首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Navigation by means of cognitive maps appears to require the hippocampus; hippocampal place cells (PCs) appear to store spatial memories because their discharge is confined to cell-specific places called firing fields (FFs). Experiments with rats manipulated idiothetic and landmark-related information to understand the relationship between PC activity and spatial cognition. Rotating a circular arena in the light caused a discrepancy between these cues. This discrepancy caused most FFs to disappear in both the arena and room reference frames. However, FFs persisted in the rotating arena frame when the discrepancy was reduced by darkness or by a card in the arena. The discrepancy was increased by ''field clamping'' the rat in a room-defined FF location by rotations that countered its locomotion. Most FFs dissipated and reappeared an hour or more after the clamp. Place-avoidance experiments showed that navigation uses independent idiothetic and exteroceptive memories. Rats learned to avoid the unmarked footshock region within a circular arena. When acquired on the stable arena in the light, the location of the punishment was learned by using both room and idiothetic cues; extinction in the dark transferred to the following session in the light. If, however, extinction occurred during rotation, only the arena-frame avoidance was extinguished in darkness; the room-defined location was avoided when the lights were turned back on. Idiothetic memory of room-defined avoidance was not formed during rotation in light; regardless of rotation, there was no avoidance when the lights were turned off, but room-frame avoidance reappeared when the lights were turned back on. The place-preference task rewarded visits to an allocentric target location with a randomly dispersed pellet. The resulting behaviour alternated between random pellet searching and target-directed navigation, making it possible to examine PC correlates of these two classes of spatial behaviour. The independence of idiothetic and exteroceptive spatial memories and the disruption of PC firing during rotation suggest that PCs may not be necessary for spatial cognition; this idea can be tested by recordings during the place-avoidance and preference tasks.  相似文献   

2.
Recent interest in the neural bases of spatial navigation stems from the discovery of neuronal populations with strong, specific spatial signals. The regular firing field arrays of medial entorhinal grid cells suggest that they may provide place cells with distance information extracted from the animal''s self-motion, a notion we critically review by citing new contrary evidence. Next, we question the idea that grid cells provide a rigid distance metric. We also discuss evidence that normal navigation is possible using only landmarks, without self-motion signals. We then propose a model that supposes that information flow in the navigational system changes between light and dark conditions. We assume that the true map-like representation is hippocampal and argue that grid cells have a crucial navigational role only in the dark. In this view, their activity in the light is predominantly shaped by landmarks rather than self-motion information, and so follows place cell activity; in the dark, their activity is determined by self-motion cues and controls place cell activity. A corollary is that place cell activity in the light depends on non-grid cells in ventral medial entorhinal cortex. We conclude that analysing navigational system changes between landmark and no-landmark conditions will reveal key functional properties.  相似文献   

3.
Development of cue integration in human navigation   总被引:1,自引:0,他引:1  
Mammalian navigation depends both on visual landmarks and on self-generated (e.g., vestibular and proprioceptive) cues that signal the organism's own movement [1-5]. When these conflict, landmarks can either reset estimates of self-motion or be integrated with them [6-9]. We asked how humans combine these information sources and whether children, who use both from a young age [10-12], combine them as adults do. Participants attempted to return an object to its original place in an arena when given either visual landmarks only, nonvisual self-motion information only, or both. Adults, but not 4- to 5-year-olds or 7- to 8-year-olds, reduced their response variance when both information sources were available. In an additional "conflict" condition that measured relative reliance on landmarks and self-motion, we predicted behavior under two models: integration (weighted averaging) of the cues and alternation between them. Adults' behavior was predicted by integration, in which the cues were weighted nearly optimally to reduce variance, whereas children's behavior was predicted by alternation. These results suggest that development of individual spatial-representational systems precedes development of the capacity to combine these within a common reference frame. Humans can integrate spatial cues nearly optimally to navigate, but this ability depends on an extended developmental process.  相似文献   

