate receptor subunit genes were at least 1.5-fold increased in expression after pwSI. In particular, the expression of several N-methyl-D-aspartate and kainate receptors (for example, Grin2a in CA1, Grik4 in CA3) was significantly increased after pwSI. In contrast, pwSI tended to decrease the expression of GABAA receptor subunit genes, and Gabra1, Gabra2, Gabra4, Gabra5, Gabrb2, Gabrg1, and Gabrg2 were all significantly decreased in expression compared with the levels in the group-housed rats. These results indicate a subregion-specific increase of glutamate receptors and reduction of GABAA receptors, suggesting that the hippocampal circuits of pwSI rats may be in more excitable states than those of group-housed rats.Abbreviations: AMPA, α-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid, LMD, laser microdissection, NMDA;N-methyl-D-aspartic acid, pwSI, postweaning social isolation, DG;dentate gyrusBehavioral phenotypes differ among strains of laboratory animals, including mice and rats. The acquisition of strain-specific behavioral traits is governed not only by the genetic background but also by the postnatal rearing environment. The level of maternal care is a representative environmental factor. For example, inbred Fischer 344 pups raised by Wistar dams showed Wistar-like behavioral traits in adulthood in socially interactive situations.35 Furthermore, the effect of environmental factors is not limited to neonatal periods. In animals that form a society among conspecifics, such as mice and rats, postweaning social environments have a marked effect on behavioral traits. Many studies have reported that postweaning social isolation (pwSI) alters various strain-specific behavioral phenotypes, including aggressiveness,15,32,34 novelty preference,22 locomotor activity,29 anxiety-like behavior,20 and learning and memory.13,15,20,31 In other words, pwSI means the deprivation of several social interactions among conspecifics. The expression of social contact begins fundamentally in the postweaning periods, its frequency increases to a peak at 4 to 5 wk of age, and it declines thereafter until sexual maturity.2,17,30 Therefore, rats were isolated from their conspecifics to deprive them of social contact during the current study.In the brain, the hippocampus is necessary for the acquisition of episodic and spatial memory,28 but the influences of pwSI on hippocampal functions remain largely unclear. The hippocampus has a lamellar organization of neurons, and the intrinsic neuronal circuit of the hippocampus, termed the trisynaptic circuit, consists of 3 topographically and morphologically distinct neuronal layers: the pyramidal cell layer in subfields CA1 and CA3 and the granule cell layer in the dentate gyrus (DG). Sensory information is carried first to the DG by a perforant pathway that originates in the entorhinal cortex. DG granule cells project to the apical dendrites of the CA3 pyramidal cells through mossy fibers. In turn, CA3 pyramidal cells project to the CA1 layer through Schaffer collaterals.1,18 Glutamate is a key excitatory neurotransmitter in the hippocampus and plays a central role in the activation of the trisynaptic circuit, whereas the inhibitory neurotransmitter GABA modulates the activated circuit. This excitatory–inhibitory balance is critical for the appropriate functioning of the hippocampal circuit. Here, we comprehensively investigated the effect of pwSI on the expression of glutamatergic and GABAergic neurotransmission-related genes in the 3 hippocampal subregions of inbred F344 rats.  相似文献   

19.
California condors (Gymnogyps californianus) released into the wild in Arizona ranged widely in Arizona and Utah. Previous studies have shown that the blood lead concentrations of many of the birds rise because of ingestion of spent lead ammunition. Condors were routinely recaptured and treated to reduce their lead levels as necessary but, even so, several died from lead poisoning. We used tracking data from VHF and satellite tags, together with the results of routine testing of blood lead concentrations, to estimate daily changes in blood lead level in relation to the location of each bird. The mean daily increment in blood lead concentration depended upon both the location of the bird and the time of year. Birds that spent time during the deer hunting season in two areas in which deer were shot with lead ammunition (Kaibab Plateau (Arizona) and Zion (Utah)) were especially likely to have high blood lead levels. The influence upon blood lead level of presence in a particular area declined with time elapsed since the bird was last there. We estimated the daily blood lead level for each bird and its influence upon daily mortality rate from lead poisoning. Condors with high blood lead over a protracted period were much more likely to die than birds with low blood lead or short-term elevation. We simulated the effect of ending the existing lead exposure reduction measures at Kaibab Plateau, which encourage the voluntary use of non-lead ammunition and removal of gut piles of deer and elk killed using lead ammunition. The estimated mortality rate due to lead in the absence of this program was sufficiently high that the condor population would be expected to decline rapidly. The extension of the existing lead reduction program to cover Zion (Utah), as well as the Kaibab plateau, would be expected to reduce mortality caused by lead substantially and allow the condor population to increase.  相似文献   

20.
经过长期的高脂膳食后并非所有个体都会发生肥胖,还有些个体会产生肥胖抵抗现象。高脂膳食影响海马依赖的学习记忆等认知功能已被广泛证实,但目前关于高脂膳食对肥胖抵抗个体学习记忆能力影响的研究仍较少见。本文旨在对比研究高脂膳食对肥胖易感(obesity-prone, OP)和肥胖抵抗(obesity-resistant, OR)大鼠空间学习记忆能力的影响,并探讨其潜在的可能机制。Morris水迷宫结果显示,肥胖易感大鼠的学习能力显著低于对照大鼠和肥胖抵抗大鼠,但3组大鼠的记忆功能无显著性差异。Western印迹结果显示,与对照组相比,肥胖易感和肥胖抵抗大鼠海马内脑源性神经营养因子(BDNF)、血管内皮细胞生长因子(VEGF)和突触素(SYN)的含量均显著降低,丙二醛(MDA)和白介素1β(IL-1β)的含量均显著升高;且肥胖易感大鼠海马内上述蛋白质含量的变化更明显。免疫荧光染色和激光共聚焦显微镜扫描结果均显示,肥胖易感大鼠的海马神经发生水平显著低于肥胖抵抗大鼠和对照大鼠,但肥胖抵抗大鼠的海马神经发生水平与对照大鼠相比未见显著性变化。这些结果提示,高脂膳食可能是通过降低海马内突触可塑相关蛋白质的表达和神经发生,以及加剧炎症反应来损害肥胖易感大鼠的空间学习能力,而对肥胖抵抗大鼠的学习记忆能力影响不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号