4.
Neurophysiological studies focus on memory retrieval as a reproduction of what was experienced and have established that neural discharge is replayed to express memory. However, cognitive psychology has established that recollection is not a verbatim replay of stored information. Recollection is constructive, the product of memory retrieval cues, the information stored in memory, and the subject''s state of mind. We discovered key features of constructive recollection embedded in the rat CA1 ensemble discharge during an active avoidance task. Rats learned two task variants, one with the arena stable, the other with it rotating; each variant defined a distinct behavioral episode. During the rotating episode, the ensemble discharge of CA1 principal neurons was dynamically organized to concurrently represent space in two distinct codes. The code for spatial reference frame switched rapidly between representing the rat''s current location in either the stationary spatial frame of the room or the rotating frame of the arena. The code for task variant switched less frequently between a representation of the current rotating episode and the stable episode from the rat''s past. The characteristics and interplay of these two hippocampal codes revealed three key properties of constructive recollection. (1) Although the ensemble representations of the stable and rotating episodes were distinct, ensemble discharge during rotation occasionally resembled the stable condition, demonstrating cross-episode retrieval of the representation of the remote, stable episode. (2) This cross-episode retrieval at the level of the code for task variant was more likely when the rotating arena was about to match its orientation in the stable episode. (3) The likelihood of cross-episode retrieval was influenced by preretrieval information that was signaled at the level of the code for spatial reference frame. Thus key features of episodic recollection manifest in rat hippocampal representations of space.  相似文献   

5.
Little is known about the navigational abilities of domestic fowl. The question of how chickens represent and orient in space becomes relevant when they are kept in non-cage systems. Since the sun is known to be the dominant spatial organiser in other diurnal bird species, we started our investigation of the chicken’s spatial abilities by subjecting them to a food-searching task with the sun as the only consistent visual cue. In an additional experiment we tried to rule out the use of auditory cues in finding a food reward.

Eight ISA Brown chicks were housed in outdoor pens. A separate test arena comprised an open-topped, opaque-sided wooden octagon (2 m wide and 1.5 m high). Eight goal boxes with food pots were attached to each of the arena sides; a wooden barrier inside each goal box prevented the birds from seeing the food pot before entering. After habituation we tested during five daily 5 min trials whether the chicks were able to find food in a systematically allocated goal direction. Food residue in every foot pot controlled for the use of olfactory cues and no external landmark cues were visible. Every day each box was unpredictably moved to a randomly assigned side of the arena and the side to face north was also randomly allocated, to prevent the chicks from using cues other than the sun’s position. Circular statistics were used to determine whether birds moved in a non-random direction and if so, if they significantly oriented goalwards. The results showed that seven of the eight birds moved significantly in the goal direction. It seems likely that the chicks used the sun to orient. Due to weather constraints only four chicks received the same treatment on a new location, to rule out the use of auditory cues. Two of these four chicks significantly moved in the goal direction.

The results from our experiments show that domestic chicks use spatial memory to orient towards a hidden goal. Moreover, their orientation is most likely to be based on sun cues opening up the possibility that the sun compass may dominate even in this ancestrally predominantly ground-living forest bird.  相似文献   


6.
Many ants rely on both visual cues and self-generated chemical signals for navigation, but their relative importance varies across species and context. We evaluated the roles of both modalities during colony emigration by Temnothorax rugatulus. Colonies were induced to move from an old nest in the center of an arena to a new nest at the arena edge. In the midst of the emigration the arena floor was rotated 60°around the old nest entrance, thus displacing any substrate-bound odor cues while leaving visual cues unchanged. This manipulation had no effect on orientation, suggesting little influence of substrate cues on navigation. When this rotation was accompanied by the blocking of most visual cues, the ants became highly disoriented, suggesting that they did not fall back on substrate cues even when deprived of visual information. Finally, when the substrate was left in place but the visual surround was rotated, the ants'' subsequent headings were strongly rotated in the same direction, showing a clear role for visual navigation. Combined with earlier studies, these results suggest that chemical signals deposited by Temnothorax ants serve more for marking of familiar territory than for orientation. The ants instead navigate visually, showing the importance of this modality even for species with small eyes and coarse visual acuity.  相似文献   

7.
Bats have a well-developed spatial memory, which enables them to navigate even when the conditions are extremely unfavourable for orientation. However, if they were to adhere too strictly to a flight path planned from memory and independent of exteroceptive control, they would be in danger of colliding with unexpected obstacles. In the experiments described here, Phyllostomus discolor that had familiarized themselves with an octagonal flight arena developed a clear preference for certain resting sites and were able to fly to these sites without recourse to external orientational cues. Proximal and distal cues were ruled out separately, by rotating the direction in which the bats started out within the arena or by rotating the entire arena in the room. Furthermore, by marking the preferred site with a visible identifier it was shown that even when additional aids to orientation are available, the bats do not make use of them. On the other hand, all the bats tested responded immediately to a reduction of the landing area, demonstrating that they are capable of incorporating exteroceptive information into the orientation process in certain circumstances.  相似文献   

8.
Spatial recognition cues used in site fidelity in the ant Formica uralensis Ruzsky were studied using outdoor and laboratory arenas. Ant workers visiting symmetrically spaced feeders were colour-marked corresponding to the initial feeder visited during sampling. The effect of manipulating environmental cues on the mean 'spatial specialization' of the population was measured. Site recognition appears to be based on visual landmark/canopy cues. However, ants maintained some fidelity when shielded from these cues, suggesting the involvement of additional cues. When ridding our experimental device of olfactory deposits and shielding visual cues, site fidelity was lost. Idiothetic and/or geomagnetic cues are thought to provide spatial references to visual or olfactory landmarks. Altering nest position relative to the arena and changing the geomagnetic field within the arena in our study, however, did nothing to the site fidelity of visually deprived and non-deprived foragers.
We conclude that site fidelity is developed in a visually structured environment but supplemented by an olfactory backup system that is probably based on discrete home range markings rather than radial odour trails. We demonstrate furthermore that the visual component involved in site location can be stored in the memory of individual F. uralensis foragers during a 6-month hibernation period.  相似文献   

9.
Western scrub jays (Aphelocoma californica) hide food and rely on spatial memory to recover their caches at a later date. To do this cache-and-recovery, they can use both spatial and site-specific cues. I examined these cues in an experimental setting. The experiment established that scrub jays, like other food storers, prefer to rely on the location of the caching tray rather than tray-specific cues. They could modify their preference for spatial cues through training in which spatial cues were made irrelevant. Even after such training, the spatial cues controlled the jays behaviour when the spatial and site-specific cues gave competitive information about the cached sites. Thus, the global spatial cues have priority but the jays use the local site-specific cues when the spatial cues do not give enough information about the cached site.  相似文献   

10.
Path integration and the neural basis of the 'cognitive map'   总被引:1,自引:0,他引:1  
The hippocampal formation can encode relative spatial location, without reference to external cues, by the integration of linear and angular self-motion (path integration). Theoretical studies, in conjunction with recent empirical discoveries, suggest that the medial entorhinal cortex (MEC) might perform some of the essential underlying computations by means of a unique, periodic synaptic matrix that could be self-organized in early development through a simple, symmetry-breaking operation. The scale at which space is represented increases systematically along the dorsoventral axis in both the hippocampus and the MEC, apparently because of systematic variation in the gain of a movement-speed signal. Convergence of spatially periodic input at multiple scales, from so-called grid cells in the entorhinal cortex, might result in non-periodic spatial firing patterns (place fields) in the hippocampus.  相似文献   

11.
Animals can maintain a stable sense of direction even when they navigate in novel environments, but how the animal's brain interprets and encodes unfamiliar sensory information in its navigation system to maintain a stable sense of direction is a mystery. Recent studies have suggested that distinct brain structures of mammals and insects have evolved to solve this common problem with strategies that share computational principles; specifically, a network structure called a ring attractor maintains the sense of direction. Initially, in a novel environment, the animal's sense of direction relies on self-motion cues. Over time, the mapping from visual inputs to head direction cells, responsible for the sense of direction, is established via experience-dependent plasticity. Yet the mechanisms that facilitate acquiring a world-centered sense of direction, how many environments can be stored in memory, and what visual features are selected, all remain unknown. Thanks to recent advances in large scale physiological recording, genetic tools, and theory, these mechanisms may soon be revealed.  相似文献   

12.
We present a series of computer-generated foraging models (random movement, olfactory navigation, and spatial memory) designed to examine the manner in which sensory cues and cognitive skills might be used by rainforest monkeys to locate patchily distributed feeding sites. These simulations are compared with data collected in the Amazon Basin of northeastern Peru on the foraging patterns of two species of neotropical primates, the moustached tamarin monkey (Saguinus mystax) and the saddle-back tamarin monkey (Saguinus fuscicollis). The results indicate that, although tamarins may rely on olfactory cues to locate nearby feeding sites, their foraging patterns are better explained by an ability to maintain a detailed spatial map of the location and distribution of hundreds of feeding trees in their home range. There is evidence that such informationis retained for a period of at least several weeks and is used to minimize the distance traveled between widely scattered feeding sites. The use of computer simulations provides a powerful research tool for generating predictive models regarding the role of memory and sensory cues in animal foraging patterns.  相似文献   

13.
Mammalian spatial navigation systems utilize several different sensory information channels. This information is converted into a neural code that represents the animal’s current position in space by engaging place cell, grid cell, and head direction cell networks. In particular, sensory landmark (allothetic) cues can be utilized in concert with an animal’s knowledge of its own velocity (idiothetic) cues to generate a more accurate representation of position than path integration provides on its own (Battaglia et al. The Journal of Neuroscience 24(19):4541–4550 (2004)). We develop a computational model that merges path integration with feedback from external sensory cues that provide a reliable representation of spatial position along an annular track. Starting with a continuous bump attractor model, we explore the impact of synaptic spatial asymmetry and heterogeneity, which disrupt the position code of the path integration process. We use asymptotic analysis to reduce the bump attractor model to a single scalar equation whose potential represents the impact of asymmetry and heterogeneity. Such imperfections cause errors to build up when the network performs path integration, but these errors can be corrected by an external control signal representing the effects of sensory cues. We demonstrate that there is an optimal strength and decay rate of the control signal when cues appear either periodically or randomly. A similar analysis is performed when errors in path integration arise from dynamic noise fluctuations. Again, there is an optimal strength and decay of discrete control that minimizes the path integration error.  相似文献   

14.
The goal of the present study was to examine the extent to which working memory supports the maintenance of object locations during active spatial navigation. Participants were required to navigate a virtual environment and to encode the location of a target object. In the subsequent maintenance period they performed one of three secondary tasks that were designed to selectively load visual, verbal or spatial working memory subsystems. Thereafter participants re-entered the environment and navigated back to the remembered location of the target. We found that while navigation performance in participants with high navigational ability was impaired only by the spatial secondary task, navigation performance in participants with poor navigational ability was impaired equally by spatial and verbal secondary tasks. The visual secondary task had no effect on navigation performance. Our results extend current knowledge by showing that the differential engagement of working memory subsystems is determined by navigational ability.  相似文献   

15.
The brain's evolution and operation are inextricably linked to animal movement, and critical functions, such as motor control, spatial perception, and navigation, rely on precise knowledge of body movement. Such internal estimates of self-motion emerge from the integration of mechanosensory and visual feedback with motor-related signals. Thus, this internal representation likely depends on the activity of circuits distributed across the central nervous system. However, the circuits responsible for self-motion estimation, and the exact mechanisms by which motor-sensory coordination occurs within these circuits remain poorly understood. Recent technological advances have positioned Drosophila melanogaster as an advantageous model for investigating the emergence, maintenance, and utilization of self-motion representations during naturalistic walking behaviors. In this review, I will illustrate how the adult fly is providing insights into the fundamental problems of self-motion computations and walking control, which have relevance for all animals.  相似文献   

16.
Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's "cognitive map", or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and - we conjecture - necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and elaborate on their implications and significance for the design, analysis and interpretation of experiments.  相似文献   

17.
Honey bees are well known to rely on stored landmark information to locate a previously visited site. While various mechanisms underlying insect navigation have been thoroughly explored, little is yet known about the degree of integration of spatial parameters to form higher-level spatial representations. In this paper we explore the basic interactions between landmark cues and directional cues, which stand at the basis of our understanding of piloting mechanisms. A novel experimental paradigm allowed us independent manipulation of each parameter in a highly controlled environment. The approach taken was twofold: cue-conflict experiments were first conducted to examine the interactions between positional cues and directional cues. The bees were then successively deprived of sensory cues to question the dependence of landmark navigation on context cues. Our results confirm previous findings that landmark cues are used in concert with external directional cues if present. Conversely, the bees' ability to locate a food site was not disrupted in the absence of an external directional reference. Thus, bees store landmark memories in an egocentric frame of reference and only loose and facultative associations between visual memories and compass cues are formed.  相似文献   

18.
The visual and auditory systems frequently work together to facilitate the identification and localization of objects and events in the external world. Experience plays a critical role in establishing and maintaining congruent visual-auditory associations, so that the different sensory cues associated with targets that can be both seen and heard are synthesized appropriately. For stimulus location, visual information is normally more accurate and reliable and provides a reference for calibrating the perception of auditory space. During development, vision plays a key role in aligning neural representations of space in the brain, as revealed by the dramatic changes produced in auditory responses when visual inputs are altered, and is used throughout life to resolve short-term spatial conflicts between these modalities. However, accurate, and even supra-normal, auditory localization abilities can be achieved in the absence of vision, and the capacity of the mature brain to relearn to localize sound in the presence of substantially altered auditory spatial cues does not require visuomotor feedback. Thus, while vision is normally used to coordinate information across the senses, the neural circuits responsible for spatial hearing can be recalibrated in a vision-independent fashion. Nevertheless, early multisensory experience appears to be crucial for the emergence of an ability to match signals from different sensory modalities and therefore for the outcome of audiovisual-based rehabilitation of deaf patients in whom hearing has been restored by cochlear implantation.  相似文献   

19.
Interaural level differences play an important role for elevational sound localization in barn owls. The changes of this cue with sound location are complex and frequency dependent. We exploited the opportunities offered by the virtual space technique to investigate the behavioral relevance of the overall interaural level difference by fixing this parameter in virtual stimuli to a constant value or introducing additional broadband level differences to normal virtual stimuli. Frequency-specific monaural cues in the stimuli were not manipulated. We observed an influence of the broadband interaural level differences on elevational, but not on azimuthal sound localization. Since results obtained with our manipulations explained only part of the variance in elevational turning angle, we conclude that frequency-specific cues are also important. The behavioral consequences of changes of the overall interaural level difference in a virtual sound depended on the combined interaural time difference contained in the stimulus, indicating an indirect influence of temporal cues on elevational sound localization as well. Thus, elevational sound localization is influenced by a combination of many spatial cues including frequency-dependent and temporal features.  相似文献   

20.
I investigated whether mice, after learning to home by relying on visual extra-arena landmarks, still required instantaneous access to such cues for successful navigation. Two groups of lactating mice were trained to retrieve their pups from the centre of a circular arena back to their peripheral nest. On test trials, mice from one group were allowed to view distal visual cues while moving from the nest towards the centre, and mice from the other group were allowed to view distal visual cues when homing from the centre towards the nest. The results indicate that viewing the visual cues when homing is necessary for landmark-based navigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号